Decision Making I

Katie DC

Notes from Decision Making Under Uncertainty, by M.J. Kochenderfer

• If model is unknown (or very complex), learn policy through experience

Traffic Alert and Collision Avoidance System (TCAS)

Surveillance

Advisory Logic

Display

M.J. Kochenderfer

© 2008, RTCA, Inc.

	Det	ault	mo	deled separation for current RA is 0 if current RA is negative;
				itude and own rate to own tracked altitude and own tracked rate;
Set own annude and own fate to own nacked annude and own nacked fate,				
	IF (owi	ı doe	es not follow his RAs)
		TH	EN	Model separation achieved assuming RA not followed;
				IF (current RA is a climb RA)
	-			. <u>THEN</u> <u>CLEAR</u> flag indicating the sense of the RA after a reversal;
		÷.,		<u>ELSE</u> <u>SET</u> flag indicating the sense of the RA after a reversal;
	-	÷	-	IF (modeled separation achieved by continuing current RA greater than 1.2 *
	•	٠.		P.CROSSTHR)
	-	TT	CT	. <u>THEN</u> <u>CLEAR</u> reversal flag in ITF
	•	EL		n own is assumed to follow its RA>
		<u>_</u> B	egm	I own is assumed to follow its KA> IF (current RA is positive)
		•		THEN model response to current RA;
		1	1	 <u>ITHEN</u> Induct response to current resp. Smodel maximum displayable rate for climb if current rate exceeds
		1	1	maximum displayable rate or minimum displayable rate for descent if
		2		
		÷.,	1	
				<u>IF</u> (tracked response lags modeled response in RA direction <u>AND</u>
		1	1	time since RA less than a parameter time AND
				RA was first issued)
				for use in reversal modeling;
				Model separation achieved by continuing current RA;
				Set delay time to greater of pilot delay time remaining for last advisory against a
				. new threat, and the pilot quick reaction time;
	•		+	<u>IF</u> (considering a reversal from a descend RA to a climb RA)
	•	÷.,	÷.,	<u>THEN</u> set own goal rate to greater of own tracked rate (or maximum
	-	÷.,		displayable rate, whichever is less) and nominal climb rate;
	•	1	1	<u>ELSE</u> <u>IF</u> (own too close to ground to descend)
	-	•	•	THEN set own goal rate to zero; ELSE set own goal rate to lesser of own tracked rate (or minimum
		1	1	
	-	1	-	
		÷.,	1	IF (vertical chase, low VMD geometry was not the reason for considering
		2	2	. reversal)
		2	1	. <u>THEN</u> <u>IF</u> (intruder causing crossing <u>OR</u> (intruder level <u>AND</u> own crossing
				from above) <u>OR</u> intruder rate and own modeled rate are opposite in sign)
				ELSE use inner rate bound to model intruder;
				. <u>ELSE</u> use intruder's tracked vertical rate to model intruder;
				CALL MODEL_SEP
				. IN (delay, goal rate, own altitude, own rate, acceleration response, sense after
				. reversal, intruder altitude, modeled intruder rate, ITF entry)
				. <u>OUT</u> (predicted separation for sense reversal);
	•			IF (Predicted separation for sense reversal is not positive <u>OR</u>
	•	1	1	. modeled separation achieved by continuing current RA <u>GE</u> G.ALIM)
	-			. <u>THEN</u> <u>CLEAR</u> reversal flag in ITF;
	•	<u><</u> E	nd o	own is assumed to follow its RA>
т	P		- 1 -	modeling;
۹L	<u>×</u> Ki	ver	sai_i	motering,

