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ABSTRACT. We develop a new framework of relative algebroids to address exis-
tence and classification problems of geometric structures subject to partial differ-
ential equations.

CONTENTS
Introduction 1
1. Relative derivations 7
2. Relative algebroids 26
3. Prolongation and integrability 32
4. Constructions 43
5. Relative connections and PDEs 51
6. Postlude: an example 57
7. Outlook 60
References 62
INTRODUCTION

The role of algebroids in certain classification problems was first explicitly rec-
ognized by Bryant in his work on the classification of Bochner-Kéhler metrics [7].
Struchiner and the first author built on this insight, establishing precise connections
between existence and classification problems and the integrability of the underly-
ing Lie algebroid [17, 18, 19]. However, their work is restricted to cases where
the local classification is finite-dimensional in nature, which excludes most classi-
fication problems. In this paper, we initiate the study of classifications problems
without this restriction. We introduce here the concept of relative Lie algebroid,
which unifies the theories of algebroids and (formal) PDEs. This yields a powerful
tool for understanding generic existence and classification problems for geometric
structures.

The new notion of a relative algebroid has roots in the work of Bryant, particularly
in his notes on Lie theory and Exterior Differential Systems [8]. There, he observed
through various examples that many existence problems can be recast in a particular
form—referred to here as Bryant’s equations (0.5)—which resembles an algebroid
but is not quite one [6, 8]. Although Bryant did not identify this notion explicitly, he
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showed that techniques going back to Cartan can be applied to solve these equations
in many interesting examples.

In the rest of this introduction, we will first explain what Bryant’s equations
are, where they come from and how they are used in existence and classification
problems. Then, we will briefly describe the contents of this paper.

Bryant’s equations and two examples. Let (M, g) be a Riemannian manifold.
Recall that its orthogonal frame bundle

T P — M.

carries a coframe
(0,w): TP — R" @ o(n).

whose components are the tautological form (also called the solder form) and the
Levi-Civita connection 1-form. Together they satisfy Cartan’s structure equations

df = — 0
wh Y, (0.1)
dw=RONO) —wAw,

where R: P — Hom(A%R", 0(n)) is a map inducing the Riemann curvature tensor
when passing to the associate bundles.

The structure equations (0.1) completely characterize the orthonormal frame bun-
dles of Riemannian manifolds, and allows to relate existence and classification prob-
lems for Riemannian structures to those of coframes, as observed by Cartan himself.
In a classification problem one typically has restrictions on the curvature R in the
form of an algebraic or a differential equation (or both). Let us recall one simple
example where one already sees the appearance of a Lie algebroid.

Example 0.1 (Space forms). For the classification of Riemannian manifolds (M, g)
with constant sectional curvature, a.k.a. space forms, the Riemann curvature
R: P — Hom(A*R™, 0(n)) takes the special form:

R(K)(u,v)w = K ({(w, uyv — (w,v)u) ,

where K is a constant (the scalar curvature), u,v,w € R" and (-, -) is the Euclidean
inner product on R™. So one considers Cartan’s structure equations with this specific
shape of the tensor together with the equation that K is constant:

dfd =—-wAb
dw=R(K)(ONO) —wAw (0.2)
dK =0.

These are Bryant’s equations for this classification problem.

Equations (0.2) already show the appearance of a Lie algebroid behind this clas-
sification problem of space forms. We "forget” about the underlying manifold these
equations were derived from and look at the system “as is”. More precisely, we
consider the trivial vector bundle A = R" @ o(n) — R, we interpret K has a co-
ordinate function the base, and 6 and w as generating sections of the dual vector
bundle. Equations (0.2) then define a linear operator

D: Q*(A) — Q*T(A), where QF(A) := T(A*A").
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This is a graded derivation satisfying D? = 0, hence it defines a Lie algebroid
structure on A. In [18] it is explained how integration of this Lie algebroid leads to
the well-known classification of space forms.

In the previous example the “moduli space” of solutions is one dimensional: there
is only one invariant, the scalar curvature. For such classification problems of
finite-type a complete theory was developed in [17, 18, 19]. However, in practice,
such problems are rarely encountered. Our next example illustrates a more typical
occurrence.

Example 0.2 (Surfaces with |[VK| = 1, [8, §5.1]). Consider the problem of clas-
sifying Riemann surfaces (M, g) whose scalar curvature K satisfies the differential
equation |VK| = 1.

Let (P,0,w) be the orthonormal frame bundle of such a surface and identify
R? @ o(1) & R3. Writing (0, w) = (0',0%,60%). The structure equations become

Aot = —6° A O,
d6? = 6% A O,
63 = KO A 62,

where K is the Gauss curvature. Since K is an O(2)-invariant function on P it’s
derivative can be written in the form

dK = K 0" + K»6°.

The equation [VK| = 1 becomes K7 + K3 = 1, so the components K; are related
through a single coordinate ¢ on the circle. The structure equations augmented by
these conditions on the curvature take the form:

40t = —3 A 6,
462 = 63 A 01,
46 = K6 A 62, (0.3)

dK = cos(p)f + sin(p)6?.

These are Bryant’s equations for this classification problem.

As in the previous example, the next step is to "forget” about the manifold P
and look at the equations “as they are”. So, as in that example, we consider the
trivial vector bundle A = R* — R, where R has coordinate K, and think of the 6’s
as generating sections of the dual vector bundle. But now we run into a problem:
equations (0.3) define a degree 1 linear operator D whose values depend on the extra
variable ¢. To solve this issue we consider the vector bundle B = R* — S! x R,
where S* x R has coordinates (¢, K), so that now

D: Q*(A4) = Q" (B)

If p: S* x R — R is the projection, so that B = p*A, it makes sense to call
D a derivation relative to p. This does not define a Lie algebroid anymore since,
for instance, the equation D? = 0 doesn’t make sense at this point. So we cannot
directly use integration techniques for Lie algebroids to obtain solutions.
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One could try to look for a derivation D on B that extends D and does square
to zero by adding the extra equation D% K = 0. This implies

0 = DLK = Dp(cos(¢)0" + sin(¢)6?)
= —sin(p)Dp A 0 — cos()0? A 67 + cos(p)Dpp A 6 + sin(p)6> A 0.
It follows that, for this equation to hold, we must have
Dy = 67 4 c1(—sin(p)f' + cos(p)0?), (0.4)

where ¢; is a new independent variable. So, again Dpg is not an actual derivation
but a derivation relative to the projection RxS! xR — S! xR, (¢1, 0, K) — (i, K).

This process never stops, and for this reason there is no finite dimensional Lie
algebroid governing this classification problem. We will return to this example in
Section 6.

These, and many other examples, led Bryant to observe that many classification
problems amount to solve a problem involving data consisting of a principal bundle
P with a coframe 0: TP — R", together with functions (a*,b?): P — R® x R",
satisfying Bryant’s equations:

i 1 4 j
{de = —Lc (a) 09 N 6P, 05)

da* = F!(a,b) 0",

for some given functions c?k: R* - Rand F/': R* x R" — R.

As in the two problems above, “forgetting” about the underlying bundle P, treat-
ing (a,b) as independent coordinates on R®* x R" and 6 as sections of the bundle
dual to the trivial vector bundle A := R” — R” x R®, Bryant’s equations define a
degree 1, linear operator

D: Q*(A) = QT (B), with B =p*A,

where p: R® x R"™ — R? is the projection.

PDEs and derivations. Degree 1 differential operators similar to the ones in the
previous example, are well-known in the formal theory of PDEs. For example, there
one considers the so-called total exterior differential. In its simplest form, one has
a function in jet space, say f = f(z,y,u), where x,y are independent variables and
u is a dependent variable, and then its total differential is given by

Df := (D, f)dz + (Dyf) dy = (fo + fuue)do + (fy + fuuy)d%

Similarly, for a 1-form a = a(x,y,u)dz + b(z, y, u)dy its total differential is defined
by

Da := (Dxb — Dya)dx ANdy = (bw + byuy — ay — auuy)dzx A dy.

If g: R® — R? is the submersion (z,y,u) — (z,y) and we denote by J'q its 1st
jet bundle with coordinates (x,y, u, uy, u,), then one can think of D as a degree 1,
linear operator

D: Q*(A) = Q™ (B), where A:=¢*TR? B :=p*A.
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Relative derivations, relative algebroids and the contents of this paper.
The common geometric structure underlying the previous examples is captured by
a relative derivation. More precisely, given a vector bundle A — N and a map
p: M — N, a degree 1 derivation relative to p is a linear operator

D: Q*(4) — QT (p*A),
satisfying
D(a A B) = (Do) Ap B+ (—1)*lp*a A DB,

for homogeneous elements o, € Q°®(A). The resemblance with Lie algebroids
now becomes clear: a Lie algebroid is a degree 1 derivation D on a vector bundle
A — N relative to the identity map, which additionally satisfies D> = 0. For a
general relative derivation D cannot be squared since domain and codomain are
distinct. Hence, the equation D? = 0 does not seem to make sense. In this paper,
we will develop the necessary theory to make sense of this in a natural way.

In Section 1, we develop the theory of relative degree k derivations, for ar-
bitrary k. Just like ordinary degree k derivations which can be viewed, dually, as
k-nary brackets, relative derivations can be viewed, dually, as relative k-brackets.
Besides analyzing the structure of relative multiderivarions and relative multibrack-
ets, we will extend several notions from the theory of (formal) PDEs to this setting.
These include

e a notion of a tableau (bundle) of derivations,
e a Spencer complex for tableaux of derivations,
e nvolutivity and Cartan characters for relative derivations.

The computations and examples in [8] suggest that Bryant may have already been
aware of such notions. We intend to place his computations within a natural and
robust framework.

