Mapping Native Land

Fall break is fast approaching and with it will be Thanksgiving! No matter what your traditions are, we all know that this year’s holiday season will look a little bit different. As we move into the Thanksgiving holiday, I wanted to share a mapping project to give thanks and recognize the native lands we live on.

Native Land is an open-source mapping project that shows the indigenous territories across the world. This interactive map allows you to input your address or click and explore to determine what indigenous land you reside on. Not only that but Native Land shares educational information about these nations, their languages, or treaties.  They also include a Teacher’s Guide for various wide age range from children to adults. Users are able to export images of their map, too!

Native Land Map

NativeLand.ca Map Interface

Canadian based and indigenous-led, Native Land Digital aims to educate and bring awareness to the complex histories of the land we inhibit. This platform strives to create conversations about indigenous communities between those with native heritage as well as those without. Native Land Digital values the sacredness of land and they use this platform to honor the history of where we reside. Learn more about their mission and impact on their “Why It Matters” page.

Native Land uses MapBox and WordPress to generate their interactive map. MapBox is an open source mapping platform for custom designed maps. Native Land is available as an App for iOS and Android and they have a texting service, as well. You can find more information about how it works here.

If you’d like to learn more about mapping software, the Scholarly Commons has Geographic Information Systems (GIS) software, consultations, and workshops available. The Scholarly Commons webpage on GIS is a great place to get started.

 The University of Illinois is a land-grant institution and resides on Kickapoo territory. Where do you stand?

University of Illinois Urbana-Champaign Land Acknowledgement Statement

As a land-grant institution, the University of Illinois at Urbana-Champaign has a responsibility to acknowledge the historical context in which it exists. In order to remind ourselves and our community, we will begin this event with the following statement. We are currently on the lands of the Peoria, Kaskaskia, Piankashaw, Wea, Miami, Mascoutin, Odawa, Sauk, Mesquaki, Kickapoo, Potawatomi, Ojibwe, and Chickasaw Nations. It is necessary for us to acknowledge these Native Nations and for us to work with them as we move forward as an institution. Over the next 150 years, we will be a vibrant community inclusive of all our differences, with Native peoples at the core of our efforts.

Tomorrow! Big Ten Academic Alliance GIS Conference 2020

Save the date! Tomorrow is the Big Ten Academic Alliance (BTAA) GIS Conference 2020. This event is 100% virtual and free of charge to anyone who wants to engage with the community of GIS specialists and researchers from Big Ten institutions.

The conference kicks off tonight with a GIS Day Trivia Night event at 5:30PM CST! There is a Map Gallery that is open to view from now until November 13th, 2020. The gallery features research that incorporates GIS from Big Ten institutions, so be sure to check it out! There will be lighting talks, presentations, social hours, and a keynote address from Dr. Orhun Aydin, Senior Researcher at Esri, so be sure to check out the full schedule of events and register here.

This event is a great way to network and learn more applications of GIS for research. If you are interested in GIS but don’t know where to start, this event is a great place to get inspired. If you are an experienced GIS researcher, this event is an opportunity to meet colleagues and learn from your peers. Overall this is a great event for anyone interested in GIS and the perfect way to start Geography Awareness Week, which goes from November 15th-21st this year!

GIS Resources for Distance Learning and Working from Home

Planet Earth wearing a doctor's maskThe past couple of weeks have been a whirlwind for everyone as we’ve all sought to adjust to working, attending school, socializing, and just carrying out our daily lives online. Here at the Scholarly Commons, we’ve been working hard to ensure that this transition is as smooth as possible for those of you relying on specialized software to conduct your research or do your classwork. That’s why this week we wanted to highlight some resources essential to anyone using or teaching with GIS as we work through this period of social distancing. 

Continue reading

Lightning Review: The GIS Guide to Public Domain Data

One of the first challenges encountered by anyone seeking to start a new GIS project is where to find good, high quality geospatial data. The field of geographic information science has a bit of a problem in which there are simultaneously too many possible data sources for any one researcher to be familiar with all of them, as well as too few resources available to help you navigate them all. Luckily, The GIS Guide to Public Domain Data is here to help!

