Team MakerLax Tie Assistant Project Reflection

Overview:

The MakerLax Team consists of three members with very diverse backgrounds. Brian is a freshman majoring in electrical engineering, Peter is a senior in advertising, and Chase is a senior in business. Having three strongly uncorrelated majors allowed us to experience a wide range of perspectives throughout the semester. While at times one of us were unfamiliar with a certain part of the making process, the others would step in and help fill the knowledge void.

Motivation:

While our initial ideas proved to be either too complex or out of the scope of this course, we ultimately decided on our final topic based on an article Vishal shared during one of our classes. The article focused on creating a “How Can We?” statement, which essentially stated that, in order for an idea to become a reality and a finished product, it must first meet three criteria. First, the idea needed to be narrow in its scope. Users should be able to understand the capabilities and capacity of the product without needing an extensive manual to guide them. Next, the idea should be local in its presence, meaning that the product should serve some type of purpose that fulfills a need in the surrounding community. By doing this, the creators will already be familiar with the problem and can devise more intuitive solutions. The final requirement for this product was that the answer needed to be realistic. Users cannot be expected to have advanced knowledge of programming, for example, in order to fully utilize it. Drawing from these three requirements, we ultimately decided to gear our making efforts towards aiding students in preparing for professional engagements, such as interviews, career fairs, or networking events.

Prototypes:

The very first crude prototypes that we created were paper models. They were quickly fashioned to act as both visuals, as well as to test different shapes for our design. After we decided on one, we recreated that form in Fusion 360. Our very first print was only meant as a test for the shape that we decided to implement. Initially, we considered making the design modular in some way. Either by adding tabs for the parts to lock into, or by creating a “puzzle piece” design. Eventually, we decided to keep the design as a single unit. Afterwards, we shifted to TinkerCAD as we believed it would better for our purposes. We then printed more models to test various clip designs. After we found a suitable one, we moved to testing. The size and shape seemed fine, but it was a bit cumbersome to wrap the tie around the sturdy print. It was this that caused us to move on to the semi-flex filament for our last design. After reprinting the last model in semi-flex and testing it, we found it satisfactory and used everything we gathered to create the final product.

Final Product:

Our final product was, at first, our second to last model. After producing and testing the semi-flex model, we thought it was suitable enough to be our final design. However, somewhat last minute, we decided to improve upon it further. We decreased the dimensions, and redid the shape to make it more versatile. Physical features such as grooves and numbering were added to act as guides and “mini-instructions” to improve the ease of usage. It still is not necessarily perfect, and the print itself did not turn out that well, but it is quite an improvement on the original.

Features & Benefits:

Our final design has a thin and sleek profile, making for easy storage. It can easily fit within a pocket or portfolio. The flex material makes it very malleable and not very prone to breaking. This also allows one to utilize it with ties of varying shapes and sizes, and work it with ease. The clip is barely noticeable and and the physical structure of the design allows it to hold a tie snugly while at the same time allowing for easy removal. The indentations in the front face of the model are of different depths, allowing a user to feel around for the different steps. A number and arrow system are also engraved into the face that coincide with the instruction manual. Aside from allowing one to tie a tie around oneself, it can also be used to store a premade tie, in the event that the user foresees a circumstance for it.

User Feedback:

Overall, we found user feedback to be incredibly helpful during our prototyping phase. We had both in class feedback along with feedback from students outside the classroom. During the sessions, we were able to observe how our products were used the and difficulties that occurred. One student said, “I suggest adding instructions or some kind of step-by-step process to make using the product easier.” We took their advice and created a pamphlet as part of the packaging and adjusted the clip size and indents on our original prototype.

Future Improvements

We hope to utilize more materials in future prototypes. Semi-flex filament was different to handle and took the 3D printers multiple tries to print out our prototype, so we hope to test different types of semi-flexible materials. One feature would be to have a collapsible, modular format. The benefit would is that the user can easily remove the product once they had completed tying their tie. From the user feedback, the other suggestion we were given was to incorporate electronics into our design. The product would have an LED guidance where different sections would light up green to guide the user to tie the tie. The LED guidance would require coding and implementing a small arduino and a battery into the product.  

Takeaways:

After the conclusion of this project, our team came away with three main conclusions from the experience. Firstly, it was incredibly satisfying to see our weeks of efforts and labor culminate in a working and usable model. One of our team members who previously was unfamiliar with how to tie a tie was able to learn how, with the guidance of our product. After seeing it be put to use, we can say with complete certainty that our efforts proved worth it. Additionally, we learned that rapid prototyping is critical to the making process, and to creating an effective final product. We spent the majority of our initial efforts attempting to make the perfect first prototype, when in reality the majority of our progress came upon the third and fourth iterations. Similarly, our team realized the immense importance of receiving user feedback. While we had certain connotations of the direction we wanted to pursue with our product, obtaining feedback from users that were unfamiliar with the making process gave us great insight as to what the average user would actually prefer.