In Section 2, we introduce and study the central concept in this paper, namely
the notion of relative algebroid. This is a triple (A, p,D), where A — N is a
vector bundle and D is a degree 1 derivation relative to a map p: M — N. As we
already pointed out, these are the geometric objects underlying Bryant’s equations.
Similar to the theory developed in [7, 17, 18], solutions to Bryant’s equations are
translated to the notion of realization of a relative algebroid, so one speaks of
Cartan’s realization problem. In the language of derivations, a realization allows
to realize a relative derivation as a manifold with the de Rham differential. More
precisely, given a relative algebroid (A, p, D) a realization is a manifold P together
with a bundle map 6#: TP — p*A that is fiberwise an isomorphism and is also a
morphism of relative algebroids, i.e., satisfies

dof*op*=6*0oD.

In the case of finite-type problems, realizations naturally appear as fibers of an
integrating Lie groupoid, making it possible to apply the power of Lie theory to solve
classification problems (see [17, 18]). In the general case, however, the situation is
much more complex. As we will see, the theory of relative derivations unifies Lie
algebroids and PDEs.

We will show first that the formal theory of the existence of realizations paral-
lels that of partial differential equations, as developed by Spencer and his school,
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and later formalized by Goldschmidt in [20]. Specifically, we will show that first-
order and second order obstructions to the existence of realizations are captured by
Spencer cohomology classes, called the torsion class and the curvature class.
In Section 3, we will see that the vanishing of the torsion class leads to the notion
of prolongation, which seeks to complete the derivation of a relative algebroid to an
operator that squares to zero. More concretely, a prolongation of a relative alge-
broid (A, p, D) is another relative algebroid (B, py, DY), with projection p;: M1 —
M. Here, B = p*A and the derivation is a map DM : Q*(B) — Q*F1(BW), where
BW := p* B, such that DY oD = 0. Schematically, this is described by the diagram

BWY =p:B -B=pA — A
l ‘Dﬁf j ‘]5 - \
M® M N

P1 p

The existence of the prolongation is contingent on the vanishing of the torsion
class. Higher prolongations are obtained by iterating the first prolongations and
are indexed by k. A relative algebroid is called k-integrable if all prolongations
up to order k exist, and is called formally integrable if it is k-integrable for all
k > 1. Foundational results from the theory of formal PDEs, such as Goldschmidt’s
formal integrability theorem [20, Thm. 8.1], have natural generalizations to the
theory of relative algebroids, namely we will prove the following analogue (or rather,
extension) of that result for relative algebroids.

Theorem 1 (Theorem 3.10). Let (A,p,D) be a relative algebroid with tableau of
derivations 7. Suppose that:

(1) (A,p,D) is I-integrable;

(ii) the Spencer cohomology groups H*?(T) vanish for all k > 0.
Then (A, p,D) is formally integrable.

If, for some k, the map py: M® — M®*=1 is a diffeomorphism, the derivation
D®) actually defines the structure of a Lie algebroid, and we are in the finite-type
case. However, in general — as in Example 0.2 — this process does not stop, and
the full prolongation tower defines a profinite Lie algebroid. For this reason,
we call a relative algebroid a relative Lie algebroid if all prolongations exist.
Finding solutions to the realization problem in this more general case is much more
challenging. The only general statement we can make is in the analytic setting,
where an existence result, essentially due to Cartan and Kéhler — see Bryant [8,
Thm. 3 and Thm. 4] - holds. We state it as follows:

Theorem 2 (Bryant-Cartan, Theorem 3.20). Let (A, p,D) be an analytic relative
Lie algebroid. For each k and each x € M), there exists a realization through x.

In Section 4, we consider several important constructions with relative algebroids.
First, given some vector bundle A — N we construct a universal relative alge-
broid (A, p1, f))7 which is formally integrable, with the property that every alge-
broid (A4, p, D) relative to a submersion p: M — N is a pullback of the universal one
via a classifying map. Then we discuss the operation of restriction to subspaces
and how this operation interacts with prolongations and realizations. Finally, we

introduce the notion of systatic foliation of a relative algebroid, which captures
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the directions in which the tableau map is zero. We show that these directions are
essentially “redundant” from the perspective of the realization problem, since the
original almost relative algebroid descends to a reduced almost relative algebroid,
which has essentially the same realizations and the same integrability properties.
In Section 5, our discussion comes to a full circle by showing that any partial
differential equation can be recast as a relative algebroid in such a way that the
formal theory of prolongations of PDEs coincides with the prolongation theory
for relative algebroids. For this, we first interpret the Cartan distribution on a
jet space as a relative connection, and then we show that any relative connection
has an associated relative algebroid. The derivation corresponding to the Cartan
distribution is nothing more than the horizontal differential in the first row of the
variational bicomplex. Then, given a k-th order PDE E viewed as a submanifold in
the jet space J¥q of a submersion ¢: N — X, by pulling back the Cartan derivation
one obtains the associated relative algebroid. We will prove the following result:

Theorem 3 (Theorem 5.12). Let E C J*q be a PDE. Then, germs of solutions
to E are in one-to-one correspondence with germs of realizations of the associated
relative algebroid, modulo diffeomorphisms. Moreover:

(i) E is a 1-integrable PDE if and only if the associated relative algebroid is 1-
integrable.

(i) If E is a I-integrable PDE, then the relative algebroid corresponding to its
first prolongation EM) C J*t1q is the prolongation of the relative algebroid
associated with E.

In particular, a PDE is formally integrable if and only if its associated relative
algebroid is.

In Section 6, we return to Example 0.2 and discuss its solutions (i.e., realizations)
in light of the theory developed in the previous sections.

The reader will notice that this paper lays only the foundations of the theory.
There are many promising directions to explore, often involving connections to
existing literature and related fields of mathematics. We conclude the paper with
an outlook on future work in Section 7.

Acknowledgements. We would like to thank Luca Accornero, Francesco Cattafi,
Marius Crainic, Ivan Struchiner, and Luca Vitagliano for many discussions that
helped us shape the ideas presented here. We especially thank Ori Yudilevich, who
several years ago coauthored some foundational work that led to this paper but
whose professional path has since taken him elsewhere.

1. RELATIVE DERIVATIONS

In this section, we develop the theory of relative derivations. While after this
section, we will only encounter relative derivations of degree 1 and 2, we consider
here relative derivations of arbitrary degree. We believe that higher-degree relative
derivations, like their ordinary counterparts, will prove useful in other applications.

1.1. Derivations and brackets. We recall here some basic facts about k-derivations
and k-brackets. For more details and proofs we refer the reader to [15].

Let V' — N be a vector bundle and set Q*(V') :=I'(A*V*). A k-derivation on V'
is a graded derivation of Q®*(V) of degree k, i.e., a linear map D: Q*(V) — Q*T*(V)
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satisfying
D(a A B) = (Da) A B+ (=1)“*a A (DS).
for homogeneous a, f € Q°*(V). The symbol of a k-derivation M is the bundle
map o(D): T*N — AFV* defined by
o(D)(df) = D(f), for f € C=(N).

Any derivation is determined by its symbol and its action on a generating set (over
C>(N)) of QY(V).

A dual point of view to multi-derivations is via multi-brackets. A k-bracket on a
vector bundle V' — N is a skew-symmetric k-linear map

[ I‘(V)x--~><F(V)—>F(V)

/

~\~

(k + 1)-times
together with an anchor p: A¥ V — TN satisfying the Leibniz rule:

[U07 e 7ka] = f[UOa T 7vk] _'_p(UO? v 7Uk71)(f)vk7

for vy, ..., v € D(V), f € C®°(N).
The notions of k-brackets and k-derivations are in duality through the Koszul
formula (see [15, §2.5]):

(e(D)(df),v1 A+ Avg) = (df, p(vr, ..., 0))

Da(vg, ..., v) = Z(—l)ip(vo, e Oy ) () — a[ve, - - k]),

i=0
for f € C®°(N), a € QY(V) and vy, ...,v, € T(V).
Proposition 1.1. The space of k-derivations on V', denoted Derk(V), 15 the space

of sections of a vector bundle DY — N, and the symbol induces a short exact
sequence

0 — Hom(V*, AFF1V%) Dt —Z» Hom(T* N, AFV*) — 0.

Dually, using the canonical identification Hom(W*, V*) = Hom(V, W), one has

0 — Hom(AFH1V V) DY, —== Hom(A*V,TN) — 0, (1.1)

which is the sequence that we will use in practice.
A choice of connection V on V' determines a splitting D, — Hom(A* 1V, V) of
this sequence. Namely, for any k-bracket, the expression

k

[U()? e ;Uk]v = [,007 e 7Uk] + (_1)k+1 Z(_l)lvp(vo ,,,,, Vgyerrs vk)viu (12)
=0

is C°°(M)-multilinear.
Example 1.2. A derivation D: Q*(V) — Q°*(V) of degree 0 corresponds to a linear

vector field on V. The flow ¢, of this linear vector field is a 1-parameter family of
vector bundle maps that solves the ODE

Lwia = ¢f(Da),
o = idy .
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Example 1.3. A Lie algebroid structure on a vector bundle A — M is 1-derivation
D: Q*(A) = Q*T(A) such that D? = 0.

1.2. Relative derivations. Fix two vector bundles W — M and V' — N together
with bundle map (¢, p): W — V covering a smooth map p: M — N.

Definition 1.4. A k-derivation relative to ¢ is a map
D: Q%(V) — Q*TF(W)
satisfying the Leibniz rule
D(a A B) = (Da) A (¢"B) + (=1)"*(¢"a) A (D).
The space of k-derivations relative to ¢ is denoted by Der®(¢p).

Lemma 1.5. The space Der®(p) arises as the space of sections of a vector bundle
DZ over M.

