Book
Culpepper, S. A. (2024). Beyond Ranking (Draft)
Culpepper, S. A. (2022). Latent Variable Models (Draft)
Articles/Preprints/Book Chapters
- Wayman, E. A., Culpepper, S. A., Douglas, J. A. (submitted). A restricted latent class model with polytomous attributes and respondent-level covariates.
- Culpepper, S. A. (In Press). Introduction to the JEBS special section on artificial intelligence in educational statistics, Journal of Educational and Behavioral Statistics, 1-2.
- Bowers, J. & Culpepper, S. A. (submitted). Equivalence Set Restricted Latent Class Models.
- Bowers, J. & Culpepper, S. A. (In Press). Domain latent class models, Bayesian Analysis. https://doi.org/10.1214/24-BA1433
- Liu, Y. & Culpepper, S. A. (2024). Restricted latent class models for nominal response data: Identifiability and estimation, Psychometrika, 89, 592-625. https://doi.org/10.1007/s11336-023-09940-7
- Li, A. & Culpepper, S. A. (In Press). A hierarchical prior for Bayesian variable selection with interactions. Proceedings of the 2023 International Meeting of the Psychometric Society.
- Aguinis, H., & Culpepper, S. A. (2024). Improving our understanding of predictive bias in testing, Journal of Applied Psychology, 109(3), 402–414. https:/doi.org/10.1037/apl0001152
- Drocco, J., Halliday, K. Stewart, B., Sandholtz, S., Morrison, M., Thissen, J., Be, N., Zwilling, C., Wilcox, R., Culpepper, S. A., Barbey, A., & Jiang, C. (2023). Efforts to enhance reproducibility in a human performance research project, F1000Research, 12:1430. https://doi.org/10.12688/f1000research.140735.1
- Bogdan, P. C., Dolcos, F., Moore, M., Kuznetsov, I. Culpepper, S. A., Dolcos, S. (2023). Social expectations are primarily rooted in reciprocity: An investigation of fairness, cooperation, and trustworthiness, Cognitive Science, 47(8), e13326. https://doi.org/10.1111/cogs.13326
- Jimenez, A. Balamuta, J. J., & Culpepper, S. A. (2023). A sequential exploratory diagnostic model using a Pólya-gamma data augmentation strategy, British Journal of Mathematical and Statistical Psychology, 76, 513-538. https://doi.org/10.1111/bmsp.12307
- Liu, Y., Culpepper, S. A., & Chen, Y. (2023). Identifiability of hidden Markov models for learning trajectories in cognitive diagnosis, Psychometrika, 88, 361-386. 10.1007/s11336-023-09904-x
- Chen, Y., Culpepper, S. A., & Chen, Y. (2023). Bayesian Inference for an unknown number of attributes in restricted latent class models, Psychometrika, 88, 613-635.
- Culpepper, S. A. & Xu, G. (2023). Introduction to JEBS special issue on diagnostic statistical models, Journal of Educational and Behavioral Statistics, 48(6), 1-3. https://doi.org/10.3102/10769986231210002
- Culpepper, S. A. & Balamuta, J. J. (2023). Inferring latent structure in polytomous data with a higher-order diagnostic model, Multivariate Behavioral Research, 58, 368-386. https://doi.org/10.1080/00273171.2021.1985949
- Yigit, H. D. & Culpepper, S. A. (2023). Extending exploratory diagnostic classification models: Inferring the effect of covariates, British Journal of Mathematical and Statistical Psychology, 79, 372-401. https://doi.org/10.1111/bmsp.12298
- Culpepper, S. A. (2023). A note on weaker conditions for identifying restricted latent class models for binary responses, Psychometrika, 88, 158–174. https://doi.org/10.1007/s11336-022-09875-5
- He, S., Douglas, J. A., & Culpepper, S. A. (2023). A sparse latent class model for polytomous attributes in cognitive diagnostic assessments. In: van der Ark, L.A., Emons, W.H.M., Meijer, R.R. (Eds) Essays on Contemporary Psychometrics (pp. 413-442). Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-031-10370-4_21.