The front cover of the book "The GIS Guide to Public Domain Data" by Joseph J. Kerski and Jill Clark. Continue reading

Featured Resource: QGIS, a Free, Open Source Mapping Platform

This week, geographers around the globe took some time to celebrate the software that allows them to analyze, well, that very same globe. November 13th marked the 20th annual GIS Day,  an “international celebration of geographic information systems,” as the official GIS Day website puts it.

the words "GIS day" in a stylized font appear below a graphic of a globe with features including buildings, trees, and water

But while GIS technology has revolutionized the way we analyze and visualize maps over the past two decades, the high cost of ArcGIS products, long recognized as the gold standard for cartographic analysis tools, is enough to deter many people from using it. At the University of Illinois and other colleges and universities, access to ArcGIS can be taken for granted, but many of us will not remain in the academic world forever. Luckily, there’s a high-quality alternative to ArcGIS for those who want the benefits of mapping software without the pricetag!

the QGIS logo

QGIS is a free, open source mapping software that has most of the same functionality as ArcGIS. While some more advanced features included in ArcGIS do not have analogues in QGIS, developers are continually updating the software and new features are always being added. As it stands now, though, QGIS includes everything that the casual GIS practitioner could want, along with almost everything more advanced users need.

As is often the case with open source software alternatives, QGIS has a large, vibrant community of supporters, and its developers have put together tons of documentation on how to use the program, such as this user guide. Generally speaking, if you have any experience with ArcGIS it’s very easy to learn QGIS—for a picture of the learning curve, think somewhere along the lines of switching from Microsoft Word to Google Docs. And if you don’t have experience, the community is there to help! There are many guides to getting started, including the one listed in the above link, and more forum posts of users working through questions together than anyone could read in a lifetime. 

For more help, stop by to take a look at one of the QGIS guidebooks in our reference collection, or send us an email at sc@library.illinois.edu!

Have you made an interesting map in QGIS? Send us pictures of your creations on Twitter @ScholCommons!

 

Featured Resource: BTAA Geoportal

We at the University of Illinois are lucky to have a library that offers access to more journals and databases than any one person could ever hope to make their way though. The downside of this much access, however, is that it can be easy for resources to get lost in the weeds. For the typical student, once you are familiar with a few databases or methods of searching for information, you tend to not seek out more unless you absolutely need to.

This week, we wanted to fight back against that tendency just a little bit, by introducing you to a database which many readers may not have heard of before but contains a veritable treasure trove of useful geographical information, the Big 10 Academic Alliance Geoportal.

This resource is a compilation of geospatial content from the 12 universities that make up the BTAA. Types of content available include maps (many of which are historic), aerial imagery, and geospatial data. Researchers with a specific need for one of those can easily navigate from the Geoportal homepage to a more specific resource page by selecting the type of information they are looking for here:

A screenshot from the BTAA Geoportal, displaying icons to click on for "Geospatial Data," "Maps," and "Aerial Imagery."

Alternatively, if you don’t particularly care about the type of data you find but rather are looking for data in a particular region, you can use the map on the left side of the display to easily zoom in to a particular part of the world and see what maps and other resources are available.

A screenshot from the BTAA Geoportal showing a world map with numbers in orange, yellow, and green circles scattered around the map.

The numbers on the map represent the number of maps or other data in the Geoportal localized in each rough region of the world, for example, there are 310 maps for Europe, and 14 maps for the Atlantic Ocean. As you zoom in on the map, your options get more specific, and the numbers break down to smaller geographic regions: 

A close-up of Europe on the same map as above, showing that the one "310" circle on the world map is now divided into many smaller numbered circles around the continent.

When the map is zoomed in close enough that there is only one piece of data for a particular area, the circled numbers are replaced with a blue location icon, such as the ones displayed over Iceland, Sweden, and the Russia-Finland border above. Clicking on one of these icons will take you to a page with the specific image or data source represented on the map. For example, the icon over Iceland takes us to the following page:

A screenshot from the BTAA Geoportal showing a historic map of Iceland with some metadata below.

Information is provided about what type of resource you’re looking at, who created it, what time period it is from, as well as which BTAA member institution uploaded the map (in this case, the University of Minnesota). 

Other tools on the home page, including a search bar and lists of places and subjects represented in the Geoportal, mean that no matter what point you’re starting from you should have no problem finding the data you need!

The Geoportal also maintains a blog with news, featured items and more, so be sure to check it out and keep up-to-date on all things geospatial!

Do you have questions about using the Geoportal, or finding other geospatial data? Stop by the Scholarly Commons or shoot us an email at sc@library.illinois.edu, we’ll be happy to help you!

Google MyMaps Part II: The Problem with Projections

Back in October, we published a blog post introducing you to Google MyMaps, an easy way to display simple information in map form. Today we’re going to revisit that topic and explore some further ways in which MyMaps can help you visualize different kinds of data!