Proof. The space Der®(p) is a C*(M)-module. In local trivializations and coor-
dinates, it is clear that this module is also locally finitely generated. The lemma

follows from the Serre-Swan theorem. O
Note that ordinary derivations are derivations relative to the identity map, so
that Der®(V') = Der*(idy) and D¥, = DF

idy *

Definition 1.6. The symbol of a derivation of a k-derivation relative to (¢, p) is
the map o(D): p*T*N — A*W* defined by

o(D)o(dpy f) = D(f)x € A*V*|,,  for f € C®(N), 2 € M.

The dual of the symbol, arising from the canonical identification Hom (W, V') =
Hom(W*,V*), is also denoted by o(D): AW — p*T'N. As for ordinary derivations,
the symbol induces an exact sequence

0 — Hom(A*'W, p*V) —— Df —= Hom(A*W, p*TN) — 0. (1.3)
Example 1.7. If D; € Der®(W) and Dy € Der®(V) are k-derivations on W and V,
respectively, then ¢* o Dy and Dy o ¢* are both derivations relative to ¢.

Example 1.8. Let V' — N be a vector bundle and fix z € N. Any element
D € (DF), determines a k-derivation relative to the inclusion ¢,: V, < V:

D: Q*(V) = ATV
It can be defined as follows. Pick any section D € I'(D§) with D, = D and set
Da = (L; o ]3) a.
This gives a canonical identification between the space of k-derivations relative to
the inclusion ¢, : W, < W and the fiber (D%,),.

The most important case relevant to Bryant’s equations occurs when V is a
vector bundle over N, W = p*V is the pullback of W along a map p: M — N and
@ = p,: p*V — V is the canonical projection — see also Remark 1.11 below. In this
case, the short exact sequence (1.3) becomes

0 — p* Hom(A*'V, V) — Df — p* Hom(A*"V, TN) — 0. (1.4)

The previous sequence suggests the following result.
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Lemma 1.9. Let p: M — N be a map, V. — N a vector bundle and p,: p,V — W
the projection. Then there is a canonical isomorphism
Dk =~ p'Dy.
Proof. This follows from the observation that
Der*(p.) = C™(M) @ce(n) Der* (V)
as a C°°(M)-module. O

1.3. Relative brackets. Relative derivations are in duality with relative brackets,
a concept that we will introduce here.

Definition 1.10. Let V' — N be a vector bundle and p: M — N any smooth map.
A k-bracket relative to p is a skew-symmetric R-multilinear map

oo T(V) X o X D(V) = T(p*V)

J/

(k+ f)ttimes
and a relative anchor p: AF p*V — p*T'N satisfying the Leibniz rule

[0, -, for] = (P* F)vo, - -, o] + p(p*vo, - - -, p oe—1) (f )P vk
for all f € C(N).
Remark 1.11. There seems to be no canonical way to define a bracket relative
to an arbitrary bundle map (y,p): W — V because there is no canonical map

['(V) — I'(W), unless ¢ is a fiberwise isomorphism, in which case W is isomorphic
to p*V.

Similar to the case of ordinary multiderivations, we have the following correspon-
dence between relative multiderivations and relative multibrackets.

Lemma 1.12. Let p: M — N be a map and V — N a vector bundle. There is a
1:1 correspondence between

(1) k-derivations relative to p,: p*V — V and

(i1) k-brackets relative to p.

Proof. This follows from a modified version of the Koszul formula:

(Df>(p*vla Tt ’p*Uk) = p(p*vl’ s 7p*vk)(f)v
k

(Da)(p*vo, - .., pvg) = Z(—l)”kp(p*vo, D0 D) ()

i=0
—p*a([vg, ..., vk])
for f € C®(N), a € QY(V) and vy,...,v, € (V). O

Remark 1.13. Thinking of multiderivations relative to p as multibrackets relative
to p, one sees that each choice of connection V for V' gives a splitting of the sequence
(1.4) associated with the anchor. Namely, we have the analogue of formula (1.2):
given a relative k-bracket the expression

(-1)'V

[p*vo, S ,p*Uk]v = [U(J? s 7Uk] + (_1)k+1p*( P(p*vo,...,p/*;i,...,P*vk)w>7

.
I E
o

defines a unique element of Hom(A*™p*V, p*V') = p* Hom(A*1V, V).
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1.4. Brackets and derivations relative to foliations. In practice, relative deriva-
tions often appear relative to a submersion p: M — N. In some cases, however, we
encounter derivations that are only locally relative to a submersion, i.e., they are
relative to a foliation F of M. In order to define them properly, we need to recall
first some basic notions from foliation theory (see, e.g., [25]).

1.4.1. Foliated flat vector bundles. Henceforth, we will identify a foliation F on a
manifold M with an involutive subbundle F C T'M. Associated to F one has the
sheaf of basic functions given by

Co(U)={feC®U): X(f)=0forall X € I'(F|p)}.
Given a vector bundle W — M, we will write Q*(F; W) for the foliated k-forms

with values in W, i.e., sections of AFF* @ W. Recall that a F-connection on W
is a R-bilinear map V: I'(F) x I'(W) — I'(W) satisfying:

fow = fvx, Vx(fw) = fvmw —+ X(f)w,
for X € I'(F), f € C®°(M) and w € T'(W). It can be interpreted as a differential

operator V: T(W) — QY(F; W). A section w € I'(W) is V-parallel when Vw = 0.

This gives rise to a sheaf of modules over Cpy. given by

T wey(U) ={w e Tw(U) : Vw = 0}.

Local existence of parallel sections is controlled by the curvature of V which is the
the 2-form Rg € Q*(F; End(W)) given by

Re(X.,Y) = [Vx,Vy] = Vixy.

For a flat F-connection (i.e. Rg = 0), there exist a parallel local section through
every point w € W. However, non-zero global parallel sections may not exist.

Definition 1.14. A foliated vector bundle (W,V) is a vector bundle W over
a manifold with foliation (M, F) together with an F-connection V. The foliated
vector bundle is called flat when the F-connection is flat.

The dual W* of a foliated vector vector bundle (W, V) carries a canonical JF-
connection V determined by

ﬁx<04, w) = <VX04, w> + <Ck,va> s

for X € T'r, a € Ty~ and w € Ty Note that (W*, V) is flat iff (W, V) is flat.

Next, by a map of foliations p: (M, F;) — (Ms, F2) we mean a map such that
dp(F1) C Fy. For example, the identity id: M — M maps the trivial foliation to
any foliation Fj;. A map of foliated vector bundles ¢: (Wl,vl) — (W2,VQ)
covering a map of foliations p: (M, F;) — (Ms, F3) is a bundle map p: W, — W,
which satisfies

Vilp'a)) = ¢" (Vo @), forall X € [y, a € Q(Wa).

In the case of flat foliated bundles, this condition ensures that pullback maps flat

forms to flat forms ¢*: Q°* _, — Q°* _, .
(Wa,V7) (W1,V)

Remark 1.15. When ¢ is a fiberwise isomorphism, we obtain also a pullback of
sections which preserves flatness:

0" Loty = Do oty (¢*w)(x) == o Hw(p(z))).
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There is a version of the Serre-Swan theorem for flat foliated vector bundles.

Proposition 1.16. Let (M,F) be a manifold with foliation. There is, up to a
natural isomorphism, a one-to-one correspondence

locally finitely generated 11 flat foliated vector
and locally free C23 -modules bundles over (M, F)

Proof. Given (B, V) — M, we just saw how to construct a locally finitely generated
and locally free Cpg-module I' ). For the converse, given such a module Iy, set

I's = F” ®Cg§s Cc™
which is a locally finitely generated, locally free C*°-module. By the Serre-Swan

theorem, I'g is the sheaf of sections of a vector bundle B — M. The flat F-
connection is determined by requiring its local flat sections to satisfy

Vxb=0, forall XeTxbely.

It is well-defined because I'| is a Cpg-module. These constructions are inverses of
each other. Naturality follows from naturality of the original Serre-Swan theorem,
observing that the resulting maps preserve the parallel sections, and so are maps of
flat foliated vector bundles. 0

Let (W, V) be flat foliated vector bundle over a foliated manifold (M, F). The
holonomy representation of a leaf L of F is denoted

h: m(L,x) — GL(W,)

and is obtained, as usual, by parallel transport along loops based at x. More
generally, parallel transport along paths, gives the groupoid representation

I, (F) — GL(W),

where II;(F) = M is the Lie groupoid whose arrows are the leafwise homotopy
classes of paths in F, and GL(W) = M is the Lie groupoid whose arrows are the
linear isomorphisms between the fibers of W. Conversely, any such Lie groupoid
representation defines a flat F-connection on B.

If F C F is subfoliation, a flat F-connection determines by restriction a flat
F-connection and the holonomy representations are related by

I, (F)

Proposition 1.17. Let (M, F) be a foliated manifold and p: M — N a surjective
submersion with connected fibers such that ker(dp) C F. Then there is a folia-
tion Fy on N such that F = (dp)~"(Fy) and p: (M, F) — (N, Fy) is a map of
foliated manifolds, for which there is, up to a natural isomorphism, a one-to-one
correspondence between

vector bundles over M with

{’Uector bundles over wzth} i flat F-connection having

at Fn-connection ‘
flat F trivial holonomy along ker(dp)
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Proof. Since p is a surjective submersion and ker(dp) C F, it follows that
Fn = dp(F)

is a well-defined involutive subbundle of T'N. Since the fibers of p are connected
and contained in F, one has that F = (dp) ™' (Fn).

One direction of the correspondence is clear: since p is a map of foliations, if
(Wy, V) — (N, Fy) is a flat foliated vector bundle, then (p*Wy, p*Vy) — (M, F)
is a vector bundle with flat F-connection with trivial holonomy along ker(dp).

For the converse, suppose we are given a vector bundle with a flat F-connection
(W,V) — M having trivial holonomy along F, = ker(dp). Then the holonomy
representation of F, factors via the submersion groupoid

I (]:p)

N

M x, M — GL(W)

The resulting linear action of M x, M = M on W — M is free and proper. The
quotient is a vector bundle Wy — N and there is a canonical isomorphism

p*WN =W.
Moreover, the submersion p: M — N induces a surjective groupoid morphism
P I (F) = I (Fy)

whose kernel contains I1; (F,). It follows that the holonomy representation descends
to a representation of II; (Fy) making the following diagram commute.