Slide Presentation:

https://docs.google.com/presentation/d/1IPbJ5ryCkPmgwZ3aqKYncMZNeR6uIaXsuPVW9Mw8MWc/pub?start=false&loop=false&delayms=3000

BCC Creations – Door Sitter: Our Experience in Making

Our journey of creating the Door Sitter was challenging yet intuitive. Though the three of us in BCC Creations were not engineers, we had used our resources, research and knowledge to create an efficient product.

 

Prior to choosing to create the Door Sitter we went through a couple of ideas in our brainstorming process. We had first started out with identifying problems that were occurring in our own lives or to those around us. Vishal had stressed on using the Design Thinking Method which was a problem-solving process that allowed us to build up ideas with no limitations. Our first idea was based on our teammate, Carter’s experience with the recreational facilities on the U of I campus. He had noticed how many of the sporting balls were not at the correct PSI and having a decide to test it rather than manually doing it would be efficient. Thus, we decided to create a product to regulate a sporting balls PSI and pumping the ball to the correct amount. However, the more in-depth we got and furthered our research we realized that the product itself would be very complex and the pricing of it may not be suitable for the target consumers. Furthermore, we thought the product would worsen the problem and reduce the efficiency and we wanted to create a product that would be beneficial for more consumers.

Our next idea had helped lead us to our final idea, a Chores Alert System. We thought it would be useful to those in the dorms with roommates, they would be alerted through a text whenever a chore needed to be accomplished. Though we all liked the idea we had continued brainstorming for more possibilities which led us to the Door Sitter. All three of us lived in apartments and had the realization that when we left during school breaks we had no way of checking for breaking and entering which had happened to many of our friends. So we came up with the idea of creating an affordable yet efficient alarm for an apartment that would be able to detect an intruder and sent a text message to the roommates of the apartment.

Making

 

Once we finished brainstorming and settled on our problem to solve, it was time to determine how we were going to solve that problem, and how we could actually make that solution work.  Fortunately for us, we had the MakerLab and Fab Lab at our disposal, not only for the physical components but also their expertise.  

We knew that we wanted to 3D Print the housing for the system since we were familiar with the MakerLab, knew we could have multiple iterations, and the general low cost of 3D Printing.  Before we could start designing the housing, we had to know what physical components our alarm system would need to function.  Only after we settled on the technologies and hardware we were using could we design the housing.

Hardware

IMG_1514

Initially, we planned on using an Arduino since we had used one and had experience programming it from our Blinker Boxes during our time at the Fab Lab.  We thought we could use an Arduino with a bluetooth module to send notifications, but later decided to use a Raspberry Pi with Kootek Wifi adapter from the Maker Lab.  To detect motion, we used an ultrasonic sensor from the Fab Lab.  This allowed us to detect motion within a specific range that we were able to physically adjust to about 10 feet at a 120 degree angle.  We also picked up male to female jumper wires to connect the Raspberry Pi, sensor, and breadboard together.  We powered the device through mini-USB rather than a battery, and ultimately decided against the piezo sound buzzer.  To interact with the Raspberry Pi, we used a keyboard, mouse, and monitor from the MakerLab.

Software

2r7wkes

Once we acquired all the hardware for the security system, it was time to make the system actually work.  We first had to load an operating system (Raspberrian) onto the device so that we could put in the Python code.  We were fortunate to have Charlene’s friend lend us his technical skills with the programming.  We used Twilio as a service to send the text message notifications to our phones when triggered by the motion sensor.  To design the housing, we initially started using Fusion 360 since we had used it for the tutorial homework and our in class workshop with Jeff Smith, but we instead used Tinkercad for its simplicity.  Although it is a relatively simple program, Tinkercad provided all the functionalities we needed, with far less complication.  

The entire “making” process flowed very well.  As the software was being programmed, we were simultaneously physically putting the hardware together.  Once we knew how much space the hardware was taking up, we were able to design, print, and refine the housing.  The MakerLab provided a great meeting place to work on the project together in addition to supplying the Arduino, wifi adapter, keyboard, monitor, power cord, and mouse.  The Fab Lab was also a great outlet to receive advice from and supply us with the sensor, breadboard, and jumper wires.

Feedback & Testing

Given that security product solution is heavily user dependent, receiving feedback and testing the security “door sitter” was vital to allowing us to make adjustments to make the product function properly. The initial tests we ran ourselves focused on getting the device to accurately function as we created it. Functions such as the sensor detecting motion, ensuring the programmed Python sent the text message to a phone, and even connecting to wifi internet connection were processes that were refined by our testing. The range at which our ultra motion sensor detects motion was one capability we spent hours adjusting on our product. The ultra motion sensor has the capability to detect motion for a  120 degree 30 feet radius. We ultimately adjusted the sensor to only detect within 8-10 feet after much consideration about how our product is practically used. Since our the product is meant to run perpendicular with the entryway of a door,  we did not want it to trigger a false alarm from movement far away. Taking  practical considerations such as false alarms, how the product is used, and what makes most sense for the user were our primary goals when testing the security door sitter.