One of the most basic things that students of geography learn is the problem of projections: the earth is a sphere, and there is no perfect way to translate an image from the surface of a sphere to a flat plane. Nevertheless, cartographers over the years have come up with many projection systems which attempt to do just that, with varying degrees of success. Google Maps (and, by extension, Google MyMaps) uses perhaps the most common of these, the Mercator projectionDespite its ubiquity, the Mercator projection has been criticized for not keeping area uniform across the map. This means that shapes far away from the equator appear to be disproportionately larger in comparison with shapes on the equator.

Luckily, MyMaps provides a method of pulling up the curtain on Mercator’s distortion. The “Draw a line” tool,  , located just below the search bar at the top of the MyMaps screen, allows users to create a rough outline of any shape on the map, and then drag that outline around the world to compare its size. Here’s how it works: After clicking on “Draw a line,” select “Add line or shape” and begin adding points to the map by clicking. Don’t worry about where you’re adding your points just yet, once you’ve created a shape you can move it anywhere you’d like! Once you have three or four points, complete the polygon by clicking back on top of your first point, and you should have a shape that looks something like this:

A block drawn in MyMaps and placed over Illinois

Now it’s time to create a more detailed outline. Click and drag your shape over the area you want to outline, and get to work! You can change the size of your shape by dragging on the points at the corners, and you can add more points by clicking and dragging on the transparent circles located midway between each corner. For this example, I made a rough outline of Greenland, as you can see below.

Area of Greenland made in MyMaps

You can get as detailed as you want with the points on your shapes, depending on how much time you want to spend clicking and dragging points around on your computer screen. Obviously I did not perfectly trace the exact coastline of Greenland, but my finished product is at least recognizable enough. Now for the fun part! Click somewhere inside the boundary of your shape, drag it somewhere else on the map, and see Mercator’s distortion come to life before your eyes.

Area of Greenland placed over Africa

Here you can see the exact same shape as in the previous image, except instead of hovering over Greenland at the north end of the map, it is placed over Africa and the equator. The area of the shape is exactly the same, but the way it is displayed on the map has been adjusted for the relative distortion of the particular position it now occupies on the map. If that hasn’t sufficiently shaken your understanding of our planet, MyMaps has one more tool for illuminating the divide between the map and reality. The “Measure distances and areas” tool, , draws a “straight” line between any two (or more) points on the map. “Straight” is in quotes there because, as we’re about to see, a straight line on the globe (and therefore in reality) doesn’t typically align with straight lines on the map. For example, if I wanted to see the shortest distance between Chicago and Frankfurt, Germany, I could display that with the Measure tool like so:

Distance line, Chicago to Frankfurt, Germany

The curve in this line represents the curvature of the earth, and demonstrates how the actual shortest distance is not the same as a straight line drawn on the map. This principle is made even more clear through using the Measure tool a little farther north.

Distance line, Chicago to Frankfurt, Germany, set over Greenland

The beginning and ending points of this line are roughly directly north of Chicago and Frankfurt, respectively, however we notice two differences between this and the previous measurement right away. First, this is showing a much shorter distance than Chicago to Frankfurt, and second, the curve in the line is much more distinct. Both of these differences arise, once again, from the difficulty of displaying a sphere on a flat surface. Actual distances get shorter the closer you get to the north (or south) ends of the map, which in turn causes all of the distortions we have seen in this post.

How might a better understanding of projection systems improve your own research? What are some other ways in which the Mercator projection (or any other) have deceived us? Explore for yourself and let us know!

An Introduction to Google MyMaps

Geographic information systems (GIS) are a fantastic way to visualize spatial data. As any student of geography will happily explain, a well-designed map can tell compelling stories with data which could not be expressed through any other format. Unfortunately, traditional GIS programs such as ArcGIS and QGIS are incredibly inaccessible to people who aren’t willing or able to take a class on the software or at least dedicate significant time to self-guided learning.

Luckily, there’s a lower-key option for some simple geospatial visualizations that’s free to use for anybody with a Google account. Google MyMaps cannot do most of the things that ArcMap can, but it’s really good at the small number of things it does set out to do. Best of all, it’s easy!