I1,(F) —*~ GL(B)

p*l l

I, (Fy) —2 GL(Wy)

Hence, there is a unique flat Fy-connection Vy on Wy whose holonomy represen-
tation is hy. For such a connection one has

p*v]\[ = V.
The previous two constructions are inverse to each other so the result follows. [

Example 1.18. Let F be any foliation on M and denote by v(F) = TM/F the
normal bundle of F. This carries a flat F-connection, namely the Bott connection

VY = [X,Y], for X eT(F),Y € v(F).
When F is a simple foliation, so that N = M /F is a manifold, the resulting foliation
on N is the trivial one: Fy = On. The corresponding vector bundle over N is the
tangent bundle T'N (a flat foliated vector bundle for the trivial foliation).

More generally, any vector bundle V' — N is a flat foliated vector bundle for the
trivial foliation, so the pullback W := p*V carries a canonical flat F-connection V.
It is the connection whose local flat sections are the sections of the form p*v, with
v any a local section of V.
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1.4.2. Derivations relative to a foliation. Throughout the rest of this section, we fix
a flat foliated vector bundle (W, V) over (M, F). The sheaf of sections of A*W* —
M (the “W-forms”) will be denoted by 3, whereas the sheaf szﬁ) of V-parallel
W-forms is given by

Q.

(Wﬁ)(U) ={a e (U): Va=0}.

Definition 1.19. A parallel k-derivation of on a flat foliated vector bundle
(W, V) is a map of sheaves

. . otk
D: Q(Wﬁ) — Q(Wﬁ)

satisfying, for any homogeneous «, 3 € szﬁ), the Leibniz rule

D(a A B) = (Da) A B+ (=1)**Fa A (DB).
The sheaf of parallel k-derivations is denoted by Derﬁ(VV, V).

Lemma 1.20. Derﬁ(VV, V) is the sheaf of flat sections of a flat foliated vector bun-

dle, denoted (waﬁ),v).

Proof. Derﬁ(W, V) is a locally finitely generated, locally free C22.-module. Thus, by
Proposition 1.16, it is the space of parallel sections of a flat foliated vector bundle
(waﬁ), V). OJ

We are now ready to introduce the following generalization of derivations relative
to submersions to derivations relative to foliations.

Definition 1.21. A k-derivation on (W, V) relative to F is a map of sheaves
. ° o+k
D: Oy o) — Q"
satisfying for homogeneous «, 3 € szﬁ) the Leibniz rule

D(a A B) = (Da) A B+ (—=1)*Fa A (DB).
Its symbol is the map o(D) € Hom(v*(F), A*W*) given by
o(D)(df) = D(f), for fe G,

In practice, we will think of the symbol as a map o(D): A* W — v(F) via the
usual canonical identification.

Remark 1.22. The relative k-derivations just defined are canonically identified

with the global sections of the vector bundle waﬁ), while parallel k-derivations
k

correspond to parallel sections of D(Wﬁ)' The flat F-connection on sections of

waﬁ) is given by

(VxD)a = Vx(Da), forac szﬁ).

Unlike global parallel k-derivations, which may or may not exist, relative k-derivations
always exist in abundance.

The duality between brackets and derivations relative to submersions extends to
foliations.
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Definition 1.23. A k-bracket on (W,V) relative to F is a skew-symmetric
R-multilinear map of sheaves

[',...,']: P(VK?)X“XFW’?)_)FW

J/

-~

(k + 1)-times
with a relative anchor p: A* W — v(F) satisfying the Leibniz rule
[wo, ..., fwg] = flwo, ..., wi] + plwo, . . ., wr_1)(f)wy,

for any local flat sections w; and basic function f € CF..
In a manner entirely similar to Lemma 1.12; we find:

Lemma 1.24. Let (W, V) be a flat foliated vector bundle over (M, F). There is a
1:1 correspondence between

(1) k-derivations relative the F and
(1) k-brackets relative to F.

Notice that in the case of a submersion p: M — N and a vector bundle V' — N
— see Example 1.18 — these definitions and results specialize to the previous notions
of k-derivation and k-bracket relative to p: M — N.

1.4.3. The structure of relative derivations. We start by giving the analogue of the
short exact sequence (1.4). The proof is immediate.

Lemma 1.25. Given a foliated flat bundle (W,V) — (M, F), the symbol map
mduces a short exact sequence

0 —— Hom(AM1W, W) — D*

W) —Z= Hom (AW, v(F)) — 0, (1.5)

—Bott

If we equip these bundles with the induced connections V and V @ V (for the
last term), this is a sequence of flat foliated vector bundles.

An extension of the F-connection V to an ordinary connection V is a connection
on B such that

Vxw = Vxw, forall X € ['(F), weTl(W).
It induces a well-defined map
V: F,,(]:) X F(W,V) —I'w, V[X]w = Vxw.

The extension V is called F-parallel when this map takes values in Lww)- While
extensions always exist, parallel extensions are only guaranteed to exist locally.
Extensions of V yield splittings of the previous short exact sequence.

Lemma 1.26. Let (W, V) — (M, F) be flat foliated bundle. An extension V of V

induces a splitting of the short exact sequence (1.5) so that

Doy = Hom(A*'W, W) @ Hom(A*W, v(F)).

If the extension is F-parallel, then this splitting is an isomorphism of flat foliated
vector bundles.
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Proof. For any extension V we can define a splitting waﬁ) — Hom(A* W, W) of

k

W) the expression

(1.5) similar to Remark 1.13: given a relative bracket in D

k
[wo, Ce ,wk]v = [’LU(), Ce ,wk] + (—1)k+1 Z(—l)ivp(wo ..... Wiy, wk)wi,
i=0
which is defined for local flat sections w; € Iy 5), extends to a unique C'*-linear

map, determining a bundle map A**'W — W. When V is an F-parallel extension,
this bundle map sends F-flat sections to F-flat sections, so it is map of foliated flat
bundles. O

Any k-derivation D € T'(DE,) can be restricted to szﬁ)

II(D) relative to F. This restriction map is C*°-linear, so it is induced from a bundle

map I1: D, — D?W,ﬁ)'

to yield a derivation

Lemma 1.27. There is a short exact sequence

0 — Hom(AFW, F) —— Dk, — 1 Doy — 0.

where the inclusion ¢ is defined at the level of sections by

1 __
L(p) (a) <w17 e vwk-i-l) = T Z (_1)0 vp(wga) ..... W (1)) X (wO'(k+1)7 . 7wa(k+l))'
k!

UGSk+l

for a € QW) and wy, ..., wpy € T(B).

Remark 1.28. The map ¢: Hom(A*W, F) — DE, in the previous statement is the
unique linear map satisfying

Up)(f) = p(f),  if feC=(M),
t(p)(a) =0, if « € Q2

w,v)
Proof. Restriction induces a surjective map of the short exact sequences of the
symbols, resulting in the following commutative diagram:

0 0
0 K Hom(A*W, F) ——0
0 — Hom (AW, W) Dk, —>— Hom(A*W, TM) ——0
1
0 — Hom(AFHW, W) —— DfWﬁ) —Z= Hom(A*W, v(F)) —=0

0 0 0
It follows that K = Hom(A*W, F) and that ¢ is as in the statement. O
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1.5. Morphisms and extensions of relative derivations. In this section, we
discuss morphisms of relative derivations, extensions and what it means to “com-
pose” two relative degree 1 derivations.

Definition 1.29. Let (p,p): (W, ?M) — (V, VN) a map of flat foliated vector bun-

dles covering p: (M, Far) — (N, Fn). We say that a derivation Dy, € F(waﬁM))

is (¢, p)-related to a derivation Dy € F(vav,v)) if

Dy o p* = ©* o Dy. (1.6)
Note that (1.6) implies that the anchors of Dy, and Dy are related by

pv o Ao = dp o py.

The relation between the associated k-brackets is more complicated to express since,
in general, there is no map relating sections of W and sections of V. However, when
¢ is a fiberwise isomorphism, as in Remark 1.15, one can express relation (1.6) in
terms of k-brackets as

[0 Vo, ..., @ v lw = @ [vo, .., u]y,  forall v; € F(V,VV)‘
Actually, when ¢ is a fiberwise isomorphism, it induces a bundle map

. k k
#+: Dy 7 Py,

as follows. Recall that an element D, in the fiber (waﬁw))z can be regarded as

)

a derivation D, : QEWWW) — ( NSTE W*)m relative to the inclusion (as a map of

foliated vector bundles). We define ¢,.(D,) by

R * ° otk *
0e(Dy) == p. 0D, 0 p": Q(Vﬁv — (AHFV )p(x),

)
where ¢, = (p*)7': (A® W*)gg — (A V*)p(x).
related to a derivation Dy if and only if the outside square in the following diagram
commutes.

Then, a derivation Dy is (i, p)-

k P k
D(Wﬁw) UA%ZS)
> | e
M N

Example 1.30 (Extensions of relative derivations). If Dy, is (¢, p)-related to D
and the base map p is a submersion, we say that Dy, is an extension of Dy. In

particular, we have the following:
(1) An extension of a derivation D € F(D?vﬁ)) to a derivation D; € T'(DY,) is

an ordinary derivation D; that agrees with D on the flat forms:
Dia = Da, for all o € QEVﬁ)'

This fits into the setting of Definition 1.29 by viewing the identity map
id: (NV,0x) — (IV, F) as a map of foliated manifolds.
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(2) More generally, given a a submersion p: M — N, an extension of a deriva-

tion D € F(vaﬁ)) to a derivation Dy € I'(D}), is a derivation Dy on V

relative to p: M — N satisfying:
Dia =p*(Da), forall a € QEV,?)‘

Extensions will be important in the theory of relative algebroids, developed in
Section 2.