ROC	ESS	Reversal_modeling;				
N	OM	$NAL_SEP = 0;$				
	Z = G.ZOWN; ZD = G.ZDOWN;					
		Y = 0;				
IF	(G.C	OWN_FOLLOW EQ FALSE)				
-	TH	HEN CALL MODEL_SEP				
		. IN (DELAY, ZD, Z, ZD, P.VACCEL, OWNTENT(7), ITF.ZINT, ITF.Z	DINT, ITF entry)			
-	-	. <u>OUT</u> (NOMINAL_SEP);				
-	-	. IF (OWNTENT(7) EQ \$TRUE)				
		. <u>THEN</u> NEW_SENSE = \$FALSE;				
-	-	<u>ELSE</u> NEW_SENSE = \$TRUE;				
-		. <u>IF</u> (NOMINAL_SEP <u>GT</u> 1.2 * P.CROSSTHR)				
1		THEN CLEAR ITF.REVERSE;				
-		L <u>SE</u>				
-		Begin own is assumed to follow its RA>				
-	1	$\frac{\text{IF}}{\text{THEN}} (\text{OWNTENT}(5,6) \stackrel{\text{EQ}}{=} (00^{\circ})$				
-	-	. <u>THEN</u> DELAY = MAX(P.TV1 - (G.TCUR - G.TPOSRA), 0); IE (OUNTENT(7) FO SEALSE)				
1	1	<u>IF</u> (OWNTENT(7) <u>EQ</u> \$FALSE) THEN _ ZDGOAL = MAX/MIN(G ZDOWN P MAXDRATE)	D CT MRT)			
1	-	THEN ZDGOAL = MAX(MIN(G.ZDOWN, P.MAXDRATE) <u>ELSE</u> ZDGOAL = MIN(MAX(G.ZDOWN, P.MINDRATE),	P DESRT)			
1	-	<u>CALL</u> PROJECT VERTICAL GIVEN ZDGOAL	1.1.01C1 <i>)</i> ,			
1	1		V1 P VACCEL)			
1	1	<u>OUT</u> (ZPROJ, ZDPROJ);				
2	1	IF (((OWNTENT(7) EQ \$FALSE AND ZPROJ GT G.ZOWN AN	D			
2	1	(G.ZDOWN GE G.ZDTV - P.MODEL_ZD)) OR	_			
2		(OWNTENT(7) EQ \$TRUE AND ZPROJ LT G.ZOWN AND				
		(G.ZDOWN LE G.ZDTV + P.MODEL_ZD))) AND				
	1	G.TCUR – G.TPOSRA LT P.MODEL T)				
		THEN Z = ZPROJ;				
		CALL MODEL_SEP				
	1.1					
		<u>OUT</u> (NOMINAL_SEP);				
	1.	IF (OWNTENT(7) EQ \$TRUE)				
-	-	. <u>THEN</u> NEW_SENSE = \$FALSE;				
-		. <u>ELSE</u> NEW_SENSE = \$TRUE;				
-		DELAY = MAX(P.TV1 - (G.TCUR - G.TLASTNEWRA), P.QUIKREAC);				
		IF (NEW SENSE EQ \$FALSE)				
1	1	<u>THEN</u> ZDGOAL = MAX(P.CLMRT, MIN(G.ZDOWN, P.MAXDRATE));				
1		<u>ELSE</u> IF (G.NODESCENT EQ \$TRUE)				
1		$\frac{\text{LESE}}{\text{LSE}} = \frac{\text{II}}{\text{II}} (0.165 \text{ESEE}(1 + 120 \text{FROE}))$				
2	1	$\underline{ELSE} ZDGOAL = MIN(P.DESRT, MAX(G.ZDOWN,$	P.MINDRATE));			
2	1	IF (G.REV_CONSDRD EQ FALSE)	,			
2		. THEN IF ((ITF.INT_CROSS EQ \$TRUE) OR (ITF.ZDINT EQ 0 AND				
		<u>ELSE</u> MZDINT = ITF.ZDINT;				
		CALL MODEL_SEP				
-		. IN (DELAY, ZDGOAL, Z, ZD, P.RACCEL, NEW_SENSE, ITF.ZINT, MZI	DINT, ITF entry)			
		. <u>OUT</u> (ZMP);				
÷	-	IF (ZMP LE 0 OR NOMINAL_SEP GE G.ALIM)				
-	1	THEN CLEAR ITF. REVERSE;				
		End own is assumed to follow its RA>				
ו <u>ת</u>	Kever	rsal_modeling;				
		BECOLUTION CONTENT LOCIO				
		RESOLUTION LOW-LEVEL LOGIC				
		6-P23				

Why is it hard?