Furthermore, we tested the door sitter ourselves, collaborating with class members, and finally our team member Brian had his roommates test the door sitter within their daily routine. The feedback we received focused on two aspects of the door sitter. Firstly, where to install the product was something that was not intuitive to users outside of our team. It was not necessarily clear what location to velcro the door sitter box worked best. Another point that was brought up with the door sitter sensor location, was “what if a user has pets such as cats in the apartment? Would that trigger false alarms? “.  We resolved this issue by creating an installation instruction manual, that would be given with the product for users who purchase the door sitter. The instructions tell the owner to use the provided velcro to put the door sitter on a wall perpendicular of the entry way that the user wants to be detected. It also has recommendations such as to install it high above if a user has pets.

Secondly, our classmates suggested that a user could easily forget to arm the door sitter before leaving there room / apartment.  Our product is currently armed by simply plugging in the power cord. As in once a user wants their residence to be monitored they simply plug in the power, and after a 1 minute delay there motion sensor is monitoring the entry way. Although we could not figure out a low cost way to arm and disarm the door sitter remotely in the event that a user forgot to power it on, we did create a notification system that texts a user to let them know the system is on. This way a user can know based on their message history that the security system is armed, and the text message becomes a part of their daily routine


The feedback we received was generally positive, in that the Door Sitter was helpful in providing peace of mind and information regarding college students area of residence. Most importantly the critical feedback we received was beneficial, because it led to us improving our product by making it seamlessly fit into a user’s life.

Final Product

Our final product The Door Sitter, provides a solution to the need for low cost residential security. The Door Sitter is a personalized sensor set up by door(s) or window(s) to an apartment/house. When the Door Sitter is armed, it functions as an alert security system by immediately notifying resident (s) if and when there is someone that has entered  the interior of a home.  The Door Sitter notifies resident(s) when motion is detected via SMS  text message, so that they are aware of what is happening within their residence and can alert authorities if need be,The customized 3D printing housing unit and instructions makes the Door SItter easy to set up with velcro, and more importantly keeps users mobily connected to the security of their home by knowing if and when someone has entered. Our product effectively monitors and notifies users of activity in a home. The immediate information the Door Sitter provides, gives users peace of mind knowing that they do not have to worry about a break in when they are away from their residence. Furthermore  if there is a residential break in,  with the alert system residents now have the information to be able to respond. Door Sitter can solve a need in that college students and property owners,  have  the ability to respond to a residential break with a low cost option for a security system.

Certainly, the BCC team learned quite a bit this semester in terms of the capabilities and process of solving a need through 3D printing,  While we are satisfied with the progress we made in creating our own effective product that can help solve an everyday need, we also know that the product is far from perfect in terms of taking it to market. Do to the cost we did not pursue the potential of adding a camera to the Door Sitter. We do think finding a low budget camera to add to the exterior of the housing unit, would be useful in allowing a user to know not just that there is someone in their residence but who. Finally the actual cost of our product is a factor that we need to analyze more if we wanted our product to be on the market. The door Sitter costs roughly $50-$60 per unit with the all of the components. The feedback we received from our presentation suggested that even if we sold the Door Sitter at cost for $50-$60, that price tag still is  a bit expensive for our target market of a college student. In our research we found that most in home door monitors are high tech and range from $120-$250. So while the Door Sitter would be a low cost option in comparison to what most security systems entail, we may want to pursue alternative components in collaboration with Jeff Ginger at the Fab Lab to make our product less expensive given our target market.

Overall our team BCC creations, made a product that solves a need with the Door Sitter. We worked over several  project ideas, learned new softwares such as Fusion 360,   and went through many iterations of the  design making process to create a solution. Using 3D printing and the Maker / Fab Lab to create a functioning and tangible final product,  was beneficial in providing our team hands on experience of the capabilities of this technology and the  maker movement.

 

 

 

A Semester of Making

IMG_1015

When I enrolled in the BADM 395 Digital Making class, I was really not sure what to expect. I had learned about the class while enrolled in Professor Vishal’s BADM 350: IT for Networked Organizations class and thought it might be worthwhile to take. Prior to the first day of class, I had never been to the Maker Lab. In fact, other than seeing a quick demonstration several years ago, I had no experience with 3D Printing or really any form of digital making. My main motivations for taking the class were that 1) I wanted to learn more about the Maker Movement which I knew little about, 2) it would introduce me to many of the resources available at the University that few students take advantage of, and 3) I like the emphasis on learning, growth, and sharing rather than cramming and examination. The fact that the class counted towards my IS/IT major was certainly an added bonus.