Given two ordinary derivations, their composition usually fails to be a derivation.
An important exception occurs in the case of a 1-derivation D € T'(D},): the square
D? := Do D is a 2-derivation. It is easy to see that if D has symbol p and associated
1-bracket [, -] then D? has symbol

pp2(v1,v2)(f) = p(v1) (p(v2)(f)) = p(va2) (p(01)(f)) — p([v1, va]) (),

while the associated 2-bracket is the Jacobiator

[v1, V2, V3]p2 = [v1, [V2, v3]] + [va, [vs, v1]] + [vs, [v1, va]].

This generalizes to relative 1-derivations which are extensions, as in Example
1.30. For the statement, note that under the assumptions of that example, the
foliation F pulls back to a foliation p*F on M, and the bundle p*V" inherits a flat
p* F-connection p*V from (V; V). Pullback gives a canonical isomorphism between
the space of flat forms

Lpve) =P Yve)
Lemma 1.31. If a derivation D, € F(D(lp*vﬁ)) extends a derivation Dy € F(D(lvﬁ)),
their composition

Dy oDg: Q.5 = X TPV),

15 a relative 2-deriwation with symbol and 2-bracket given by

pD1oDy (P V1, P*02) (f) = pr(p*v1) (po(v2)(f)) — pr(p™v2) (po(v1)(f))
—pl(p*[ULUZ]O)(f), (17)
[p*v1, ™ V2, D" V3] DDy = [V1, [V2, vs]o]1 + [va, [v3, v1]o]1 + [vs, [v1, vao]1,
Jor any vi,v2,v3 € I'y 5y and f € Cig.

Proof. The fact that Dy o Dy is a 2-derivation follows from

D; o Do(a A B) = Dy (Do A B 4 (—1)%ar A Dy )
= Dy (Do) Ap*B + (=1)**'p* Do A Dy S+
+ (=1)*Dya A p* Do + (—1)%p*a A Dy (Dy3)
= (D1 0 Dg)(a) Ap*B+ p*a A (D1 oDg)(5),
where we used the extension property Dia = p*(Dgar) to cancel two terms. The

expressions for the symbol and 2-bracket follow from straightforward computations
using the formulas for the duality (see the proof of Lemma 1.12). O
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1.6. Tableaux of derivations. Tableaux are extremely useful gadgets in the the-
ory of PDEs [9, 8, 30]. They codify higher order consequences of a set of partial
differential equations and, when a tableau is involutive, provides a measure of the
size of the space of local solutions.

Let W,V be finite-dimensional vector spaces. Classically, a tableau is a subspace
T C Hom(W, V') or, more generally, a linear map 7: 7 — Hom(W, V). In practice,
a PDE does not come with a single tableau but with a family of tableaux depending
on coordinates, i.e., a vector bundle. The theory of tableaux is pointwise in nature,
and thus naturally carries over to vector bundles (possibly under some extra con-
stant rank assumption). Associated to a classical tableau, one has the notions of
prolongation, the Spencer complex, involutivity and of Cartan characters. We refer
to [8, 9, 30] for more details.

It turns out that tableaux associated to classification problems as in the Intro-
duction (or the applications of Theorem 4 in Bryant [8]) are not tableaux in the
classical sense. Bryant was certainly aware of this, as is evident from his computa-
tions in [8] of the Cartan characters and prolongations. However, to the authors’
knowledge, this is not formalized or mentioned anywhere in the literature. In this
section, we will extend the classical notion of tableau by formalizing the notion of
a tableau of derivations.

1.6.1. Definition of tableau of derivations. In what follows, we fix vector bundles
W — M and V — N and a vector bundle map (¢,p): W — V.

Definition 1.32. A tableau of k-derivations relative to a vector bundle map ¢
is a vector subbundle 7~ C D%,

Remark 1.33 (Tableaux for derivations relative to foliations). All the definitions

and results that follow apply equally well to bundles D? of derivations relative to

W,V)
foliations. This is due to the pointwise nature of the operations and notions related
to tableaux and the fact that D* _ is locally isomorphic to a space of derivations

(W.V)
relative to a bundle map.

The theory of prolongations and involutivity of tableaux of derivations, rests upon
the following definition.

Definition 1.34. The Spencer differential §: Hom(A'W, D) — DEt is the
unique C'*(M)-linear map such that

d(w®D)=wAD,
for any w € Q'(W) and D € T(D).
Remark 1.35. Sometimes, instead of a subbundle T C DZZ, we need to consider a

vector bundle map 7: T — DZ; that is not necessarily injective. For such a bundle
map, the Spencer differential 6,: Hom(A'W, T) — D{Z*l is defined by requiring

- (w®D)=wAT(D),

for w® D € T(A'W* ® T). For a classical tableau, such objects were considered
in [30] under the name “generalized tableaux”. In this paper, we will refer to the
bundle map 7 as a tableau map.
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An element in I’ (Hom(/\lI/V, Df,)) can be viewed as W-form of degree [ with values
in D, so it is determined by its action on Q'(V). For £ € I’ (Hom(A'W, D)), the
Spencer differential 6¢ is the (k +1)-derivation relative to ¢ acting on a € Q' (V) as

(08 () (w1, ..., Whpig1) =

1 g
= m Z <_1) (5(@) (w(r(l)7 s 7wo(l))) (wa(l+1)7 v 7w0'(l+k+1))
T 0€Skyi41
(1.8)
where wy, ..., wgp41 € (W), Its symbol acts on a function f € C*°(N) by

(5£> (f)(wb s 7wk’+l)

1 i (1.9)
- W Z (_1) (g(f)<w‘7(1)’ T ’wU(l))) (wa(lJrl)v S 7wo(l+k))

o O'ES;H_[

Example 1.36. There is more than one way of interpreting a classical tableau
bundle as a tableau of derivations.

One direct way is through O-derivations. Let ¢: W — V be any bundle map
covering the identity on M (e.g., it can be the zero map). From the short exact
sequence (1.3), it follows that Hom(W, V) C DY. Hence, a classical tableau bundle
T C Hom(W, V') can be seen as a 0-tableau in Dg.

Another interpretation of a classical tableau as a bundle of derivations is through
relative 1-derivations. Assume that the bundle map (¢,p): W — V is a fiberwise
isomorphism. By Lemma 1.27, there is a short exact sequence

Px

0 —— Hom(W, ker(dp)) Dy pDy, —=0.

A subbundle 7 C Hom(W, ker(dp)) is both a tableau in the classical sense as well
as a tableau of 1-derivations.

In both cases, the Spencer differential on Hom(W,T), interpreted as a tableau
of derivations, corresponds to the classical Spencer differential for 7 as a classical
tableau. Therefore, both interpretations of 7 as a tableau of derivations recover
the usual prolongation and Spencer cohomology theory.

Remark 1.37. There is a warning: while naively the subbundle 7" C Hom(A*W, V)
is a classical tableau (in the sense that it is a subbundle of a Hom-space), it really
depends on the context whether it should be treated as such. Usually, the exterior
power A2WW indicates the presence of brackets. Interpreting Hom(A?W, V) as a clas-
sical tableau leads to different Cartan characters and prolongations. For instance,
to compute the characters of 7 as a classical tableau, a flag of A2WW must be used.
However, as we shall see, in the derivation picture one only requires a flag of W.

1.6.2. Spencer cohomology. Given a tableau of derivations we define its prolongation
as follows.

Definition 1.38. The first prolongation of a tableau 7 C Df; is defined as

T(l) = keI‘6|Hom(I/V7—)‘

The prolongation of a tableau 7 C Df is a subbundle T ¢ Hom(W, T) when-
ever it has constant rank. Hence, in this case, T is a classical tableau and one
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defines the higher prolongations of 7, when they exist, recursively as
Tm) . — (T(m—l)(l)'
The Spencer differentials
§: Hom(A'W, T0™) — Hom (AW, 70m— D)

are defined for m > 1 as in Definition 1.34 by restricting to Hom(A'W, 7)) (i.e.,
regarding 7™ as classical tableau, as in Example 1.36). It is clear from the defi-
nition that the Spencer differentials square to zero.

Definition 1.39. The Spencer cohomologies of a tableau 7 C DZ are defined

as
_ kerd: Hom(A'W, T™) — Hom(AW, T(m=1)

H™t =
(7) imd: Hom(ASTW, T+ — Hom (AW, T (M)
for m > 1. In the special case m = 0, one sets
kerd: Hom(A'W,T) — Di*

HO! =
(7) imd: Hom(A=TW, TM) — Hom(A'W, T)
and for m = —1, one defines
Dk+l
H YT = e

imd: Hom (AW, Dk) — DE+

Remark 1.40. Note that H™°(T) = H™!(T) = 0 from the definition of the first
prolongation.

Definition 1.41. A tableau 7 C DZZ is called involutive if all prolongations 7 (™),
m > 1, have locally constant rank and

H™(T)=0, forallm>0,1>1.

1.6.3. Cartan characters and Cartan’s test. Heuristically, a system of differential
equations is in nwvolution when there are no higher order hidden consequences of
the equations. These higher order consequences appear as cohomology classes in
the Spencer cohomology groups which, in general, are hard to compute. A practical
way of checking involutivity is through Cartan’s test. In this section, we make these
notions precise for tableaux of derivations.

We continue to assume that (@, p): W — V is a fixed morphism of vector bundles.
By a flag of W we mean sequence of vector subbundles of W,

0o=WocWycCc---cW,=W, with rank W; = 1.

