Week 6 Summary: An Exploration of the Fab Lab Opportunities

This week we engaged in the second phase of a continuous three-part series meant to offer exposure to the myriad of activities offered at the Champaign-Urbana Community Fab Lab. The Fab Lab, although the majority of the class was unaware of its existence prior to this semester, is a leading-edge open and collaborative workspace for design, creation, and printing through the use of computer-driven technologies, such as 3D printing, lasering, inkscape, and soldering. Below is a picture of one of the spaces within the workshop.

One of my favorite aspects of the Fab Lab is its openness to the entire community, irrespective of whether the makers are students or local community members. Everyone is welcome and simultaneously given the resources to collaborate, share, and implement their ideas. Since the making space offers such a vast array of opportunities to its various users, the class was divided into three separate groups during our first session, with each group rotating between the three main functions of the lab: laser cutting, soldering, and coding.

In Brian’s most recent post, he examines the laser cutting portion of the project. The objective of this part was to assemble the wood cube that would house the photo dependent LED light resistor. The software used to create the designs on the sides of the cubes was Inkscape, a completely free, open-source platform that appears to be user-friendly yet still able to make complex designs. Once the template for the wooden cube was downloaded, he initially needed to consider some alterations to guarantee the fitting of the wood. In order for the laser to properly cut the wood, certain formatting and thickness adjustments had to be made. Using Inkscape, Brian and the other members of his group traced images taken from online, and, once finished, the PDF file was loaded onto the laser cutter. The laser etched the designs into the wood which created the downloaded images, while also making the actual cuts to create the box. The cutting process lasted just a few minutes, as subtractive manufacturing such as laser cutting can be considerably faster than additive manufacturing, like 3D printing. Brian’s finsihed creation can be seen below.

Carter’s weekly reflection focused on the soldering aspect of the project. While the initial instruction appeared to be very time consuming and required immense precision, concentration, and delicacy, soldering as a tool in the making and design process can be incredibly powerful and handy, as it offers certain advantages to a product that otherwise would not be available. Soldering allows for more accurate and uncluttered connections between various electronic parts, such as wires, resistors, and other components. An additional benefit of soldering is the ability to maintain the original shape of the soldered metals, considering that the solder has a much lower melting point than the adjoining metal. Since the fusing occurs at much lower temperatures (albeit still incredibly hot), the metals that are being connected do not warp in shape or size, nor do they melt. Lastly, soldering allows for the joining of multiple wires using a single focal point. This can allow electricity to be conducted, as all the wires have been bonded together. Below is a picture of Carter’s finished soldered Arduino circuit board and light dependent resistor.

Charlene’s post focused on the coding of the Arduino Uno circuit board, using Arduino’s open sourced software. Arduino’s simple platform allows for makers with only basic coding experience to still utilize the immense functionality of the technology. Her group was tasked with coding specific behaviors into their widget. In this case, the object that was being encoding was a photo resistor (light dependent resistor) with LEDs. By connecting the LED lights to the light resistor and being guided through some of the basics of the Arduino code, the LED lights extinguished in the presence of light and flashed during times where there was no light (when it was covered by a hand, for example). This first exercise with the Arduino technology was simple enough for us as first-time users to comprehend, yet was still an applicable and useful first attempt at the software, and definitely something that could potentially be incorporated into our end of the semester final projects. Personally, having the ability to view tangible, physical result of our efforts was something that felt gratifying. Charlene’s final product for this phase of the project is pictured below.

While each group has been focusing on a specific activity, we can universally agree that the experiences at the Fab Lab have been invaluable to our making journey. We are constantly attempting to apply what we are learning to not just our semester projects, but also outside of the classroom. I look forward to the rest of our time at the Fab Lab, as well as the rest of the semester!

Week 5 Summary: Brainstorming with Empathy & Structure

We had studied how to use Cura and Autodesk Fusion360 in the past several weeks. We explored the functionalities of these two software and printed the words designed by other users from the third-party. It was interesting and exciting to see the design being printed by the 3D printer layer by layer, while we still needed to move forward and started to develop our own designs.

 

The authors of the article from Science magazine argue that creativity is more efficient when there is a structure laid out or a framework to follow. More specifically, the structure is clearly defined and may have constraints imposed. Professor Vishal gave us a “How can we…” or “How may we…” question structure. These question structures provided us a form of discovering an ignored user demand, improving an already existing product, or changing the status quo. By keeping asking ourselves these similar questions, we could inspire each other and find great ideas as a part of the semester project. Many group came up with excellent HCW statements:

 

  • How can we get busy individuals who are working or in college to drink more water?
  • How can we create a laptop case which can fit all laptops and keep them from breaking?
  • How can we get households around the world to save energy?
  • How can we get bikers in college to wear helmets and keep their bikes safe?
  • How can we get people in working areas such as college or the workplace to keep their whiteboards clean?

From Bakliwa

 

  1. How can we conserve water when doing dishes and washing our hands?
  2. How can we make smart home products less expensive?
  3. How can we stop hot air from escaping through window cracks?

From Jorge Castro

 

Once these statements had been listed, we began to rely on our innovations to find ways to solve these problems. But, how could we solve the problems effectively and creatively? Michael Carroll, a researcher at Fast Company magazine, used to work with C-level leaders who have difficulty to support their ideas as an executive coach. Based on his experience, Michael found that the people who can successfully bring new ideas to maneuver have a common characteristic, empathy. It is important to resonate or experience others as if from within their own skin so that agents could have a broad perspective about the whole issue. Most of us chose the college students as our target customers. Following the empathy methodology, we began self-reflecting about what we needed most while the current service or objects could not satisfy us. Many students generated interesting ideas such as:

 

1.How can we save water when cleaning dishes?