 

I was hoping to learn how 3D Printers work, how to design objects for 3D printing, and different types of 3D Printing. However, I learned all of this and much, much more. I learned about the Maker Movement, different types of fabrication, design, product development, and prototyping, just to name a few topics. I have never considered myself a very “creative” person, so this course challenged me to think outside of my comfort zone. Working through the projects helped me develop some creative skills and further refine my problem solving skills. I am now more comfortable working on product development, a skill that is transferrable to many other processes such as project management. In addition to this, I was introduced to and learned about the following topics.

 

The Maker Movement:

The first few weeks of class served as an introduction to the Maker Movement. We covered topics such as intellectual property concerns and the success of open source software and devices over paid or closed services. It is here where we learned the learning aspect of the Maker Movement and the importance of learning, sharing, modifying, and most importantly: doing.

IMG_1021

Design:

One of the most important facets of making is design. Design for America led us through a workshop to demonstrate the importance of meaningful design. Instead of creating a product and finding demand, we should find a problem and design a solution. Through our readings we learned that products must be desirable, viable, and feasible.

Screen Shot 2017-02-17 at 5.03.53 PM

Tinkercad and Fusion 360:

Learning Tinkercad was very easy. Vishal demonstrated the open source online software and we designed our team logos. Even though the program is pretty simple, it makes it very easy to design objects quickly. Our first experience with Fusion 360 was through tutorials before class. Following this series of videos by Lars Christensen, we are able to create a box/housing with a lid. It demonstrated how powerful Fusion 360 really is. We were lucky to have Jeff Smith from Autodesk teach us even more the features available. For my group’s final project, we ended up using Tinkercad rather than Fusion 360 because of its simplicity.

Electronics

Fab Lab:

We spent three consecutive weeks in the Champaign-Urbana Fab Lab. Although I had soldered in the past, it was my first time in several years. It was a great way to practice making circuits and soldering them together. I was also able to code an Arduino for the first time, which sparked my thought process as we brainstormed ideas for our final project. Finally, I also used a laser engraver for the first time. This introduced me to Inkscape, another open source software (have you noticed a theme yet?) that allowed us to take silhouettes and have them etched into the wood and cut through to form edges.

IMG_1468

IMG_1571

IMG_1526

Prototyping:

The remainder of the semester focused on prototyping. Although I have been through mock product development phases, this was the first time I have gone from identifying a problem to presenting a final, physical working product. David Kelley says “Design is an iterative process” and I found that to be very true. Our prototype went through many versions starting with a sketch on paper to the final version. Between adjusting our coding on the Raspberry Pi to changing the design of the 3D printed housing to adding and removing functionalities, we spent a lot of time refining the project to best solve the problem of a lack of security on campus while addressing the needs of users. Somewhere in the middle of things we were able to learn about 3D scanning, something we could turn into a business idea as Arielle Rausin has. I was able to scan my head and 3D print it. By the end of the semester, we had been able to design, test, refine, and produce a final security system alternative.

 

An added bonus of the class was being able to go up to Chicago for a day. We visited Deloitte for a presentation on Deloitte’s tech trends and a consulting workshop. We also visited the Deloitte Greenhouse, a space where clients can come in and run through workshops to problem solve and create connections across many levels of their own companies. It was a really unique space and I’m glad I was able to see it. After Deloitte, we drove over to mHUB, a collaborative space where member companies can work on developing and manufacturing products. This is the epitome of the future of making. Members can work together, building off of each others skill sets, have access to collaborative and shared workspaces, and take advantage of a significant amount of expensive, advanced equipment. It was really cool to see Making on a commercial scale.

IMG_1576

IMG_1581

The end of the semester is bittersweet. While I’m excited for the summer and to be interning again, I am going to miss this class. We formed such a great community together and learned a lot from Vishal, all of our guest speakers, and each other. I’m glad I was able to enjoy this class and challenge myself these past few months.

 

Auditing, Testing, and a Trip to Chicago

IMG_1571

As we quickly approach the end of the semester, our teams have started to refine our prototypes. This week in class, we split up into our teams and met with other teams for a design audit. Meeting one to one with another team, one team described their product by explaining the problem it was solving, how it worked, and how to use it. Then, the other team would ask questions about why they made certain decisions while designing the product. Based on those responses, the team would then offer suggestions as to how to improve the design for the next phase. Our team audited a hydration sensor FitBit attachment, an aquaponics system, and a doorstop. With each rotation, we were also able to receive feedback on our design.