Fix a flag (W;) for W, denote by ¢;: W; < W the inclusion map and ¢f: A®* W* —
A*W; the induced restrictions. A relative k-derivation D: Q*(V) — Q**(W) can
be post-composed with the restriction map to yield an k-derivation ¢ o D relative
to ¢ o; (cf. Example 1.7). In other words, there is restriction map

(ti)+: D — DL,

Ift7 C DZ is a tableau, we set
Ti:=ker(;). NT.
Notice that 7; C 7;_1 and that 7o =7, 7,, = 0 where n = rank .
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Definition 1.42. Let 7 C Df be a tableau and (W;) a flag for W. The Cartan
characters of 7 with respect to the flag are

si:=rank T,y —rank7;, (i=1,...,n=rankW).

As for classical tableaux, the Cartan characters bound the rank of the prolonga-
tion and, moreover, provide a practical way to verify that a tableau of derivations
is involutive through Cartan’s test. Here we present an extension of Cartan’s test
to tableaux of derivations.

Theorem 1.43 (Cartan’s test). Let T C D% be a tableau of derivations.

(1) (Cartan’s bound). If {s;} are the Cartan characters w.r.t.a flag (W;), the
dimension of the prolongation is constrained by

rank T < s + 259 + - - - + ns,,.

(i1) (Cartan’s test). If the Cartan characters s; are locally constant and Cartan’s
bound is achieved, i.e.,

rank 7 = S$1+ 289+ -+ nsy,
then T is involutive.

A flag for which Cartan’s test holds is called a regular flag for 7. From the
proof below, it will be clear that if (W;) is a regular flag for 7, then it is also a
regular flag for the first prolongation 7).

Remark 1.44. For a classical tableau, Cartan’s test provides an equivalent char-
acterization of involutivity (see [31], Theorem 3.4). We suspect that it is also an
equivalence for tableau of derivations, but it does not seem to follow from Cartan’s
test applied to the prolongation as a classical tableau. The reason is that if 7 is a
tableau, regular flags for the prolongation 7! may not be regular for 7 itself. This
poses no obstacle to our applications: computing the Cartan characters is typically
much more practical than computing the Spencer cohomology groups, making the
implication in Theorem 1.43 the most relevant one.

Before we give the proof of the previous theorem, we make the following obser-
vation. Since the first prolongation 7 ¢ Hom(W,T) is also a tableau, it comes
with spaces (7());, associated to a choice of flag for W. These are related to the
prolongations of 7; as follows.

Lemma 1.45. Let T C sz be a tableau of derivations and fix a flag (W;) for W.
Then:

(TW), < (MW, (i=1,...,n).

i =

Proof. Let € € (TW);, so &(w) = 0 for all w € W;. Then, for any a € QY (V), u € W
and wy, ..., w, € W;, applying (1.8) one finds

0= (6&)(a)(u, wo, ..., w)

= (E(u)e) (wo, - .., wy) — Z(—ni (E(w)e) (u, wo, . .., @y, . .., wg)

= ({(u)a) (wo, . .., wg).
Therefore, £(u) € T; for all w € W, and so € € (7;). O
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Remark 1.46. For a tableaux 7 C Hom(W, V) in the classical sense, the inclusion
in Lemma 1.45 is an equality. However, in our more general case this may fail.

Consider, for example, the case where W =V is a 2-dimensional vector space, with
flag Wy € Wy C Wy, and let

Pl _ 2
T := D, = Hom (AW, W).

Then 7; = Hom(A?W, W) = T, and so (7)) = TW = Hom(W, Hom(A2W, W)).
On the other hand, (7™"); = Hom(Wy, Hom(A2W, W)) C (T7)W.

The proof of Theorem 1.43 rests on the following lemma.

Lemma 1.47. If L := ker (5: Hom(A'W, T) — fol), then

rank L < z:;s <<7Z) - <” f Z)) (1.10)

for any flag (W;) of W.
Proof. Let (W;) be a flag of W and set
L; := L N Hom(A'W, T;).

These define a filtration L = Ly 2 -+ D L;_1 O L; O --- D L, = 0, and there are
natural inclusions

Li_1/L; = Hom (N'W, T;_1/T;) -
If m;: W — W/W; is the projection, then pullback gives another set of inclusions
7. Hom (/\Z(W/I/Vi), Ti-1/T;) — Hom (/\ZW, Tica)Ti) -
Claim. (L;1/L;) Nim7; = {0}.

To prove this claim let 77¢ € L;_y Nwf Hom (A2 (W/W;), Tioq). Tfwy,...w € W
and w1, ..., Wee1 € Wi, then by (1.8) for a € QY(V') we have

0=0(m¢) (a)(wy,... , Weer41)

- l'(k‘—:—l)‘ Z (=1)7(&(@) (7 (vo)) » - - i (Wo))) (W1, - - s Worrsy)
0ESkyi4+1
= ((mF &) (@) (wr, ..oy w)) (Wi - ooy Whepig1)-

It follows that 77¢ € Hom (/\ZW, 7;), and the claim follows.
The estimate of the lemma now follows from this claim by telescoping:

rank L = Z rank L;,_; — rank L;
i=1

< Z rank Hom(A'W, T;,_, /T;) — rank Hom(A (W/W;), Ti1/T})

i=1

(- () .
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Proof of Theorem 1.43. Note that the case [ = 1 in Lemma 1.47 is exactly item (i)
(Cartan’s bound) in the theorem.

For the proof of item (ii), suppose that (W;) is a regular flag for 7, with characters
(s;), so that Cartan’s test on dim 7" is satisfied. Since the Cartan characters are
assumed locally constant, so is the rank of 7).

The proof goes in two steps:

Step 1: Prove the inequality

rank(im §) > z:;s ((7) - (” . Z)) (1.11)

for I = 2 and that Cartan’s bound is achieved for rank 7 — as the first
prolongation of 7 — for the same flag (W;). Then, by Lemma 1.47, it
follows that

HA(T) =0,
and that — by Cartan’s test for ordinary tableaux ([31, Theorem 3.4]) — all

prolongations 7 m > 1, have locally constant rank and are involutive,
so that

Step 2: Prove inequality (1.11) for arbitrary [ so that, applying Lemma 1.47,
one has

HY(T)=0, forl>0.
Step 1. First, we claim that the Cartan characters s ) of the first prolongation
satisfy the bound
sV < i 4 si1 4+ s (1.12)
This follows from the Euler characteristic of the exact sequence

Lw,

—Ti

0— (TW),

(2

— (T(l))

i—1

where ¢, is interior contraction by a local frame (w;) adapted to (W;), i.e., {wy, ..., w;}
is a frame for F;.

From the bound on sgl) together with Cartan’s bound for rank 72, we see that

a "N (i+1
rank 7 < ist) < ( )Si
Furthermore, from the exact row of the Spencer complex
0 —— 7@ —— Hom(W, TW) —> Hom (AW, T) — Dh+2

we conclude that
rank(im 6) = rank (Hom(W, 7)) — rank 7

SRICEY) a3
(0 (2)



RELATIVE ALGEBROIDS AND CARTAN REALIZATION PROBLEMS 25

where we used the assumption that Cartan’s bound is achieved for rank 7. This
proves the inequality (1.11) for [ = 2. But then by Lemma 1.47, the inequality
(1.13) must be an equality, so that

rank 7 = Zsi (z; )
i=1

Hence, Cartan’s bound is achieved for 7 and the proof of step 1 is concluded.
Incidentally, this also shows that one must have equality in (1.12).

Step 2. It remains to prove (1.11) for [ > 3. This bound comes again from the
Spencer complex:

0 T Hom (W, T¢1) —— Hom(A?W, TU=2)) —— ...

.. — Hom(A='W, TW) — = Hom(A!'W, T) —— Dt

Because 7 is involutive, this sequence is exact up until imd. It follows that

l
rank(im ) = 2:(—1)’7‘;Jrl rank (Hom(/\l_kI/V, ’T(k))) .

k=1

We already know that Cartan’s bound is achieved for all prolongations, so rank 7 *)

can be given entirely in terms of the Cartan characters of 7. An induction argument

using sgl) =5, +---+s5, gives rank T = oS (i+llz_1), and therefore

rank(imd) = 3 s (i(-pkﬂ (z fk) (Z * i_ 1)) |

i=1 k=1
The result now follows from the combinatorial identity

! . .
+ k-1 n n—1i
-1 k+1 n v — o ) O
Z( ) (l —k k l [
k=1
1.6.4. Symbol exact sequences of tableaur and involutivity. We continue to assume

that (p,p): W — V is a vector bundle map.

Proposition 1.48. Both DZZ and Hom(AF1W, p*V) C DZZ are involutive tableaux
for which every flag is reqular.

In order to prove this proposition, will use the following lemma which relates the
Spencer differential and the short exact sequence (1.3) induced by the symbol map.

Lemma 1.49. The following diagram of short exact sequences commutes
Hom (W, Hom (A" 'W, p*V')) — Hom(W, Df) — Hom(W, Hom(A*W, p*T'N'))

| lé |

Hom (A2, p*V) Dit! Hom(A*1W, p*T'N),

where the side vertical arrows are skew-symmetrization. In particular, the Spencer
differential 6: Hom(E, DZZ) — DZZ“ is surjective.

Proof. This is clear from (1.8) and (1.9). O
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Proof of Proposition 1.48. Consider first the tableau 7 := Hom(A*W, p*V'). In this
case the Spencer differential is the skew-symmetrization map

§: Hom (W, Hom(A*W, p*V)) — Hom(A*T1W, p*V)

which is surjective. Setting n = rank W and m = rank V', we have

1 _ ny n _ n+1
rank T~ m(n(k) (k+1)> mk(k—l—l)'

Now let (W) be a (local) flag for W. From the exact sequence
0 —= T; — Hom(A*W, p*V) —— Hom(A*W;, p*V) —= 0

it follows that s; = m ((;) — (121)) = m(;;ll) Hence, we find that

Zisi = mkz (;) = mk(Z::__ 1) = rank 70,

so Cartan’s Test 1.43 holds and 7T is involutive.
Next, to show that D{; is also involutive we apply Lemma 1.49. Setting D = DZZ

and & = Hom(A*W, p*T'N), the lemma gives a short exact sequence

0 71 DM SO __ ..