First problem we identified is that too much water was wasted when we wash dishes by hands. A considerable amount of water was not utilized effectively when we rinse the dishes. As we all agreed, our concern in this issue is to save resource and energy instead of water bill.

When we moved forward to think about possible solutions, we were inspired by a product design on kickstarter.com, which pulverizes water stream. Our team thinks we could build on that idea and design a product that works with different types of home-use or commercial faucets. We will be continue working on brainstorming solutions in the following meetings.

From Xinlu

 

2. Fitbit wristband attachment – solves issue of dehydration

wristband

 

Universal laptop case – solves the issue of lack of non-Apple laptop cases

universal laptopcase

From Ana

 

3.Comprehensive: HCW & Solution

 

FullSizeRender (1)

From Taofik

 

As emphasized by the David Kelly, the CEO of a global firm IDEO, he highly values the benefits brought by empathetic design or user-centric. Empathetic design requires the designers to think about the feeling of the client he/she is making the product for. This design methodology brought unparalleled competitive advantage for the IDEO. All in all, the HCW structure helps us to focus on improvement process and empathy reminds us the significance of user-centric. It is amazing to see that all of us can generate so many great ideas within 20 minutes timeframe. Moreover, these ideas will become part of our final design and the will be printed at the end of this semester.

 

Week 4 Summary

We all come form different backgrounds and experiences, some of us with the knowledge of using software’s to build parts and others with absolutely no experience. Regardless of which skill level we were at we all were able to takeaway a life long learning experience from Jeff Smith, an individual from AutoDesk that had come to teach us the ins and outs of Fusion 360. We all were inspired by Jeff’s story of reaching his current position at AutoDesk. Even though he had many shining moments he had also faced many struggles. In the end, the struggles he faced had helped him identify the connections he had unknowingly built. Putting together his network and his strong skills he began to learn Fusion 360 in order to empower college students to innovate with the software. Because many commercial companies would like the future generation to be able to maneuver through the software skillfully in order to help the company, they require AutoDesk to provide these lessons for college students. As college students, learning Fusion 360 is an added skill that will only bring us more benefits in our careers.

Throughout the class period Jeff had given us a live tutorial of Fusion 360 while allowing us to have hands-on experience with the software throughout each step of the tutorial. Specifically he wanted us to learn the tools and functions of the software so we would be able to continue creating in the future. Fusion 360 essentially is creating designs digitally and immediately transforming them into real life products. Prior to the class we were all given the task of using introductory videos to learn the tools of Fusion 360, a few of us were able to create the final model from the video while many of us had slowly trudged through the process of creating the model while continuously honing our skills in the new software. The process of learning was well stated by Veronika, “Diving into Fusion 360 during this weeks class session was like jumping into the deep end of the swimming pool in an attempt to learn to swim; needless to say, there was initially quite a bit of floundering.”

Many of the students were amazed with this CAD software, as it was a popular one with very powerful tools. As stated by Jorge, “One thing that makes Fusion 360 such a great CAD program is the whole cloud system they are using…” We all realized that with the software any innovation was possible. We had the ability to design through parametric designing, which included specific constraints and dimensions and free-form designing or sculpting through the Tee-Spline Body. Taofik was intrigued with the software, “They use a top-down componentry/modeling system system unlike other CAD software such as Creo Parametric or SolidWorks which use bottom-down modeling. You could even type code and create a model instead of clicking around the tools.” We were all amazed that the software gave its recommendations of the innovations that were created, a new and powerful concept we had not experienced before, the software had the ability to teach us efficiency on a design.

After learning the tools of the software we were given the task to create any everyday object by taking apart the object and building it on Fusion 360. As Ian had commented, “I think throughout the workshop I realized just how much I took for granted simple engineering feats. Taking a simple water bottle the shape itself is complex enough but it actually has several parts working together to provide us with a coherent product experience. Without great designers with software like Fusion 360 we wouldn’t have most of the products in our world today.” The realization of the importance of designers and new creations in the world suddenly seemed so relevant. If we wanted to create products for this world, we needed to continue honing our skills in this software so we could build more innovative and efficient products for future consumers.

Here are some of the models that students had created after taking apart everyday products and rebuilding them on Fusion 360:

Chase had created a water bottle and found that, “The most difficult part of the design was instructing the software as to what parts were components, bodies, joinings, cuttings, etc. Albeit at first it was frustrating, I gradually began to understand how the software functions.”

Kenny had also created a reusable water bottle and commented that, “Every aspect of every object you use has been analyzed and reiterated until it was ready for consumer markets. This means that there are elements of design everywhere in everyday objects and this exercise gave me the insight to develop a product for the class.”

Jorge, who had experience in inventing throughout high school was able to create an intricate model of a flash drive.

Overall, the workshops had created a large spark for each of us and had allowed our creative juices to begin flowing. We all believe that capitalizing on all that the program has to offer will create tremendous results. This CAD software, Fusion 360 allows any individual to create whatever their mind thinks of and that in itself is revolutionary. It is true; Fusion 360 truly has no boundary for future innovation and design.