ACES NEWS: Illinois RapidVent Research Published

URBANA, Ill — The design, testing, and validation of the Illinois RapidVent emergency ventilator has been published in the journal Plos One. The article, “Emergency Ventilator for COVID-19,” by University of Illinois Urbana-Champaign researchers, is the first of its kind to report such details about an emergency ventilator that was designed, prototyped, and tested at the start of the COVID-19 pandemic in 2020.

“This article reports the development and testing of the RapidVent emergency ventilator,” said William King, professor at The Grainger College of Engineering and Carle Illinois College of Medicine, and leader of the RapidVent project. “The research shows integration of different disciplines to develop a medical device, including science-based engineering, ultra-rapid design and manufacturing, functional testing, and animal testing.”

Animal testing was performed by Matt Wheeler’s group in the Department of Animal Sciences, a crucial step in proving the device’s effectiveness.

https://aces.illinois.edu/news/illinois-rapidvent-research-published

Read more from Carle Illinois College of Medicine.

Emergency Ventilator for COVID-19 Paper Published in PLoS ONE

The academic manuscript describing the development and testing of the University of Illinois Rapid Vent emergency ventilator has been published. Congratulations to all that participated in this spectacular accomplishment!

Emergency Ventilator for COVID-19

Abstract

The COVID-19 pandemic disrupted the world in 2020 by spreading at unprecedented rates and causing tens of thousands of fatalities within a few months. The number of deaths dramatically increased in regions where the number of patients in need of hospital care exceeded the availability of care. Many COVID-19 patients experience Acute Respiratory Distress Syndrome (ARDS), a condition that can be treated with mechanical ventilation. In response to the need for mechanical ventilators, designed and tested an emergency ventilator (EV) that can control a patient’s peak inspiratory pressure (PIP) and breathing rate, while keeping a positive end expiratory pressure (PEEP). This article describes the rapid design, prototyping, and testing of the EV. The development process was enabled by rapid design iterations using additive manufacturing (AM). In the initial design phase, iterations between design, AM, and testing enabled a working prototype within one week. The designs of the 16 different components of the ventilator were locked by additively manufacturing and testing a total of 283 parts having parametrically varied dimensions. In the second stage, AM was used to produce 75 functional prototypes to support engineering evaluation and animal testing. The devices were tested over more than two million cycles. We also developed an electronic monitoring system and with automatic alarm to provide for safe operation, along with training materials and user guides. The final designs are available online under a free license. The designs have been transferred to more than 70 organizations in 15 countries. This project demonstrates the potential for ultra-fast product design, engineering, and testing of medical devices needed for COVID-19 emergency response.

Citation

King WP, Amos J, Azer M, Baker D, Bashir R, Best C, et al. (2020) Emergency ventilator for COVID-19. PLoS ONE 15(12): e0244963. https://doi.org/10.1371/journal.pone.0244963