Papers


Design and simulation of fast substation protection in IEC 61850 environments

Valdes, A., Huang, C., Panumpabi, P., Vaidya, N., Drew, C., Ischenko, D.
2015  Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), pp.1-6, 13-13 April 2015.  Download PDF   |   IEEE Xplore Entry

Abstract:  The IEC 61850 protocol suite provides significant benefits in electrical substation design and enables formal validation of complex device configurations to ensure that design objectives are met. One important benefit is the potential for protective relays to react in a collaborative fashion to an observed fault current. Modern relays are networked cyber-physical devices with embedded systems, capable of sophisticated protection schemes that are not possible on legacy overcurrent relays. However, they may be subject to error or cyber attack. Herein, we introduce the CODEF (Collaborative Defense) project examining distributed substation protection. Under CODEF, we derive algorithms for distributed protection schemes based on distributed agreement. By leveraging Kirchhoff’s laws, we establish that certain fast agreement protocols have important equivalences to linear coding and error correction theory. In parallel, we describe a cyber-physical simulation environment in which these algorithms are being validated with respect to the strict time constraints of substation protection.