Publications

All publications:

  1. Korshunov, S., Imlay, K. R. C., & Imlay, J. A. (2019). Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Molecular Microbiology, 0, 1–18. https://doi.org/10.1111/mmi.14403
  2. Lu, Z., & Imlay, J. A. (2019). A conserved motif liganding the [4Fe–4S] cluster in [4Fe–4S] fumarases prevents irreversible inactivation of the enzyme during hydrogen peroxide stress. Redox Biology, 26(August), 101296. https://doi.org/10.1016/j.redox.2019.101296
  3. Imlay, J. A. (2019). Where in the world do bacteria experience oxidative stress? Environmental Microbiology, 21(2), 521–530. https://doi.org/10.1111/1462-2920.14445
  4. Imlay, J. a, Sethu, R., & Rohaun, S. K. (2019). Evolutionary adaptations that enable enzymes to tolerate oxidative stress. Free Radical Biology and Medicine, 140(January), 1–10. https://doi.org/10.1016/j.freeradbiomed.2019.01.048
  5. Lu, Z., Sethu, R., & Imlay, J. A. (2018). Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe. Proceedings of the National Academy of Sciences, 201800120. https://doi.org/10.1073/pnas.1800120115
  6. Shin, B., Park, C., Imlay, J. A., & Park, W. (2018). 4-Hydroxybenzaldehyde sensitizes Acinetobacter baumannii to amphenicols. Appl Microbiol Biotechnol, 102, 2323–2335.
  7. Khademian, M., & Imlay, J. A. (2017). Escherichia coli cytochrome c peroxidase is a respiratory oxidase that enables the use of hydrogen peroxide as a terminal electron acceptor. Proceedings of the National Academy of Sciences, 201701587. https://doi.org/10.1073/pnas.1701587114
  8. Lu, Z., & Imlay, J. A. (2017). The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species. Mbio, 8(1), 1–11. https://doi.org/10.1128/mBio.01873-16
  9. Korshunov, S., Imlay, K. R. C., & Imlay, J. A. (2017). The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. Mol Microbiol., 101(1), 62–77. https://doi.org/10.1111/mmi.13372.The
  10. Kim, J., Park, C., Imlay, J. A., & Park, W. (2017). Lineage-specific SoxR-mediated regulation of an endoribonuclease protects non-enteric bacteria from redox-active compounds. Journal of Biological Chemistry, 292(1), 121–133. https://doi.org/10.1074/jbc.M116.757500
  11. Mancini, S., & Imlay, J. A. (2016). Bacterial Porphyrin Extraction and Quantification by LC/MS/MS Analysis. Bio Protocol, 5(19), 1–4.
  12. Imlay, J. A. (2015). Transcription Factors That Defend Bacteria Against Reactive Oxygen Species. Annual Review of Microbiology, 69(1), 150612172656007. https://doi.org/10.1146/annurev-micro-091014-104322
  13. Imlay, K. R. C., Korshunov, S., & Imlay, J. A. (2015). The physiological roles and adverse effects of the two cystine importers of Escherichia coli . Journal of Bacteriology, 197(September), JB.00277-15. https://doi.org/10.1128/JB.00277-15
  14. Martin, J. E., Waters, L. S., Storz, G., & Imlay, J. A. (2015). The Escherichia coli Small Protein MntS and Exporter MntP Optimize the Intracellular Concentration of Manganese. PLoS Genetics, 11(3), 1–31. https://doi.org/10.1371/journal.pgen.1004977
  15. Mancini, S., & Imlay, J. A. (2015). The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress. Molecular Microbiology, (217), n/a-n/a. https://doi.org/10.1111/mmi.12967
  16. Imlay, J. A. (2015). Diagnosing oxidative stress in bacteria: not as easy as you might think. Current Opinion in Microbiology, 24, 124–131. https://doi.org/10.1016/j.mib.2015.01.004
  17. Imlay, J. A. (2014). The Mismetallation of Enzymes during Oxidative Stress. Journal of Biological Chemistry, 289(41), 28121–28128. https://doi.org/10.1074/jbc.R114.588814
  18. Sobota, J. M., Gu, M., & Imlay, J. A. (2014). Intracellular hydrogen peroxide and superoxide poison 3-Deoxy-D-Arabinoheptulosonate 7-phosphate synthase, the first committed enzyme in the aromatic biosynthetic pathway of Escherichia coli. Journal of Bacteriology, 196(11), 1980–1991. https://doi.org/10.1128/JB.01573-14
