Personalized Password Guessing

Phuong Cao, Hongyang Li, Adam Slagell, Klara Nahrstedt, Zbigniew Kalbarczyk

Coordinated Science Laboratory & National Center for Supercomputing Applications • University of Illinois at Urbana-Champaign

Background

Text-based passwords
Users often choose simple, dictionary-based passwords.

Attacks targeting passwords
The number of password leaks is increasing recently, e.g., LinkedIn (5M), Adobe (150M).

Existing work on passwords
Existing works measure construction rules and strength of passwords without taking into account of user profiles and the service that requires passwords.

System Workflow

Generating P personalized words
A word w_0 is selected from a topic t_p. The topic is based on a list of user profile topics t_u and a list of service topics t_s. A topic distribution is parameterized by θ and a word-topic distribution is parameterized by ϕ.

Generating a personalized password
From P personalized words based on grammatical and mangling rules.

Experiments

Personalized password guessing
- **Design**: using questionnaire forms to collect user profiles and ask users to generate passwords for several types of services.
- **Goal**: identify the relationships between the user/service profile and the generated passwords.

Personalized password generation
- **Design**: using a sign-up or change password form to suggest personalized passwords to a user.
- **Goal**: suggest personalized passwords and measure strength of a password provided by a user.

Research Question

Question
Is personalized password cracking a better approach compared to dictionary based or random guess approaches?

Goal
Evaluate the viability of cracking a user password faster using user/service profile.

Hypothesis
A user generates a password based on a list of words, each is drawn from a topic related to the user.

Approach
Using probabilistic graphical model to capture relationships between the user password and the user/service profile.

Running survey on real users to validate our hypothesis.

Applications

1. Suggest personalized, secure, and easy to memorize passwords to users.
2. Measure strength of a password using personalized metrics.

Conclusion

A probability based framework to automate generation of personalized passwords based on user and service profiles.

Two experiments are designed to:
- Evaluate the viability of cracking a user password faster using user/service profile.
- Suggest personalized, secure, and easy to memorize passwords to users.

Acknowledgements

This work was supported in part by NSF grant CNS 10-18503 CISE and 1314891, by the Army Research Office under Award No. W911NF-13-1-0086, the National Security Agency (NSA) under Award No. H98230-14-C-0141, Air Force Research Laboratory and the Air Force Office of Scientific Research, under agreement No. FA8650-11-2-0084.

References