Moreover, restriction gives a commutative diagram

0 —— Hom(A*1W, p*V) D Hom(A*W, p*TN) — 0

0 — Hom (AW, p*V) —— DF

pouw,

—— Hom(A*W;, p*TN) — 0

so we obtain that the restricted spaces also fit into a short exact sequence

0 T: D; S; 0.

Since Cartan’s test is satisfied for both S and T, we conclude that it is satisfied for
D, which then must also be involutive. Il

2. RELATIVE ALGEBROIDS

2.1. Relative algebroids. With the formalism of relative derivations at hand, we
are now ready to introduce the geometric objects underlying Cartan’s realization
problem and Bryant’s equations (0.5).

Definition 2.1. An almost Lie algebroid relative to a submersion or in short
algebroid relative to a submersion p: M — N consists of a vector bundle
A — N together with a 1-derivation

D: Q*(A) — Q1 (p*A)

relative to p.
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We will denote by (A, p, D) the entire structure of the algebroid relative to p and
often write B for the pullback bundle p*A — M. The manifolds M and N will be
specified when those are not clear from the context. We like to graphically depict
an algebroid relative to p as

B——A

A S - _ 7
|
M—N
p
where the dotted arrow is not a map but indicates a derivation that is defined on
Q*(A) and takes values in Q**(B). We use the letter B to stand for Bryant, whose
equations (0.5) inspired this definition.

According to Lemma 1.12, the structure of an algebroid relative to p: M — N
can also be encoded by a relative bracket and anchor

[,]: A’T(A) = T(B), p: B— pTN
subject to the Leibniz rule:

lao, fa1] = p* flao, a1] + ‘Cp(p*ao)(f)p*al'

The corresponding derivation is determined through the Koszul formula (see the
proof of Lemma 1.12).

Example 2.2. In the case that M = N and p = id, we recover a notion of an
almost Lie algebroid: a vector bundle A — N together with an anchor and a
bracket subject to the Leibniz rule, or, dually, with a degree 1 derivation D4 on
Q°*(A). Such an almost Lie algebroid is a Lie algebroid when D% = 0. In particular,
we can consider any (almost) Lie algebroid as an algebroid relative to the identity.
A special case is the tangent bundle (T'P,d) — P with the de Rham differential d.

At this point, when dealing with an arbitrary relative algebroid, it is not clear to
make sense of “D? = 0”. We will soon see how to handle this issue. This issue also
influences our terminology: the objects in Definition 2.1 should properly be called
almost relative Lie algebroid. This name is too long and so we refer to them simply
as relative algebroids, removing “Lie” from its name rather than adding “almost”.
Later, after we make sense of D? = 0, we will be able to define relative Lie algebroids.

Example 2.3 (Relative algebroids in coordinates). Let (U, (z*,42)) be a coordinate
system for M and (V,z*) a coordinate system for N such that

p(at,y?) = ot

Also, fix {e;} a frame for Aly, and let {6’} be the corresponding dual coframe.
Then the derivation D is determined by

i 1. noo,0\ Q7 k
Do ij(x,y)e N 6", (2.1)
Dt = Fl'(x#, y?) 0"

for functions cék, F!" € C°°(M). Dually, the anchor and bracket are given by
lei, e;] = cfjek,
p(ez) - -Fiﬂﬁx“-

The equations above look striking similar to Bryant’s equations (0.5) except that
one has D instead of d and the ¢}, also depends on the “free derivatives” y°.
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A true globalization of Bryant’s equations requires a globalization of the projec-
tion. The language introduced in the previous section for derivations relative to
foliations precisely captures this idea. This is not a significant generalization; as we
will see in Section 3, whenever the first prolongation of a relative algebroid exists,
it is always relative to a submersion.

Nevertheless, there are natural examples of relative algebroids that are relative to
a foliations rather than a submersion. These include relative algebroids underlying
Pfaffian fibrations [11] and those obtained through restrictions (Proposition 4.12).

Definition 2.4. An algebroid relative to a foliation (M, F) is a flat foliated
vector bundle (M, F, B, V) together with a 1-derivation D relative to F:

D: QEB,V) — ngl,

We will write (B,V,D) to denote a relative algebroid over (M,F). If there is
ambiguity in what (M, F) could be, we write (B,V,D) — (M, F).

Example 2.5. Let (A, p,D) be an algebroid relative to a submersion p: M — N.
Then it can be viewed as an algebroid relative to the foliation F = ker(dp). Namely,
the vector bundle B = p*A carries a canonical flat F-connection V determined by
requiring

Vp*a =0, forallacTl(A),

and since Q¢ = p*Q)%, we can view D as a derivation relative to F.

BY
Conversel(y, aily algebroid relative to a foliation is locally an algebroid relative to
a submersion. It is globally an algebroid relative to a submersion precisely when F
is simple and V has no holonomy along F (see Corollary 1.17).
Suppose we choose foliation coordinates (U, (x#,y?)) on (M, F), so that plaques
of F correspond to {y? = ¢?}. Furthermore, let {e;} be a local frame of flat sections

of Bly, so the dual coframe {6} consists of local flat B-forms in QéB V)(U)' Then
the derivation D is still determined by the same equations (2.1). Also, we now see
that we can retrieve Bryant’s equations, i.e., have the cfj not depend on the free

variables, exactly when there is a local coframe (#) such that V(D#") = 0. We
will see later that this property is always satisfied for any prolongation of a relative
algebroid (Definition 3.1).

Using the notion of (p, p)-related derivations (see Definition 1.29, morphisms of
relative algebroids can be defined as follows:

Definition 2.6. A morphism (p,p): (Bi, Vi, D) — (By, Vg, D) of relative alge-
broids consists of

(i) a map of foliations p: (My, F1) — (Ma, Fs),

(ii) a map of flat foliated vector bundles ¢: (B, V1) — (B2, V3) covering p,
such that Dy is (¢, p)-related to Da:

Diogp"=¢p" 0Dy, on Qszﬁz)'

2.2. Realizations. In this section, we will fix an algebroid (B, V,D) relative to a
foliation (M, F).

The tangent bundle of any manifold P is a Lie algebroid with derivation d, the
de Rham differential, so we will denote it by (T'P,d). A realization is an object that
“realizes” an algebroid as the tangent bundle of a manifold.
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Definition 2.7. A realization (P,r,0) of (B,V,D) is a morphism of relative al-
gebroids from (T'P,d) to (B, V,D) that is fiberwise an isomorphism.

Explicitly, a realization consists of a manifold P together with a bundle map
(0,r): TP — B that is fiberwise an isomorphism and satisfies
dof*=6"0oD, on QZB,?)'
Remark 2.8. In [16, 17], realizations of Lie algebroids are defined through Maurer-
Cartan forms. In our situation, the bundle map (6,r) can be reinterpreted as a
one-form 6 € Q'(P;r*B) that is fiberwise an isomorphism. Choosing any extension
V of V on B, Lemma 1.26 gives a splitting under which the relative derivation
dg* — 6*D € F(T’*D(lB ﬁ)) decomposes into two components: (MCy,IIodr — po 6),
where IT: TM — v(F) is the projection and the Maurer-Cartan form is given by

MCy :=dVe + %[9, O)v.

So we conclude that in terms of anchors and brackets a bundle map (6,7): TP — B
is a realization of (B, V, D) if and only if it is fiberwise an isomorphism and satisfies

dve = _%[G,H]V, (2 2)
[Modr=pod. '

We conclude that:

(i) If 6 is anchored (i.e. Ilodr = po#), then the Maurer-Cartan form is indepen-
dent of V.

(i) If 0 is anchored, it is a realization if and only if its Maurer-Cartan form van-
ishes.

In local coordinates (see Examples 2.3 and 2.5), writing § = (6"): TP — R" and
r = (a",b?): P — R* x R", equations (2.2) become

dot = —%cﬁ-k(a,b> 67 N GF,
da* = F!'(a,b) 0",

and these are exactly Bryant’s equations (0.5) (see Example 2.5 for why the cék

may depend on the free derivatives b?).

2.3. Tableaux. Let (B, V,D) be an algebroid relative to a foliation (M, F). Recall
from Lemma 1.20 that there is a canonical flat F-connection on the vector bundle

D(lBﬁ) also denoted by V.

Definition 2.9. The tableau map of (B,V,D) is the bundle map

7: F = D! X — VD

(B,V)’

The relative algebroid is called standard or non-degenerate when its tableau
map 7 is fiberwise injective.

The tableau map measures the dependence of the relative algebroid structure on
the directions of F.
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Composing a tableau map with the symbol map

T 1
F D(Bﬁ)

o(r) l"

Hom(B, v(F))

we see that our tableau map covers a classical tableau map
o(t): F — Hom(B,v(F)), X~ Vxp

where p = o(D) is the anchor of the relative algebroid. We call o(7) the symbol
tableau of the relative algebroid. Explicitly, it is given by
—Bott

o(T)(X)(b) =V pb) —p(Vxb), for X € Fandbel(B). (2.3)
On the other hand, using Lemma 1.12, one finds that the bracket [-,-];(x) asso-
ciated to derivation 7(X) = VxD is given by
[bl, bg]T(X) = VX([bl, bg]), for bl, by € F(B,ﬁ)? (24)
where [, ] is the bracket associated to D.
2.4. Torsion. We will now discuss the first order obstructions to the existence of
realizations of a relative algebroid. In the following discussion we fix a relative

algebroid (B,V,D) over (M, F), and we denote by [-,-] and p the corresponding
bracket and anchor. Recall from Lemma 1.27 that there is an exact sequence

0 — Hom(B, F) pL = Dl

—0.