- Balamuta, J. J. & Culpepper, S. A. (2022). Exploratory restricted latent class models with monotonicity requirements under Pólya-gamma data augmentation, Psychometrika, 87, 903–945. https://doi.org/10.1007/s11336-021-09815-9
- Man, A. & Culpepper, S. A. (2022). A mode-jumping algorithm for Bayesian factor analysis. Journal of the American Statistical Association, 117, 277-290. doi:10.1080/01621459.2020.1773833.
- Chen, Y., Liu, Y., Culpepper, S. A., & Chen, Y. (2021). Inferring the number of attributes for the exploratory DINA model, Psychometrika, 86, 30-64 10.1007/s11336-021-09750-9
- McCaffrey, D. F., & Culpepper, S. A. (2021). Introduction to JEBS special issue on NAEP linked aggregate scores. Journal of Educational and Behavioral Statistics, 46(2), 135-137. DOI: 10.3102/10769986211001480
- Kern, J. & Culpepper, S. A. (2020). A restricted four-parameter IRT model: The dyad four-parameter normal ogive (Dyad-4PNO) model, Psychometrika, 85, 575-599.
- Culpepper, S. A. (2020). Editorial statement, Journal of Educational and Behavioral Statistics, 45, 1, 3-4.
- Chen, Y. & Culpepper, S. A. (2020). A multivariate probit model for learning trajectories: A fine-grained evaluation of an educational intervention, Applied Psychological Measurement, 44, 515-530.
- Chen, Y., Culpepper, S. A., and Liang, F. (2020). A sparse latent class model for cognitive diagnosis, Psychometrika, 85, 121-153.
- Culpepper, S. A. (2020). Advances in psychometric methods for uncovering latent structure and cognitive processes. In J. Hong & R. W. Lissitz (Eds.), Innovative Psychometric Modeling and Methods (pp. 1-16). The MARCES Book Series. Information Age Publishing, Charlotte, N.C. (early version)
- Culpepper, S. A. (2019). An exploratory diagnostic model for ordinal responses with binary attributes: Identifiability and estimation, Psychometrika, 84, 921-940. https://doi.org/10.1007/s11336-019-09683-4
- Zhang, S., Douglas, J., Wang, S., & Culpepper, S. A. (2019). Reduced reparameterized unified model applied to learning spatial reasoning skills. In M. von Davier & Y. Lee, Handbook of diagnostic classification models (pp.503-524). New York, Springer.
- Culpepper, S A. (2019). Estimating the cognitive diagnosis Q matrix with expert knowledge: Application to the fraction-subtraction dataset, Psychometrika, 84, 333-357. doi: 10.1007/s11336-018-9643-8
- Culpepper, S. A., Aguinis, H., Kern, J., & Millsap, R. (2019). High-stakes testing case study: A latent variable approach for assessing measurement and prediction invariance, Psychometrika, 84, 285-309.
- Culpepper, S A. & Chen, Y. (2018). Development and application of an exploratory reduced reparameterized unified model, Journal of Educational and Behavioral Statistics, 44, 3-24. DOI: 10.3102/1076998618791306. (supplemental appendices)
- Moore, M., Culpepper, S. A., Phan, K. L., Strauman, T. J., Dolcos, F., & Dolcos, S.(2018). Neuro-behavioral mechanisms of resilience against emotional distress: An integrative brain-personality-symptom approach using structural equation modeling, Personality Neuroscience, 1, 1-10.
- Wang, S., Zhang, S., Douglas, J., & Culpepper, S. A. (2018). Using response times to assess learning progress: A joint model for responses and response times. Measurement: Interdisciplinary Research and Perspectives, 16, 45-58.
- Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2018). Bayesian estimation of the DINA Q matrix. Psychometrika, 83, 89–108. doi: 10.1007/s11336-017-9579-4.
