
Decision Making III
Katie DC

Markov Models

Markov Decision Processes (MDP) Partially Observable MDP Reinforcement Learning

Uncertainty in effects of actions Uncertainty in current state Uncertainty in model

2 3

1

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

2 3

1

A B

A

B B

A
?

?

?

?

?
?

?

?

?

? ?

?

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

Deep Reinforcement Learning Doesn't Work Yet, by Alex Irpan

Challenges for Reinforcement Learning

1. Exploration of the world must be balanced with exploitation of the
knowledge gained through previous experience

2. Reward may be received long after important choices have been
made, so credit must be assigned to earlier decisions

3. Must generalize from limited experience

There are many solutions to this problem!
For a comprehensive overview, check out Reinforcement Learning: An
Introduction by Sutton and Barto.

Reinforcement Learning

Q-learning: Model-free method: Q-Learning

• Agent gathers experience: (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′)
• Q-function returns the expected reward of that action at that state
• Temporal Differences to estimate optimal value Q∗ for each state
• Agent maintains Q-table of all 𝑄𝑄 values for each state 𝑠𝑠 and action 𝑎𝑎

Incremental Estimation

Incremental Estimation Example

Q-Learning (1)

Q-Learning (2)

Q-Learning Algorithm

Initialize Q-Table

Choose Action

Execute Action

Get Observation
and Reward

Update Q-Table

function Qlearning
𝑡𝑡 ← 0
s0 ←initial state
Initialize Q
loop

Choose action 𝑎𝑎𝑡𝑡 based on 𝑄𝑄 and some exploration strategy
Observe new state 𝑠𝑠𝑡𝑡+1 and reward 𝑟𝑟𝑡𝑡
𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ← 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛼𝛼 𝑟𝑟𝑡𝑡 + 𝛾𝛾max

𝑎𝑎
𝑄𝑄 𝑠𝑠𝑡𝑡+1,𝑎𝑎 − 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡

𝑡𝑡 ← 𝑡𝑡 + 1

Q-Learning Challenges

• How should an agent decide which actions to choose to explore?
• One way to define probabilistic exploration strategy, using the Boltzmann

distribution:

𝑃𝑃 a s =
e ⁄𝑄𝑄(𝑠𝑠,𝑎𝑎) 𝑘𝑘

∑𝑗𝑗 𝑒𝑒
⁄𝑄𝑄 𝑠𝑠,𝑎𝑎𝑗𝑗 𝑘𝑘

The 𝑘𝑘 parameter (called temperature) controls probability of picking
non-optimal actions. If 𝑘𝑘 is large, all actions are chosen uniformly
(explore), if 𝑘𝑘 is small, then the best actions are chosen.

Q-Learning Challenges

• How should an agent decide which actions to choose to explore?
• The Q Table can be thought of as a cheat sheet. How many states and

actions must be stored for a game of chess?
• Another issue generally in RL: How to know if reward is correct? How do

we best shape the reward to get a desirable outcome? Is that okay?

DQN: approximate Q with deep network

• target = 𝑅𝑅 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄𝑘𝑘(𝑠𝑠′,𝑎𝑎′)

• 𝑄𝑄𝑘𝑘+1 𝑠𝑠,𝑎𝑎 ← 1 − 𝛼𝛼 𝑄𝑄𝑘𝑘 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼[target]
• Goal is to approximate our Q table with a deep network that will act

as a Q Function
function DQN

s0 ←initial state
Initialize Q0
for k = 1,2,…

Choose action 𝑎𝑎𝑡𝑡 / Observe new state 𝑠𝑠𝑡𝑡+1 and reward 𝑟𝑟𝑡𝑡
target = 𝑅𝑅 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ + 𝛾𝛾max

𝑎𝑎′
𝑄𝑄𝑘𝑘(𝑠𝑠′, 𝑎𝑎′)

𝜃𝜃𝑘𝑘+1 ← 𝜃𝜃𝑘𝑘 + 𝛼𝛼∇𝔼𝔼𝑠𝑠′~𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) Q𝜃𝜃 𝑠𝑠, 𝑎𝑎 − target s′ �
𝜃𝜃=𝜃𝜃𝑘𝑘

𝑠𝑠 ← 𝑠𝑠𝑠

DQN Challenges
• Deep learning works for supervised learning under these conditions:

• Samples are i.i.d., meaning that each batch has the same distribution and all
samples are independent within the batch

• For some input, the label is consistent across time

function DQN
s0 ←initial state
Initialize Q0
for k = 1,2,…

Choose action 𝑎𝑎𝑡𝑡 / Observe new state 𝑠𝑠𝑡𝑡+1 and reward 𝑟𝑟
target = 𝑅𝑅 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ + 𝛾𝛾max

𝑎𝑎′
𝑄𝑄𝑘𝑘(𝑠𝑠′, 𝑎𝑎′)

𝜃𝜃𝑘𝑘+1 ← 𝜃𝜃𝑘𝑘 + 𝛼𝛼∇𝔼𝔼𝑠𝑠′~𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) Q𝜃𝜃 𝑠𝑠, 𝑎𝑎 − target s′ �
𝜃𝜃=𝜃𝜃

𝑠𝑠 ← 𝑠𝑠𝑠

• In RL, these typically do not hold
• Target is unstable!
• Not iid: when parameters are updated,

local states are also effected
• Actions are chosen by estimated Q (we

choose what to explore or exploit), this
means our target output (action) is
constantly changing as well

DQN Solutions

• Experience Replay
• Say you store 106 transitions and use a batch size of 32 to train the network.
• Sampling from this buffer forms a dataset that is close to iid and therefore

stable

• Target network:
• Use two deep networks! 𝜃𝜃− and 𝜃𝜃.
• First retrieves Q values and the second updates in the training. By temporarily

fixing the Q-value targets, the moving target issue is solved.

• 𝐿𝐿𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝔼𝔼𝑠𝑠,𝑎𝑎,𝑠𝑠′,𝑟𝑟~𝐷𝐷 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄 𝑠𝑠′,𝑎𝑎′;𝜃𝜃𝑖𝑖− − 𝑄𝑄 𝑠𝑠,𝑎𝑎, ; 𝜃𝜃𝑖𝑖
2

DQN Algorithm

	Decision Making III
	Markov Models
	Slide Number 3
	Slide Number 4
	Challenges for Reinforcement Learning
	Reinforcement Learning
	Q-learning: Model-free method: Q-Learning
	Incremental Estimation
	Incremental Estimation Example
	Q-Learning (1)
	Q-Learning (2)
	Q-Learning Algorithm
	Q-Learning Challenges
	Q-Learning Challenges
	Slide Number 15
	DQN: approximate Q with deep network
	DQN Challenges
	DQN Solutions
	DQN Algorithm

