An Exercise on Materializing Ideas

The Power of Design Software

Jeff Smith’s presentation on the features of Fusion 360 as a tool to not only visualize products but also as an avenue to create and design new ideas was truly inspiring. As someone who completed all of his college major in industrial design without the use of a computer to now being an expert on all Autodesk products is a testament to the both the continuous growth of the industry as well as the ability to quickly adapt to the revolutionary technology. Besides enlightening us with a rapid and intense beginner’s tutorial on Fusion 360, one of the most innovative features of the software is its “Sculpt” feature, which allows the user to create incredibly complex objects in mere seconds that would otherwise take countless hours using legacy technology. I also enjoyed his spotlight of Autodesk’s revolutionary state-of-the-art initiative in called Pier 9. Located in San Francisco, this workplace is dedicated to exploring and connecting ideas from software to the real physical world, in order to best test, build, and use. In the picture below, Jeff utilized the sculpt feature to create an incredibly complicated yet visually appealing model, which he then rendered and displayed with a full 360-degree panoramic background.

 

Before class, as a result of watching the Fusion 360 “Absolute Beginners” series of YouTube videos, I was able to make this model.

After class, I was playing around with the software and attempted to create a model of an everyday object that I use quite frequently. Although I struggled mightily at first, take a look at the screenshot below and see if you can determine what object I was attempting to make.

It’s a water bottle! The link to the Fusion 360 file can be found here. The msot difficult part of the design was instructing the software as to what parts were components, bodies, joinings, cuttings, etc. Albeit at first it was frustrating, I gradually began to understand how the software functions.

Biohacking

The second presentation we received was from Dot Silverman, an extremely motivated and ambitious PhD student from the University of Illinois. She introduced us to leading edge enterprises that intertwined the design aspect of 3D printing and additive manufacturing with solving biological and natural problems. She described a variety of projects, however, there were two that particularly stood out. The first was the use of fungi to create bricks for construction. After inserting flour, water, and the fungi into a certain mold, within two weeks the mixture turns into a compound that, once baked, is especially conducive to use as bricks. The other initiative I found to be ground-breaking was the development of soft robotics. As a growing field, soft robotics offers designers and doctors alike a common ground to collaborate and create solutions to some of humanity’s most complex health problems. The article described below gives some insight into this topic.

Food for Thought

This article from WIRED magazine details new developments by researchers who claim to have developed a “robotic sleeve”, which will supposedly assume the functions of pumping blood in the event the patient enters cardiac arrest. Created using silicone as the primary material, this innovative product is a prime example of the literal power soft robotics can have on the healthcare industry. The soft feel of the silicone is less irritating than metal or other materials, which adds to its effectiveness.


References

Further information on Pier 9: click here

Simon, Matt. “The Robots Are Coming for Your Heart.” Wired. Conde Nast, 31 Jan. 2017. Web. 15 Feb. 2017. <https://www.wired.com/2017/01/robots-coming-heart/>.

 

Harnessing the Powerful Tools At Our Disposal

Diving into Fusion 360 during this week’s class session was not unlike jumping into the deep end of the swimming pool in an attempt to learn how to swim; needless to say, there was initially quite a bit of floundering. Over the course of two and a half hours, Jeff walked us through the various functionalities of the program in a hands on demonstration that gradually built our comfortability and proficiency in the software.  We were exposed to far more advanced capabilities than we had previously been able to utilize in Tinkercad, which will permit us to develop far more sophisticated designs and products moving forward in the class. We were also exposed to the extremely fascinating prospects of biohacking, an initiative that is being led by Dot Silverman at the Fab Lab in Champaign. The use of these natural materials in lieu of traditional plastics, fabrics, etc. in production present a new element to consider when developing our capstone projects for the course.

Both portions of this class were equally important in the development of our final projects. Our work with Fusion 360 afforded us a basic level of skill in the software that we can utilize and continue to expand upon in our efforts to design our products. Without this basic level of knowledge, we would lack the fundamentals necessary to execute certain concepts. Dot’s presentation was pivotal, as it encouraged us to consider the materials that will be required to produce our designs, and the various implications of material choice. The biohacking movement is pivotal in the world of 3D making, as environmental concerns are at the forefront of issues facing production of all varieties, traditional and otherwise, in today’s society. If able to harness the technologies devised through this movement on a large scale, the standards for materials utilized in production could be revolutionized.

With my newfound knowledge, I plan to sharpen my skills in Fusion 360 in order to capitalize on all the program has to offer, and to ensure that I have a solid foundation with which to go about developing my product once we finish the brainstorming stage. While it is difficult to discern whether the biohacking aspect of 3D making will fit well with my team’s product until our design is better defined, I would love to explore this concept more. I am fascinated by the idea of utilizing biodegradable materials for short term and/or disposable products, such as packaging. I believe that creating a design that aligns with sustainability efforts is crucial to a product’s longevity and ability to best serve the community. Furthermore, it will be important to understand the interaction between the Fusion 360 design and the material selected; for example, I will need to consider whether, if selected, a biodegradable material has any restrictions or limitations as to which designs it can be implemented in.

Overall, this week’s instruction provided clarity on several powerful tools that are at our disposal moving forward in this design process. I was able to scratch the surface of these resources while replicating a side table lamp from my apartment, as per Jeff’s instruction as the conclusion of our last class. While I struggled at first, as I hadn’t used the software in several days, I eventually became much more comfortable, and was able to create this design utilizing Fusion 360.