- Chen, Y., Culpepper, S. A., Wang, S., & Douglas, J. (2018). A Hidden Markov Model for Learning Trajectories in Cognitive Diagnosis with Application to Spatial Rotation Skills. Applied Psychological Measurement, 42, 1, 5-23.
- Culpepper, S. A. & Hudson, A. (2018). An improved strategy for Bayesian estimation of the reduced reparameterized unified model. Applied Psychological Measurement, 42, 99-115.
- Wang, S, Yang, Y., Culpepper, S. A., & Douglas, J. (2018). Tracking skill acquisition with cognitive diagnosis models: Application to spatial rotation skills. Journal of Educational and Behavioral Statistics, 43, 57-87. DOI: 10.3102/1076998617719727
- Culpepper, S. A. (2017). The prevalence and implications of slipping on low-stakes, large-scale assessments. Journal of Educational and Behavioral Statistics, 42, 706 – 725. DOI: 10.3102/1076998617705653. Supplemental appendix of item parameters
- Culpepper, S. A. & Park, T. (2017). Bayesian estimation of multivariate latent regression models in large-scale educational assessments: Gauss versus Laplace. Journal of Educational and Behavioral Statistics, 42, 591-616. DOI: 10.3102/1076998617700598
- Kern, J. & Culpepper, S. A. (2017). A review of “Analyzing Spatial Models of Choice and Judgment with R”. Journal of Educational and Behavioral Statistics, 42, 243-247. DOI: 10.3102/1076998616673020
- Williams, I. & Culpepper, S.A. (2018). Gain scores, analysis of. In Frey, B.B. (ed). Encyclopedia of educational research, measurement and evaluation (pp. 715-716). Thousand Oaks, CA: Sage.
- Culpepper, S. A. & Balamuta, J. J. (2017). A hierarchical model for accuracy and choice on standardized tests, Psychometrika, 82, 820-845. DOI: 10.1007/s11336-015-9484-7. cIRT R package
- Aguinis, H., Culpepper, S. A., & Pierce, C. A. (2016). Differential prediction generalization in college admissions testing. Journal of Educational Psychology, 108, 1045-1059. DOI: 10.1037/edu0000104.
- Culpepper, S. A. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application, Psychometrika, 81, 1142-1163. DOI: 10.1007/s11336-015-9477-6. fourPNO R package
- Culpepper, S. A. (2016). An improved correction for range restricted correlations under extreme, monotonic quadratic nonlinearity and heteroscedasticity, Psychometrika, 81, 550-564. DOI: 10.1007/s11336-015-9466-9
- Ye, S., Fellouris, G., Culpepper, S. A., & Douglas, J. (2016). Sequential detection of learning in cognitive diagnosis. British Journal of Mathematical and Statistical Psychology, 69, 139-58.
- Culpepper, S. A. (2015). Bayesian estimation of the DINA model with Gibbs sampling. Journal of Educational and Behavioral Statistics, 40, 454-476. DOI: 10.3102/1076998615595403. dina R package
- Aguinis, H. & Culpepper, S. A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods, 18, 155-176. iccbeta R package
- Culpepper, S. A. (2014). If at first you don’t succeed, try, try again: A repeated attempts item response model. Applied Psychological Measurement, 38, 632-644. (Example R Code, Supplemental Appendix)
- Culpepper, S. A. (2014). The reliability of linear gain scores at the classroom level in the presence of measurement bias and student tracking. Applied Psychological Measurement, 38, 503-517.
- Aragon, A., Culpepper, S. A., McKee, M. W., & Perkins, M. (2014). Understanding profiles of preservice teachers with different levels of commitment to teaching in urban schools. Urban Education, 9, 543-573.
- Aguinis, H., Gottfredson, R. K., Culpepper, S. A., Dalton, D. R., & De Bruin, G. (2013). Doing good and doing well: On the multiple contributions of journal editors. Academy of Management Learning & Education, 12, 564-578.