While there is not too much we can change about our design, we did receive some valuable feedback. One student pointed out that printing the housing in white would make the security system more discrete as it would not stand out as much. Another student mentioned that she thought that students may forget to plug in the device before leaving. Based on that feedback, we will print in white when we finalize our design, and we are looking into incorporating either an on/off switch or activating the alarm remotely.

IMG_1596

Going forward, we had to now test the prototype. This Web Designer Depot page, though geared towards digital interfaces, still gives valuable insights into things to consider while testing prototypes. We came up with a list of questions to guide feedback and had a group member and a friend answer the questions after using the prototype in their apartment. We wanted to know how easy it was to use the design, any difficulties they found in their apartments, and any concerns they had about the product. Using this feedback, we hope to have the best product possible that could be brought to market.

IMG_1576

On Friday, Brian Xu and I had the opportunity to travel to Chicago with students from the Making Things class. We left campus early in the morning and arrived at Deloitte Chicago for a presentation and workshop. We were treated to lunch while learning about Deloitte’s Tech Trends and had a quick startup workshop on solving problems on our campus with a product that incorporated the tech trends. After running through the workshop, we headed upstairs to the Deloitte Greenhouse for a tour. The Greenhouse was designed for clients to come in and reach “breakthroughs” with problems they are facing in their firms. The Greenhouse incorporates different technologies into the space along with sensory equipment to enhance the experience. It was a really cool space to be in. After the Greenhouse tour we drove over to mHUB for a tour. mHUB is a unique space that allows members and partners to work together on learning, producing, and manufacturing. There was an incredible amount of equipment in the massive space and we were able to see some of the companies working on their products as we walked through. The entire experience was a great way to spend my Friday!

IMG_1581

Beautiful and Terrifying: 3D Printing in Medecine

“3D printing will rock the world.” This phrase is becoming increasingly prevalent, and even mainstream, in today’s society. We are instructed to imagine a world in which we can produce a coffee mug where, mere moments before, stood just a printer and ink. A world in which we can transform digital images into physical realities virtually instantaneously. A world in which traditional boundaries are challenged, disrupted, destroyed. We tend to project this new realm of possibility in the context of the products sector; it is only natural that we are inclined to envision all of the new things we can acquire through these advances.

Yet the implications of 3D printing technologies expand far beyond the increased satisfaction of global consumers; they are redefining life itself, starting at the molecular level. The application of 3D printing began at a simple level, with commonplace products such as Invisalign and hearing aids being produced at an increasingly personalized level and reduced cost. As capabilities increased with each iteration of the technology, so did the medical applications that it could be applied to. Soon, prosthetics became a heavy focus of the industry; historically expensive and oftentimes ill-fitting, the ability to custom produce per customer revolutionized the lives of many users.

This particular advancement was especially pertinent to children, who are constantly growing and therefore require frequently updated prostheses. This proves to be an immense financial burden for families and, in many places, can even prevent the individual from receiving the required prosthetic. However, makers around the world have devoted themselves to harnessing the available technologies in order to increase accessibility to the proper production and training. Organizations such as Project Daniel and Enabling the Future utilize crowdsourcing to refine their open source designs and provide the best product possible at an affordable price.

This movement has proven especially impactful in regions where violence is prevalent and many young people who have lost limbs have traditionally lacked access to proper prosthetics, therefore hindering their ability to function at their full physical capacity. And now, as medical professionals begin to harness technologies that will utilize live tissues in order to resolve a wide spectrum of medical issues, this ideology will be taken to the next level. However, this proves to be no easy feat. The success of such endeavors relies entirely upon the ability to keep the tissues alive as the implants are developed; they even contain blood vessels and nerves.

Described as “a goose that really does lay golden eggs,” this new advance in the world of transplants and implants will address the prevalent issue of rejection. Oftentimes, patients receiving a foreign organ run the risk of severe medical complications if their body rejects the new part. Printing using one’s own cells essentially mitigates this risk, as the body will no longer process the new addition as being an “outsider.” This will also decrease the need for patients to take immunosuppressants when receiving said procedures, therefore decreasing risk of outside infections or viruses from wreaking havoc on their immune systems in their repressed states. From an economics perspective, these technologies are also capitalizing on a market that is in a constant state of shortage; the demand for organs nearly always exceeds the number of donations available, therefore making the process incredibly competitive and, in some cases, a matter of life and death.

However, this ethical sword is indubitably double-edged. Increasing the number of transplants available, and arguably increasing the quality of those received, resolves the age-old issue of assigning priority to transplant requests. For example, one’s age will hopefully no longer play a deciding role in whether or not a patient is granted the organ that will extend their lifespan. Despite this obvious upside, the new capabilities of these technologies also invite in the same desires and conflicts of interest that have been discussed in the context of genetics and designer babies.