  19. Gu, M., & Imlay, J. A. (2013). Superoxide poisons mononuclear iron enzymes by causing mismetallation. Molecular Microbiology, 89(June), 123–134. https://doi.org/10.1111/mmi.12263
  20. Mishra, S., & Imlay, J. A. (2013). An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to scavenge hydrogen peroxide. Molecular Microbiology, 90(6), 1356–1371. https://doi.org/10.1111/mmi.12438
  21. Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews. Microbiology, 11(7), 443–454. https://doi.org/10.1038/nrmicro3032
  22. Kumar, S. R., & Imlay, J. A. (2013). How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. Journal of Bacteriology, 195(20), 4569–4579. https://doi.org/10.1128/JB.00737-13
  23. Singh, A. K., Shin, J. H., Lee, K. L., Imlay, J. A., & Roe, J. H. (2013). Comparative study of SoxR activation by redox-active compounds. Molecular Microbiology, 90(October), 983–996. https://doi.org/10.1111/mmi.12410
  24. Anjem, A., & Imlay, J. A. (2012). Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. Journal of Biological Chemistry, 287(19), 15544–15556. https://doi.org/10.1074/jbc.M111.330365
  25. Liu, Y., & Imlay, J. A. (2012). Cell Death from Antibiotics Without the Involvement of Reactive Oxygen Species. Science (New York, N.Y.), 5691(2005), 1210–1213.
  26. Xu, F. F., & Imlay, J. A. (2012). Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Applied and Environmental Microbiology, 78(I), 3614–3621. https://doi.org/10.1128/AEM.07368-11
  27. Mishra, S., & Imlay, J. A. (2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Archives of Biochemistry and Biophysics, 525(2), 145–160. https://doi.org/10.1016/j.abb.2012.04.014
  28. Arenas, F. a, Covarrubias, P. C., Sandoval, J. M., Pérez-Donoso, J. M., Imlay, J. A., & Vásquez, C. C. (2011). The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species. PloS One, 6(1), e15979. https://doi.org/10.1371/journal.pone.0015979
  29. Gu, M., & Imlay, J. A. (2011). The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Molecular Microbiology, 79(January), 1136–1150. https://doi.org/10.1111/j.1365-2958.2010.07520.x
  30. Imlay, J. A., & Hassett, D. J. (2011). Oxidative and Nitrosative Stress Defense Systems in E. coli and S. aeruginosa. In Stress Response in pathogenic Bacteria. CAB International.
  31. Martin, J. E., & Imlay, J. a. (2011). The alternative aerobic ribonucleotide reductase of Escherichia coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during periods of iron starvation. Molecular Microbiology, 80(2), 319–334. https://doi.org/10.1111/j.1365-2958.2011.07593.x
  32. Carey, J. R., Suslick, K. S., Hulkower, K. I., Imlay, J. A., Imlay, K. R. C., Ingison, C. K., … Wittrig, A. E. (2011). Rapid identification of bacteria with a disposable colorimetric sensing array. Journal of the American Chemical Society, 133, 7571–7576. https://doi.org/10.1021/ja201634d
  33. Imlay, J. A. (2011). Redox pioneer: professor Irwin Fridovich. Antioxidants & Redox Signaling, 14(3), 335–340. https://doi.org/10.1089/ars.2010.3264
  34. Liu, Y., Bauer, S. C., & Imlay, J. A. (2011). The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. Journal of Bacteriology, 193(9), 2186–2196. https://doi.org/10.1128/JB.00001-11
  35. Sobota, J. M., & Imlay, J. a. (2011). Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5402–5407. https://doi.org/10.1073/pnas.1100410108
  36. Arenas, F. a, Díaz, W. a, Leal, C. a, Pérez-Donoso, J. M., Imlay, J. a, & Vásquez, C. C. (2010). The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochemical and Biophysical Research Communications, 398(4), 690–694. https://doi.org/10.1016/j.bbrc.2010.07.002