- Yeatman, S., Sennott, C., & Culpepper, S. A. (2013). Young women’s dynamic fertility preferences in the context of transitioning fertility. Demography, 50, 1715-1737.
- Aguinis, H., Gottfredson, R. K., & Culpepper, S. A. (2013). Best-practice recommendations for estimating interaction effects using multilevel modeling. Journal of Management, 39, 1490-1528.
- Culpepper, S. A. (2013). The reliability and precision of total scores and IRT estimates as a function of polytomous IRT parameters and latent trait distribution. Applied Psychological Measurement. 37, 201-225. (R code for comparing the reliability of total scores and and IRT estimates)
- Mathieu, J., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the power to detect cross-level interaction effects in multilevel modeling. Journal of Applied Psychology, 97, 951-966. (Authors contributed equally and order was determined randomly)
- Culpepper, S. A. (2012). Evaluating EIV, OLS, and SEM estimators of group slope differences in the presence of measurement error: The single indicator case. Applied Psychological Measurement, 36, 349-374.
- Culpepper, S. A. (2012). Using the criterion-predictor factor model to compute the probability of detecting prediction bias with ordinary least squares regression. Psychometrika, 77, 561-580.
- Culpepper, S. A. & Aguinis, H. (2011). R is for revolution: A review of a cutting-edge, free, open source statistical package. Organizational Research Methods, 14, 735-740.
- Culpepper, S. A. & Aguinis, H. (2011). Using analysis of covariance (ANCOVA) with fallible covariates. Psychological Methods, 16, 166-178.
- Culpepper, S. A., Basile, C., Ferguson, C. A., Lanning, J. A., & Perkins, M. A. (2010). Understanding the transition between high school and college mathematics and science. The Journal of Mathematics and Science: Collaborative Explorations, 12, 157-167.
- Aguinis, H., De Bruin, G., Cunningham, D., Hall, N. L., Culpepper, S. A., & Gottfredson, R. K. (2010). What does not kill you (sometimes) makes you stronger: Productivity fluctuations of journal editors. Academy of Management Learning & Education, 9, 683-695.
- Aguinis, H., Culpepper, S. A., & Pierce, C. A. (2010). Revival of test bias research in preemployment testing. Journal of Applied Psychology, 95, 648–680.
- Culpepper, S. A. (2010). Studying individual differences in predictability with gamma regression and nonlinear multilevel models. Multivariate Behavioral Research, 45, 153-185.
- Culpepper, S. A. (2009). A multilevel nonlinear profile analysis model for dichotomous data. Multivariate Behavioral Research, 44, 646-667.
- Aguinis, H., Pierce, C., & Culpepper, S. A. (2009). Scale coarseness as a methodological artifact: Correcting correlation coefficients attenuated from using coarse scales. Organizational Research Methods, 12, 623-652.
- Culpepper, S. A. & Davenport, E. C. (2009). Assessing differential prediction of college grades by race/ethnicity with a multilevel model. Journal of Educational Measurement, 46, 220-242.
- Culpepper, S. A. & Davenport, E. C., Jr. (2009). Identifying common high school coursework profiles with multidimensional scaling. IR Applications, 20, 1-18.
- Culpepper, S. A., Davenport, E. C., Jr., & Davison, M. L. (2008). A method for choosing weights to predict college grades for admission decisions and to assess their fairness by race/ethnicity. Multiple Linear Regression Viewpoints, 34(2), 4-14.
- Culpepper, S. A. (2008). Conducting external profile analysis with multiple regression. Practical Assessment, Research & Evaluation, 13(1). Available online: http://pareonline.net/getvn.asp?v=13&n=1
- Rapp, D. N, Culpepper, S. A., Kirkby, K., & Morin, P. (2007). Fostering students’ comprehension of topographic maps. Journal of Geoscience Education, 55(1), 5-16.