Simplified MDP

State space	Action space
 Relative altitude Own vertical rate Intruder vertical rate Time to lateral NMAC State of advisory 	 Clear of conflict Climb > 1500 ft/min Climb > 2500 ft/min Descend > 1500 ft/min Descend > 2500 ft/min
Dynamic model	Reward model
 Head-on, constant closure Random vertical acceleration Pilot response delay (5 s) Pilot response strength (1/4 g) State of advisory 	 NMAC (-1) Alert (-0.01) Reversal (-0.01) Strengthen (-0.009) Clear of conflict (0.0001)

Simplified MDP

State space	Action space
 Relative altitude Own vertical rate Intruder vertical rate Time to lateral NMAC State of advisory 	 Clear of conflict Climb > 1500 ft/min Climb > 2500 ft/min Descend > 1500 ft/min Descend > 2500 ft/min
Dynamic model	Reward model
 Head-on, constant closure Random vertical acceleration Pilot response delay (5 s) Pilot response strength (1/4 g) State of advisory 	 NMAC (-1) Alert (-0.01) Reversal (-0.01) Strengthen (-0.009) Clear of conflict (0.0001)

Optimized Logic Both Own and Intruder Level

Metric	TCAS	ACAS X
NMACs	169	3
Alerts	994,317	690,406
Strengthens	40,470	92,946
Reversals	197,315	9,569

Probabilities

D conditional probability $P(A|B) = P(A,B)/\rho(B)$

z) total perobability $P(A) = \sum_{B \in B} P(A|B)P(B)$ $B \in B$ 3) Bayes Rule P(A|B) = P(B|A)P(A)P(B)

Α	В	С	P(A,B,C)
0	0	0	0.08
0	0	1	0.15
0	1	0	0.05
0	1	1	0.10
1	0	0	0.14
1	0	1	0.18
1	1	0	0.19
1	1	1	0.11

Continuous / Mixed Bayes Nets

Markov Assumptions and Common Violations

Markov Assumption postulates that past and future data are independent if you know the current state.

What are some common violations?

- Unmodeled dynamics in the environment not included in state
 - E.g., moving people and their effects on sensor measurements in localization
- Inaccuracies in the probabilistic model
 - E.g., error in the map of a localizing agent or incorrect model dynamics
- Approximation errors when using approximate representations
 - E.g., discretization errors from grids, Gaussian assumptions
- Variables in control scheme that influence multiple controls
 - E.g., the goal or target location will influence an entire sequence of control commands

Hidden Markov Models

inference tools: - filtering P(K × 1 Oo:x) - prediction P(X × 1 Oo:z), × >t - smoothing P(X × 1 Oo:z), K < t

Utility and Reward

MDP rewards are generally additive components in a Utility function: for some finite horizon w/n decisions the utility associated w/ the sequence of rewards is $\sum c_t$ 1=0

Policies and Utility · policy IT specifies what action to executed from every state $a_t \in \pi(s_t)$ or $\pi(o_t)$ · Expected utility of from executing I when starting at state s is denoted $U^{\pi}(s)$ · optimal policy it maximized expected utility $\pi^{*}(s) = \operatorname{angmax}_{\pi} U^{\pi}(s)$

Models of Optimal Behavior

- In the finite-horizon model, the agent should optimize expected reward for the next H steps: $E[\sum_{t=0}^{H} r_t]$
 - Continuously executing H-step optimal actions is known as receding horizon control
- In the infinite-horizon discounted model, agent should optimize: $E[\sum_{t=0}^{H} \gamma^{t} r_{t}]$
 - Discount factor is between 0 and 1, can be thought of as interest rate (reward now is worth more than reward later)
 - Keeps the utility of an infinite sequence finite

Markov Models