  37. Wu, P., Imlay, J. A., & Shang, J. K. (2010). Mechanism of Escherichia coli inactivation on palladium-modified nitrogen-doped titanium dioxide. Biomaterials, 31(29), 7526–7533. https://doi.org/10.1016/j.biomaterials.2010.06.032
  38. Jang, S., & Imlay, J. A. (2010). Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Molecular Microbiology, 78(October), 1448–1467. https://doi.org/10.1111/j.1365-2958.2010.07418.x
  39. Korshunov, S., & Imlay, J. A. (2010). Two sources of endogenous hydrogen peroxide in Escherichia coli. Molecular Microbiology, 75(6), 1389–1401. https://doi.org/10.1111/j.1365-2958.2010.07059.x
  40. Yeom, J., Imlay, J. A., & Park, W. (2010). Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. Journal of Biological Chemistry, 285(29), 22689–22695. https://doi.org/10.1074/jbc.M110.127456
  41. Salvail, H., Lanthier-Bourbonnais, P., Sobota, J. M., Caza, M., Benjamin, J. M., Mendieta, M. E. S., … Massé, E. (2010). A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proceedings of the National Academy of Sciences of the United States of America, 107(34), 15223–15228. https://doi.org/10.1073/pnas.1007805107
  42. Anjem, A., Varghese, S., & Imlay, J. A. (2009). Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Molecular Microbiology, 72(April), 844–858. https://doi.org/10.1111/j.1365-2958.2009.06699.x
  43. Macomber, L., & Imlay, J. a. (2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8344–8349. https://doi.org/10.1073/pnas.0812808106
  44. Imlay, J. A. (2008). Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77, 755–776. https://doi.org/10.1146/annurev.biochem.77.061606.161055
  45. Wu, P., Xie, R., Imlay, J. A., & Shang, J. K. (2008). Visible-light-induced photocatalytic inactivation of bacteria by composite photocatalysts of palladium oxide and nitrogen-doped titanium oxide. Applied Catalysis B: Environmental, 88, 576–581. https://doi.org/10.1016/j.apcatb.2008.12.019
  46. Imlay, J. A. (2008). How obligatory is anaerobiosis? Molecular Microbiology, 68(April), 801–804. https://doi.org/10.1111/j.1365-2958.2008.06213.x
  47. Hassett, D. J., & Imlay, J. A. (2007). Bactericidal antibiotics and oxidative stress: A radical proposal. ACS Chemical Biology, 2(11), 708–710. https://doi.org/10.1021/cb700232k
  48. Jang, S., & Imlay, J. a. (2007). Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. The Journal of Biological Chemistry, 282(2), 929–937. https://doi.org/10.1074/jbc.M607646200
  49. Krishnakumar, R., Kim, B., Mollo, E. a., Imlay, J. A., & Slauch, J. M. (2007). Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 189(12), 4343–4352. https://doi.org/10.1128/JB.00010-07
  50. Varghese, S., Wu, A., Park, S., Imlay, K. R. C., & Imlay, J. A. (2007). Submicromolar hydrogen peroxide disrupts the ability of fur protein to control free-iron levels in Escherichia coli. Molecular Microbiology, 64, 822–830. https://doi.org/10.1111/j.1365-2958.2007.05701.x
  51. Macomber, L., Rensing, C., & Imlay, J. A. (2007). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. Journal of Bacteriology, 189(5), 1616–1626. https://doi.org/10.1128/JB.01357-06
  52. Munroe, W., Kingsley, C., Durazo, A., Butler Gralla, E., Imlay, J. A., Srinivasan, C., & Selverstone Valentine, J. (2007). Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. Journal of Inorganic Biochemistry, 101, 1875–1882. https://doi.org/10.1016/j.jinorgbio.2007.07.008
  53. Gakh, O., Park, S., Liu, G., Macomber, L., Imlay, J. A., Ferreira, G. C., & Isaya, G. (2006). Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Human Molecular Genetics, 15(3), 467–479. https://doi.org/10.1093/hmg/ddi461
  54. Hassett, D. J., & Imlay, J. A. (2006). Oxidative Stress Systems in Bacteria: Four Model Organisms. In C. A. Nickerson & M. J. Schurr (Eds.), Molecular Paradigms of Infectious Disease (pp. 544–574). Springer Science+Business Media, LLC.