Cosmetic surgeries have been a long-standing part of society, with individuals refining and redesigning aspects of themselves to better portray their vision of “beauty.” In recent years, genetics have allowed parents to elect (or discard) certain genes that may make their children prone to certain traits or medical conditions. This is a heavily debated ethical issue, and has been the center of heated controversy over the past few years. If people are willing to go to such lengths to increase the chances of their child having a certain hair color or proclivity to sports, I can only imagine the excitement that being able to redesign certain parts of themselves from scratch would generate. How far will they be willing to go? And at what point, if any, will it be society’s job to say “enough?” Although these technologies are still in their beta stages, I can only imagine the directions they might take if left to the demands of society. Will there be full facial transplants for those who simply wish to portray classic beauty? New sets of legs for those who wish to run faster?
We now hold the key to something beautiful and terrible; with unbridled potential at our fingertips, it is more important now than ever to delineate between needs and wants, those uses that are for the betterment of society and those that are superfluous to its progression. It is our responsibility to understand the power that we possess, and to move forward with both curiosity and caution so not to allot this great potential in a less than responsible manner.

 

Birrell, Ian. “3D-printed prosthetic limbs: the next revolution in medicine.” The Observer. Guardian News and Media, 19 Feb. 2017. Web. 02 Apr. 2017.

Gallagher, James. “Doctors 3D-print ‘living’ body parts.” BBC News. BBC, 16 Feb. 2016. Web. 02 Apr. 2017.

Mellgard, Peter. “Medical 3-D Printing Will ‘Enable a New Kind of Future'” The Huffington Post. TheHuffingtonPost.com, 22 Apr. 2015. Web. 02 Apr. 2017.

Shaer, Matthew. “Soon, Your Doctor Could Print a Human Organ on Demand.” Smithsonian.com. Smithsonian Institution, 01 May 2015. Web. 02 Apr. 2017.

Want To Save the World? Try 3D Printing

What makes 3D printing even cooler than printing personalized accessories like keychains and useful tools like phone charging docks is its potential to save the environment. First, 3D printing is an additive technology, meaning that it’ll only print as much material as needed for a product layer by layer, so very little if any goes to waste. In addition, 3D printed products are usually lighter in weight than their traditional counterparts, which saves money and reduces fuel consumption during shipping. Also, according to Eric Masanet, associate professor in the Departments of Mechanical Engineering and Chemical and Biological Engineering at Northwestern University, using 3D printed metal parts can reduce the weight of an aircraft by up to 7%. This can help cut back carbon emission and save customers money.  Another set of statistics provided by the Department of Energy is that 3D printing uses up to 50% less energy when compared to conventional mass manufacturing. These are just some of the benefits of 3D printing technology. Taking a closer look, we can see that there are numerous groups out there in different parts of the world striving to use this technology to improve environmental sustainability, AKA saving the world. Below, I will share the two examples that I personally believe are the most interesting ideas pertaining to this subject.

screen-shot-2014-05-29-at-4-55-26-pm.png

Waste pollution like this often seen in cities struggling with poverty

Cities around the world, especially those that are becoming more urbanized, create a shocking amount of plastic waste every day. This waste not only affects the natural habitat on land, but oftentimes it also eventually become ocean plastic. To solve this problem, the Plastic Bank created a Blockchain digital currency & exchange platform to encourage the collection of plastic waste. It’s the world’s first process to monetize plastic waste. The company launched 3D printing plastic repurposing centers, especially in areas where there is an abundant of waste and poverty, which can take any mixed plastic and make them available for reuse. When citizens bring collected plastic waste to these centers, they could exchange them for monetary rewards. Learn more about this cool “social plastic” movement by watching this short video below:


Turning our focus to the sea, there’s a growing amount of plastic wastes in the marine environment caused by pollution, microbeads from personal care products like soap and toothpaste, and even debris generated by the tsunami. A UK startup company called The Fishy Filaments aims to address this issue by providing one particular solution–turning old fishing nets into 3D printing filaments. This way, fewer nets will be going to landfills (which there aren’t a lot left) and it’ll prevent fishing nets from breaking down into microplastic which could be ingested by fish and birds. Founder of Fishy Filaments, Ian Falconer, believes that fishing nets are great for recycling into filament since they’re mostly made out of Nylon 6 which is used in 3D printing. This avoids extra processing which could harm the environment. The startup has proven the technology and process, and is now on its way to raise £5,000 ($6,178) through crowdfunding to purchase more advanced equipment to increase the efficiency, taking this project to the next level and making the business work.

Image result for fishy filaments

These are just some of the initiatives people have taken to improve our environment with the power of 3D printing. Hopefully these ideas will encourage each of us to take action, whether directly participating or indirectly supporting these movements. Or even better, coming up with cool ideas of our own!