How easy, you ask? Well, just about as easy as filling out a spreadsheet! In fact, that’s exactly where you should start. After logging into your Google Drive account, open a new spreadsheet in Sheets. In order to have a functioning end product you’ll want at least two columns. One of these columns will be the name of the place you are identifying on the map, and the other will be its location. Column order doesn’t matter here- you’ll get the chance later to tell MyMaps which column is supposed to do what. Locations can be as specific or as broad as you’d like. For example, you could input a location like “Canada” or “India,” or you could choose to input “1408 W. Gregory Drive, Urbana, IL 61801.” The catch is that each location is only represented by a marker indicating a single point. So if you choose a specific address, like the one above, the marker will indicate the location of that address. But if you choose a country or a state, you will end up with a marker located somewhere over the center of that area.

So, let’s say you want to make a map showing the locations of all of the libraries on the University of Illinois’ campus. Your spreadsheet would look something like this:

Sample spreadsheet

Once you’ve finished compiling your spreadsheet, it’s time to actually make your map. You can access the Google MyMaps page by going to www.google.com/mymaps. From here, simply select “Create a New Map” and you’ll be taken to a page that looks suspiciously similar to Google Maps. In the top left corner, where you might be used to typing in directions to the nearest Starbucks, there’s a window that allows you to name your map and import a spreadsheet. Click on “Import,”  and navigate through Google Drive to wherever you saved your spreadsheet.

When you are asked to “Choose columns to position your placemarks,” select whatever column you used for your locations. Then select the other column when you’re prompted to “Choose a column to title your markers.” Voila! You have a map. Mine looks like this:  

Michael's GoogleMyMap

At this point you may be thinking to yourself, “that’s great, but how useful can a bunch of points on a map really be?” That’s a great question! This ultra-simple geospatial visualization may not seem like much. But it actually has a range of uses. For one, this type of visualization is excellent at giving viewers a sense of how geographically concentrated a certain type of place is. As an example, say you were wondering whether it’s true that most of the best universities in the U.S. are located in the Northeast. Google MyMaps can help with that!

Map of best universities in the United States

This map, made using the same instructions detailed above, is based off of the U.S. News and World Report’s 2019 Best Universities Ranking. Based on the map, it does in fact appear that more of the nation’s top 25 universities are located in the northeastern part of the country than anywhere else, while the West (with the notable exception of California) is wholly underrepresented.

This is only the beginning of what Google MyMaps can do: play around with the options and you’ll soon learn how to color-code the points on your map, add labels, and even totally change the appearance of the underlying base map. Check back in a few weeks for another tutorial on some more advanced things you can do with Google MyMaps!

Try it yourself!

Creating Quick and Dirty Web Maps to Visualize Your Data – Part 1

Do you have a dataset that you want visualized on a map, but don’t have the time or resources to learn GIS or consult with a GIS Specialist? Don’t worry, because ArcGIS Online allows anybody to create simple web maps for free! In part one of this series you’ll learn how to prepare and import your data into a Web Map, and in part two you’ll learn how to geographically visualize that data in a few different ways. Let’s get started!

The Data

First things first, we need data to work with. Before we can start fiddling around with ArcGIS Online and web maps, we need to ensure that our data can be visualized on a map in the first place. Of course, the best candidates for geographic visualization are datasets that include location data (latitude/longitude, geographic coordinates, addresses, etc.), but in reality, most projects don’t record this information. In order to provide an example of how a dataset that doesn’t include location information can still be mapped, we’re going to work with this sample dataset that I downloaded from FigShare. It contains 1,000 rows of IP addresses, names, and emails. If you already have a dataset that contains location information, you can skip this section and go straight to “The Web Map.”

In order to turn this data into something that’s mappable, we need to read the IP addresses and output their corresponding location information. IP addresses only provide basic city-level information, but that’s not a concern for the sample map that we’ll be creating here. There are loads of free online tools that interpret latitude/longitude data from a list of IP addresses, so you can use any tool that you like – I’m using one called Bulk IP Location Lookup because it allows me to run 500 lines at a time, and I like the descriptiveness of the information it returns. I only converted 600 of the IP addresses in my dataset because the tool is pretty sluggish, and then I used the “Export to CSV” function to create a new spreadsheet. If you’re performing this exercise along with me, you’ll notice that the exported spreadsheet is missing quite a bit of information. I’m assuming that these are either fake IP addresses from our sample dataset, or the bulk lookup tool isn’t working 100% properly. Either way, we now have more than enough data to play around with in a web map.