  55. Imlay, J. A. (2006). Iron-sulphur clusters and the problem with oxygen. Molecular Microbiology, 59(January), 1073–1082. https://doi.org/10.1111/j.1365-2958.2006.05028.x
  56. Korshunov, S., & Imlay, J. A. (2006). Detection and quantification of superoxide formed within the periplasm of Escherichia coli. Journal of Bacteriology, 188(17), 6326–6334. https://doi.org/10.1128/JB.00554-06
  57. Park, S., You, X., & Imlay, J. a. (2005). Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9317–9322. https://doi.org/10.1073/pnas.0502051102
  58. Djaman, O., Outten, F. W., & Imlay, J. A. (2004). Repair of oxidized iron-sulfur clusters in Escherichia coli. Journal of Biological Chemistry, 279(43), 44590–44599. https://doi.org/10.1074/jbc.M406487200
  59. Krishnakumar, R., Craig, M., Imlay, J. A., & Slauch, J. M. (2004). Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar typhimurium strain 14028. Journal of Bacteriology, 186(16), 5230–5238. https://doi.org/10.1128/JB.186.16.5230-5238.2004
  60. Seaver, L. C., & Imlay, J. A. (2004). Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? The Journal of Biological Chemistry, 279(47), 48742–48750. https://doi.org/10.1074/jbc.M408754200
  61. Woodmansee, A. N., & Imlay, J. A. (2003). A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli. Molecular Microbiology, 49, 11–22. https://doi.org/10.1046/j.1365-2958.2003.03530.x
  62. Park, S., & Imlay, J. a. (2003). High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction. Journal of Bacteriology, 185(6), 1942–1950. https://doi.org/10.1128/JB.185.6.1942
  63. Imlay, J. A. (2003). Pathways of oxidative damage. Annual Reviews in Microbiology, 57, 395–418. https://doi.org/10.1146/annurev.micro.57.030502.090938
  64. Imlay, J. A., & Fridovich, I. (2003). Oxidative Damage. In Oxidative Damage & Repair: Chemical, Biological and Medical Aspects (Vol. 136). https://doi.org/10.1016/B978-0-08-041749-3.50028-0
  65. Pericone, C. D., Park, S., Imlay, J. A., & Weiser, J. N. (2003). Factors Contributing to Hydrogen Peroxide Resistance in Streptococcus pneumoniae Include Pyruvate Oxidase (SpxB) and Avoidance of the Toxic Effects of the Fenton Reaction. Journal of Bacteriology, 185(23), 6815–6825. https://doi.org/10.1128/JB.185.23.6815-6825.2003
  66. Varghese, S., Tang, Y., & Imlay, J. A. (2003). Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. Journal of Bacteriology, 185(1), 221–230. https://doi.org/10.1128/JB.185.1.221-230.2003
  67. Smith, A. H., Imlay, J. a, & Mackie, R. I. (2003). Increasing the Oxidative Stress Response Allows Escherichia coli To Overcome Inhibitory Effects of Condensed Tannins Increasing the Oxidative Stress Response Allows Escherichia coli To Overcome Inhibitory Effects of Condensed Tannins. Applied and Environmental Microbiology, 69(6), 3406–3411. https://doi.org/10.1128/AEM.69.6.3406
  68. Korshunov, S., & Imlay, J. A. (2002). A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Molecular Microbiology, 43, 95–106. https://doi.org/10.1046/j.1365-2958.2002.02719.x
  69. Imlay, J. A. (2002). What biological purpose is served by superoxide reductase? Journal of Biological Inorganic Chemistry, 7(6), 659–663. https://doi.org/10.1007/s00775-002-0361-3
  70. Imlay, J. A. (2002). How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Advances in Microbial Physiology, 46, 111–153. Retrieved from http://www.sciencedirect.com/science/article/pii/S0065291102460031
  71. Woodmansee, A. N., & Imlay, J. A. (2002). Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron. Journal of Biological Chemistry, 277(37), 34055–34066. https://doi.org/10.1074/jbc.M203977200
  72. Woodmansee, A. N., & Imlay, J. a. (2002). Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods in Enzymology, 349(1983), 3–9.