Sources:

Fishy Filaments: https://fishyfilaments.com/

New Data Shows That 3D Printed Components Could Cut Aircraft Weight By 7 Percent: https://3dprint.com/71279/3d-print-aircraft-weight/

Department of Energy: https://energy.gov/articles/how-3d-printers-work

The Plastic Bank: http://plasticbank.org/

Ready, Set, Make!

It’s hard to believe we have been away from the Maker Lab for over a month! Week 9 found us back in the Maker Lab after a week away for Spring Break and the previous 3 weeks away at the Champaign Urbana Community Fab Lab.   I think all of us were glad to be back “home.” This week we focused on design and prototyping as we start to bring our project ideas to life.

IMG_1468

One of the most important points we learned emphasized that design sketches and prototypes are by no means a final product. They can (and should be) rudimentary, use household items, and use temporary solutions. David Kelley, of IDEO, in this presentation says, “Design is an iterative process.” The quicker you can get feedback from a product, the more successful it will be. Each presentation allows you to get more feedback, and people will always tell you “everything that is wrong with it.” Kelley continues in this video to talk about the design of Apple’s mouse, and how a temporary prototype solution to keep dust off the optics can turn into a permanent part of the design. As you improve, you will quickly have a better prototype on your hands and you can even start using custom parts. Jeremy Losaw in “ProtoTYPING: Tips to Get Started on Your Product Idea” says “3D Printing is a great way to get custom parts quickly.” Luckily for us, we have access to the Maker Lab and Fab Lab to make those custom parts with the very talented staff in both labs.

IMG_1467

After going over all these discussion points, it was time for our groups to split up and start designing and prototyping. My team, BCC creations, settled on making a low cost security system to provide college students some peace of mind when they are away from their apartments. We have named our product “Security SMS” and will use motion detection to alert of unauthorized entry. When someone enters the apartment, they will have 10 seconds after the motion detector is tripped to turn off the alarm. Otherwise, an alarm will sound and a text message will be sent to the roommates living in the apartment. We will use a Raspberry Pi with Twilio to send the SMS, Piezo for the alarm, and an ultra sonic sensor for the motion detector. We will 3D Print the housing that will hold the alarm, which can be attached to a wall with Velcro. Originally we considered using a Bluetooth unit for the SMS function, but after I went to the Fab Lab during class, we decided to try Twilio.   Aakanksha at the Fab Lab offered to help us, and Charlene and I have friends studying Engineering that have offered their talent to us should we need it when programming. Our next step is to start working on putting together a circuit and programming the Raspberry Pi. When we know how big the circuit will be, then we can start prototyping the housing for 3D printing. Although it may be tricky to design in the software, we presume it will be an easier task that working with the technical specifications of the alarm. Regardless, with the three of us working together, we are all excited to prototype!

Laser Cutting-Patience is a Virtue

This week wraps up the third and final session at Fab Lab. It gave us a sense of achievement as we were able to put together everything we’ve learned in the past 3 weeks into our final product–a personalized LED lightbox.

In this session, my group experimented with laser cutting. It’s a manufacturing technique that utilizes a laser which creates a beam of light to cut or raster on a panel of material. Common material used includes wood, acrylic plastic, and paper. For this project, we used Russian birch plywood.
inkscape-logo
17408115_1539942082690776_1406280540_o

To create our design for laser cutting, we used a program called Inkscape. It’s a free and open source vector graphics editor that’s similar to Adobe Illustrator. It was pretty simple and straightforward to use and we learned how to convert a bitmap image downloaded from the Internet into a vector image, so that no matter how you scale it, the edges will be just as sharp and not pixilated. In order for the lines to be cut later on with the laser, it has to have a thickness of 0.001”. As for raster engraving, the darker the shade of the image, the deeper the raster. After designing our images, we saved the file as PDF and brought it to the laser machine to start the cutting process.
17349346_1539942006024117_808098258_o

Staring at the laser machine while it did its work was actually entertaining, as shown in the video. We had to keep an eye on it the whole time to ensure it doesn’t catch on fire (which they said usually doesn’t happen, but who knows).

17342288_1539942052690779_1677394001_o

It took about 10 minutes for the machine to cut the 6 pieces as well as rastering 3 sides of the box. Fortunately, mine came out quite well though I had to use sandpaper to smooth out some of the edges. The next step was the exciting part–putting everything together. It took a lot of time and patience to assemble all the parts of the Arduino, LED lights, and wooden box with a hot glue gun, but in the end it was well worth it.

17380071_1539941996024118_881695424_o

Oh so magical.

17342144_1539942069357444_1538067418_o

Punny play on words 🙂 You go to U of I, you know it’s about the corn life.

17379895_1539942026024115_1941755771_o

My personal logo!