IP Address Lookup Screencap

Bulk IP Location Lookup Tool

The Web Map

Now that our data contains location information, we’re ready to import it into a web map. In order to do this, we first need to create a free ArcGIS Online account. After you’ve done that, log in and head over to your “Content” page and click “Create → Map” to build a blank web map. You are now brought to the Map Viewer, which is where you’ll be doing most of your work. The Map Viewer is a deceptively powerful tool that lets you perform many of the common functions that you would perform on ArcGIS for Desktop. Despite its name, the Map Viewer does much more than let you view maps.

Map Viewer (No Data)

The Map Viewer

Let’s begin by importing our CSV into the Web Map: select “Add → Add Layer From File.” The pop-up lets you know that you can upload Shapefile, CSV, TXT, or GPX files, and includes some useful information about each format. Note the 1,000 item limit on CSV and TXT files – if you’re trying to upload research data that contains more than 1,000 items, you’ll want to create a Tile Layer instead. After you’ve located your CSV file, click “Import Layer” and you should see the map populate. If you get a “Warning: This file contains invalid characters…” pop-up, that’s due to the missing rows in our sample dataset – these rows are automatically excluded. Now is a good time to note that your location data can come in a variety of formats, not just latitude and longitude data. For a full list of supported formats, read Esri’s help article on CSV, TXT, and GPX files. If you have a spreadsheet that contains any of the location information formats listed in that article, you can place your data on a map!

That’s it for part one! In part two we’re going to visualize our data in a few different ways and export our map for presentation.

The Case Against Story Map Cascade

Screenshot from the Cascade Tutorial.

Esri Story Maps can be a powerful tool to present your research. When done well, Story Maps are dynamic, interactive, and can use images and maps to enhance the presentation of your research agenda. When done poorly, however, Story Maps can obfuscate the point of your research, and distract viewers with too many bells and whistles. I believe that the most important factor in creating a Story Map is deciding which kind of Story Map to create. Creating your Story Map in a format that works for your research is an important step.

And that is why I’m here to tell you that, despite being the prettiest of the Story Map options, you need to think again before choosing Cascade.

You may call this blasphemy, but hear me out. Because Cascade is seen as being the most attractive Story Map option, Story Map users will try to force their project into a narrative it may not necessarily have just to use the prettiest Story Map. This does a disservice both to your work, as well as to those who would be interested in your work, but find it difficult to understand given the medium that it’s been presented in. Esri Story Maps can be a great way to get the word out about a project, but also a very public way to flaunt mistakes or misunderstandings about the project and its message. As a scholar, you need to choose the Story Map option that best suits the work that you’ve created.

Below are my suggestions of what to consider before choosing to use Cascade for your Story Map.

You may want to consider Cascade if you plan to…

  • Use a lot of visual multimedia in your presentation. Cascade is a highly visual platform, and allows for a lot of integration between maps, images, and other forms of media, such as GIFs, videos, and even audio. In fact, in many Cascade presentations, the actual map can feel optional. Narrative and immersive sections provide a platform to showcase your non-map media in a way that emphasizes it to a greater degree than other Story Maps options.
  • Tell a linear story with your presentation. If your research can be presented in a narrative, structured format, you should try Cascade. Cascade tends to be most effective when it feels like the user is reading the story
  • Have a captive audience. Story Map Cascade is perfect for situations where people can’t (or have a strong incentive) not to close the window. Cascade could be the perfect accompaniment to someone doing a presentation, or creating something for a very specific audience. But if you are trying to market a project to strangers, they may just not have the attention span to deal with Cascade.
  • Use different kinds of maps. Switching between different kinds of maps can, at times, be jarring in other Story Maps. Cascade allows for a narrative flow that can help give context to maps that may otherwise be jolting to the reader if they are flitting around another Story Map format.

You may want to reconsider using Cascade if you plan to…

  • Create a more minimalist story. If you have one map that is the centerpiece of your Story Map, you may want to consider a format that emphasizes that particular map more than Cascade. Cascade works best when you have a number of multimedia pieces that you need to pull together.
  • Present your research in a non-linear format. If your research is more non-linear, then it’s best to choose a Story Map option that allows users to skip around and play with the map a little more than Cascade does. Forcing your research into a linear story will probably lead to frustration and confusion among your viewers.
  • Create a more interactive map. Cascade does not lend itself well to interactive maps. Sure, you can do it, but the format of Cascade lends itself less to viewers taking the time to click on individual components of the map.

Again, I don’t hate Cascade. I’ve seen it used well. But I’ve also seen it used poorly. Do you agree with me? Disagree? Let me know in the comments! And if you’re looking to get started with Esri Story Maps, or want to learn more about GIS, stop by the Scholarly Commons!