  73. Messner, K. R., & Imlay, J. A. (2002). Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. Journal of Biological Chemistry, 277(45), 42563–42571. https://doi.org/10.1074/jbc.M204958200
  74. Messner, K. R., & Imlay, J. A. (2002). In vitro quantitation of biological superoxide and hydrogen peroxide generation. Methods in Enzymology, 349(1969), 354–361. https://doi.org/10.1016/S0076-6879(02)49351-2
  75. Seaver, L. C., & Imlay, J. a. (2001). Hydrogen Peroxide Fluxes and Compartmentalization inside Growing Escherichia coli. Journal of Bacteriology, 183(24), 7182–7189. https://doi.org/10.1128/JB.183.24.7182
  76. Seaver, L. C., & Imlay, J. A. (2001). Alkyl Hydroperoxide Reductase Is the Primary Scavenger of Endogenous Hydrogen Peroxide in Escherichia coli. Journal of Bacteriology, 183(24). https://doi.org/10.1128/JB.183.24.7173
  77. Pan, N., & Imlay, J. A. (2001). How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron? Molecular Microbiology, 39, 1562–1571. https://doi.org/10.1046/j.1365-2958.2001.02343.x
  78. Srinivasan, C., Liba, A., Imlay, J. A., Valentine, J. S., & Gralla, E. B. (2000). Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. Journal of Biological Chemistry, 275(38), 29187–29192. https://doi.org/10.1074/jbc.M004239200
  79. Schwartz, C. J., Djaman, O., Imlay, J. A., & Kiley, P. J. (2000). The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 9009–9014. https://doi.org/10.1073/pnas.160261497
  80. Messner, K. R., & Imlay, J. A. (1999). The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. Journal of Biological Chemistry, 274(15), 10119–10128. https://doi.org/10.1074/jbc.274.15.10119
  81. Gort, A. S., Ferber, D. M., & Imlay, J. A. (1999). The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Molecular Microbiology, 32, 179–191. https://doi.org/10.1046/j.1365-2958.1999.01343.x
  82. Storz, G., & Imlay, J. A. (1999). Oxidative stress. Current Opinion in Microbiology, 2, 188–194.
  83. Maringanti, S., & Imlay, J. A. (1999). An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. Journal of Bacteriology, 181(12), 3792–3802.
  84. Gort, A. S., Imlay, J. a, & Gort, a M. Y. S. (1998). Balance between Endogenous Superoxide Stress and Antioxidant Defenses. JOURNAL OF BACTERIOLOGY, 180(6), 1402–1410.
  85. Imlay, K. R. C., & Imlay, J. A. (1996). Cloning and analysis of sodC , encoding the copper-zinc superoxide dismutase of Escherichia coli . Cloning and Analysis of sodC , Encoding the Copper-Zinc Superoxide Dismutase of Escherichia coli. Microbiology, 178(9), 2564–2571.
  86. Keyer, K., & Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proceedings of the National Academy of Sciences of the United States of America, 93(November), 13635–13640. https://doi.org/10.1073/pnas.93.24.13635
  87. Siegele, D. a., Imlay, K. R. C., & Imlay, J. A. (1996). The stationary-phase-exit defect of cydC (surB) mutants is due to the lack of a functional terminal cytochrome oxidase. Journal of Bacteriology, 178(21), 6091–6096.
  88. Imlay, J. A. (1995). A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. The Journal of Biological Chemistry, Vol. 270, pp. 19767–19777.
  89. Keyer, K., Gort, A., & Imlay, J. A. (1995). Superoxide and the production of oxidative DNA damage. Journal of Bacteriology, 177(23), 6782–6790.
  90. Kargalioglu, Y., & Imlay, J. A. (1994). Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. Journal of Bacteriology, 176(24), 7653–7658.
  91. Imlay, J. A., & Fridovich, I. (1991). Superoxide Production by Respiring Membranes of Escherichia Coli. Free Radical Research, 12(1), 59–66.
  92. Imlay, J. A., & Fridovich, I. (1991). Assay of metabolic superoxide production in Escherichia coli. The Journal of Biological Chemistry, 266(11), 6957–6965. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1849898
  93. Imlay, J. A., & Fridovich, I. (1991). Isolation and genetic analysis of a mutation that suppresses the auxotrophies of superoxide dismutase-deficient Escherichia coli K12. Molecular & General Genetics : MGG, 228, 410–416.
  94. Imlay, J. A., & Linn, S. (1988). DNA Damage and Oxygen Radical Toxicity. Science (New York, N.Y.), 240, 1302–1309.
  95. Imlay, J. A., Chin, S. M., & Linn, S. (1988). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science (New York, N.Y.), 240(4852), 640–642. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2834821
  96. Linn, S., & Imlay, J. A. (1987). Toxicity, mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. Journal of Cell Science. Supplement, 6(7), 289–301.
  97. Imlay, J. A., & Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166(2), 519–527.