The major takeaways I’ve gotten after these 3 wonderful sessions at the Fab Lab:

  1. Technology is great and so much more than what we normally see. It’s not just about endless coding like what we usually imagine CS majors and software engineers do all day. The Fab Lab has taught me that it’s about combining different skills (coding, designing, soldering, fabricating, etc.) and sparking your inner creativity to make a variety of things, both for personal use and for the benefit of the society.
  2. Patience is a virtue. Yes, it’s triple cheesy but it’s true. I’m not kidding about the number of times I had to tell myself not to get too frustrated, whether it was soldering wires, assembling the LED, or gluing the final product together. This also applies to anything you want to achieve in life.
  3. Collaboration is key. You won’t go far trying to do something by yourself. Every person you meet knows something you don’t, so by sharing ideas with others you are able to accumulate a lot more knowledge which will help guide you in your creations.

Just to finish it up, I’m going to share a cool project that was done through Fab Lab: a 3D printed boombox. The board is written with Arduino language and can play music using an SD card and a 9V battery. I’m sure this bad boy will serve you well at a house party. 🙂

boombox

Arduino Testing and Experience

This was week two in the Fab Lab. My group, group White, was switching from laser cutting to coding and testing Ardiunos. I have had very little experience with coding and zero experience with Arduinos. I was not sure how this would go.

The first thing we did was grab the box we had laser cut the week before along with the pouch that would help us assemble our Arduinos. Each of us sat at a station with two monitors. On one monitor we pulled up a slide show that would help us follow along with how to code. We ran a series of tests to make sure our Arduino would function properly. I found the most difficult part of this process was figuring out where exactly to place everything on the bread board in order for it to work. Luckily the final product turned out!!

When I looked more into what kinds of things arduinos are used for, so many things came up! Something that stood out to me was a “smart house” controlled by arduinos. At first, my mind immediately went to the Disney movie “Smart House” that was created in the late 90s. When I read into it, I found out that arduinos control more of the environment of the house. For example, controlling the internal temperature of the house, letting know which windows are open or closed, or which doors are locked. These are small things, but they are helpful. Every time my family and I leave our house, we ask the same questions. We are not for sure we locked all the doors, turned off all the lights, or even made sure the stove was off. An arduino for our house would be very convenient. We would not have to wonder and would have the answer at our fingertips by checking our phones. Click here to read more about smart houses.

I am curious to see what arduinos hold for the future. I know I have only recently had experience with probably one of simplest functions of an arduino, I was amazed. I have never made something that was motion sensitive. I think exposure to arduinos will broaden our ideas as a class for our development of our products for Digital Making. This could make something touch sensitive or notify you what the temperature is. Arduinos can upgrade an idea that you may of already had!

Week 7: 2nd Week at the Fab Lab (Laser Cutting)

Aside

For our second visit to the Fab Lab, each group switched stations to work on a different portion of our final project. This week, I attended the Laser Cutting session. Though the workshop is somewhat secluded towards the back of the Fab Lab, it certainly shines through as one of the more unique creative processes the Fab Lab has to offer (no pun intended).

In my last workshop, we focused on designing the physical circuit for our light-sensitive boxes. This week, we continued with moe hands-on work dedicated to making the appearance of the project aesthetic and to our liking. By using specifically designed software, we were able to create layouts for our boxes that we could customize. We first gained the template after entering our desired dimensions into an online resource, and then imported that file onto the lab computer software Inkscape to customize them. We were able to select images online to use as stencils for the panels. The images had to be completely black & white, as well as properly pixelated. The laser cutters are incredibly precise, and are able to stencil out wood portions with cuts of down to .001 m in width, resulting in flawlessly fitting pieces and stellar quality of silhouettes. One of the most amazing bits of all this, is that each person’s cuts only took approximately 20 minutes maximum, way faster than a conventional 3D printer. While it is certainly a sight to see something create out of nothing, some don’t realize that you can also achieve great designs by taking away from what you already have.

Smaller scale sample box pieces

For my custom designs, I chose each side to represent a field of engineering/design as I am an engineering major. Four sides included images reminiscent of electrical, mechanical, and computer engineering, as well as architecture. The underside of the box features a 3D printer silhouette as well as that of a laser cutter, the two main methods of design that my group will probably use in our final project. The remaining side just has my name with a special measurement system composed of a ruler image and different sized stars to represent the brightness of the LEDs.

My pieces

Sneak peek of the completed project

Now that I’ve completed both the physical portions of the workshop, I’m excited to take part in the coding session next week, where we will program the Arduino with the desired code to allow it to respond as we want it to. I’ve thoroughly enjoyed these Fab Lab sessions not only because we get to create a custom project for ourselves to keep in the end, but we also get to see multiple types of engineering and designing intertwined (specifically electronics, mechanics, and programming) into a single project. It’s been a fantastic experience to work with all these different processes, and I’m hoping that we can incorporate every one of them into our final project.