A pointwise lift or completion of D at m € M is an element D,, € (D}),, such

that II(D,,,) = D,,. We let
L:={D,, € Dy | I(D,,) = D,,, for some m € M } = IT"'(D)

be the space of completions of D, with projection p;: L — M, D,, — m. It is an
affine bundle modeled on Hom(B, F). The foliation F pulls back to a foliation pjF
on L, and the bundle pi B inherits a flat pjF-connection piV from (B, V).

Remark 2.10. It follows from Lemma 1.27 that a pointwise lift D,, of D is com-
pletely determined by a pointwise lift p,,: B,, — T,,M of the symbol p. In terms
of the bracket [,-] : I' 5 X I' (55 — I'(B), this means that such a lift determines
a unique extension to a bracket [-,-|;,. : ['(B) x I'(B) = B,,, defined on all sections
by requiring

[b1, fb2]5,, = f(m)[b1, ba)(m) + (p(br), dm f)b2(m),
for any b1,b2 € I' 5 ) and f € C(M).

~ For the next definition we recall that, according to Example 1.8, an element
D,, € L can be regarded as a derivation D: Q*(B) — A*T' B .
Definition 2.11. The torsion of (B,V,D) is the 2-derivation T' € I'(D? )

(PiB.piV)
relative to pjF defined by
T(pfa)‘ﬁm :=D,, (Da), for pja € szIBﬁ) = pTQZBi)‘

The symbol ¢(T) is called the symbol torsion of D.
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It follows from Lemma 1.31 that the torsion 7" has associated 2-bracket given by

(161, P1b2, P13, = [[b1,ba], b3, + [[b2, 3], b1, + [[D3, 1], ba]5,, (2.5)
for b1, b2, b3 € I' g5, where py, and [-,:]5, denote the symbol and the bracket of
D,,, as in Remark 2.10. The symbol torsion, in turn, is given by

o(T)(p™b1,p"b2)lp,, (f) = Pm(b1) (p(b2)(f)) — Pm(b2) (p(b1)(f)) — pim([b1, b2])(f),

(2.6)
for each b1,by € I' g5y and all f € Cp.

Let (P,r,0) be a realization of (B, V,D). For each p € P, it determines the lift
of p at r(p) given by

ﬁr(p) = de @) Hp: Br(p) — Tr(p)M. (27)
Therefore, it determines also a lift ﬁT(p) of D.

Proposition 2.12 (Existence of Realizations: first order necessary condition). Let
(P,r,0) be a realization of (B,V,D). Then, for each p € P we have

T~ =0.

Dy (p)

Proof. By definition, d o 8* = 6* o D on Q , so the derivation
(0;) o (do ™) ],: Q°(B) — A'“T;P A

is a lift of D at r(p). Since its symbol is (2.7), it must coincide with D). The
proposition now follows from d? = 0. U

Recall that any two pointwise lifts of D,,, differ by an element £ € Hom(B,,, F.,),
where ¢ acts as a derivation as described in the Lemma 1.27.

Proposition 2.13. Let D,, be a pointwise lift of D at m and & € Hom (B, Fr).
Then

Tl e = Tlp, =0:& Qg = DI,

Proof. Note that Vx(Da) = (VxD)a = 7(X)a for a € Q°

(BV)
we find that for g € Q(B ) We have

(T = TP ) (br,b2,b5) = HE) D) (b, by, bs)

Ve (DB) (b, bs) + c.p.
7(&(b1)) B (b2, b3) + c.p.

= (0:8) (8)(b1, b2, b3).

By Lemma 1.27,

Similarly, for f € CPs,, we find

as’

(T pse = Tl ) (brib2) = Ve (DF)(b2) = Ve (D) (b1)

= (0:8) (f)(b1, bo),
which completes the proof. U

This justifies the following definition.
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Definition 2.14. The intrinsic torsion of a relative algebroid (B,V,D) is the
section © € T'(H~12(7)) defined by

@m = [T‘DmL
for any f)m €L,

Corollary 2.15. If a relative algebroid (B,V,D) admits a realization through m
then ©,, = 0.

2.5. Curvature. Suppose we are given a section D € I'(L). In this case, D is a
completion of the derivation D which is an actual 1-derivation on B, so D? defines
a 2-derivation on B. Recalling again from Lemma 1.27 that there is a short exact
sequence

II

2
D2y —0.

0 — Hom(A*B, F) D%
We conclude that:
Proposition 2.16. Given a section D € I'(L), the torsion of D along D is
T|5 = TI(D?).

If T vanishes identically on the image of D, we call D a torsionless lift of D.
In that case, according to the previous short exact sequence, the derivation D? is a
section of Hom(A%B, F).

Definition 2.17. Let D € I'(M ™) be a torsionless lift of D. The curvature of D
is the section

kg = D? € D(Hom(A?B, F)) C T(D%).

Remark 2.18. The curvature, as a 2-derivation, is uniquely determined by its
symbol. By the discussion proceeding Lemma 1.31, if p and [+, ] are the anchor
and bracket associated to D, then the curvature is

K (b1, b2) = [p(br), p(ba)] — p([b1, ba]p),

for by, by € I'(B). Note that the curvature depends pointwise on the first jet of the
section D and that for any local sections by,by € I'g and f € CT2. one has

bas
kp (b1, b2)(f) = 0.

Moreover, the fact that D is a torsionless lift of D implies that for any local flat
sections by, by, bg € F( Bv) one also has

[[b1, b2]p, bs]p + [[b2, b3l bilp + [[bs, bi]p, ol = 0. (2.8)
Lemma 2.19. The curvature kg is closed in the Spencer complex of T:
(57-/1]3 = 0.

Proof. Since the curvature is uniquely determined by it’s symbol, it is enough to
show that the Spencer differential of the symbol tableau vanishes (Section 2.3).
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Since the result is a C°°(M)-linear, it is enough to show that it vanishes on parallel
sections. For by, by, b3 € I' 5 5 we find, combining (1.9) and (2.3),

—Bott

So(r)0 (Kp) (b1, b2,b3) = V., 4,)p(b3) + ¢.p.

= I ([rp(br, b2), p(bs)]) + c.p.
IL([p ([b1, ba]p) » p(b3)]) + c.p.
I (kg ([b1, bo]p, bs)) — ILo p([[b1, bo]p, bs]p) + c-p-
p([[b1; bo]p, bslpy + (b2, bs]p, balp + [[bs, balp, ba]p) = O
where IT: TM — v(F) is the projection and the last identity follows from (2.8). O

Definition 2.20. The intrinsic curvature of the relative algebroid (B,V,D) is
the section Q € ' (p; H*?(7)) defined along a torsionless lift DT'(M ™)) as

Q’f) = [kp)-

Remark 2.21. The intrinsic curvature Q depends affinely on the values of D in
M and not on its first derivatives, in contrast to Kp, which depends on the first

jet of D.
3. PROLONGATION AND INTEGRABILITY

We shall now attempt to complete a relative algebroid to a true Lie algebroid.

3.1. Prolongations. Let (B, V,D) be an algebroid relative to a foliation F on M.
There is no direct way to make sense of “D? = 07, because D is only defined on
flat forms in Q° To remedy this issue we consider extensions of D to Q2% as in

(BV)
Section 1.5.
Definition 3.1. A prolongation of (B, V,D) is an algebroid (B, p;, D;) relative
to a submersion p: M; — M satisfying
(i) (Extension) Dia = (p1)*Da for a € QEBV)’ and
(i) (Completion) Dy oD = 0.
In this context, we write B; := pjB for the pullback bundle.

If (A, p, D) is an algebroid relative to a submersion p: M — N, we like to graph-
ically depict a prolongation as

By B A

~N_ - x\_//
N
M,y o M - N.

Remark 3.2. Note that for a relative algebroid the anchor and the bracket do not
satisfy integrability conditions. For a prolongation, condition (ii) imposes a set of
integrability conditions. By Lemma 1.31, in terms of the brackets of D and Dy, this
condition amounts to the Jacobi type identity

b1, [b2, bs]]1 + [b2, [b3, b]]1 + [bs, [b1, ba]]1 = O,

together with the fact that the anchor almost preserve brackets:

p1(p*[b1,b2]) (f) = p1(p*b1) (po(b2)(f)) — p1(p*b2) (po(b1)(f)),
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for any sections by, by, by € NP and f € CFs..

Prolongations may or may not exist, and its existence is contingent on vanishing
of the intrinsic torsion. Thus, the space of torsionless lifts

pr: MY — M, where M) = {Dm € L: T{D =0},

plays a special role. Actually, if this space is smooth then it yields a canonical
prolongation!

Proposition 3.3. Let (B, V,D) be an algebroid relative to a foliation (M, F) and
assume MY has a smooth structure such that p;: MY — M is a submersion.
Then the relative algebroid (B,p™), DW), where DY) is defined by

(DWa)|y :=Dpa, fora€Qy andD,, € MV,
is a prolongation of (B,V,D).

Remark 3.4. We will see later, in in Example 4.6, that the prolongation M) is
universal: any other prolongation must factor through M.

Proof. Since p; is a submersion, one checks immediately that for any o € Q%,
DWq is a smooth form. The derivation property then follows from the fact that
each f)m e MW is a derivation relative to the inclusion. From the definition of D™
it follows that

DWa = (p;)*Da, for a € QF

(B,V)’
Finally, since every D € MW is a torsionless lift of D, it follows that D™ o D’D =
Ty = 0. Hence, (B,p",DW) is a prolongation of (B, V,D). d

Example 3.5 (1st prolongation in coordinates). Let us assume that we have fixed
local coordinates (U, (z*,y¢)) and a frame {e;} with dual coframe {#'}, as in Ex-
amples 2.3 and 2.5. The the derivation D is determined by

i 1. j k
DY i, y) 0 A O, 51)
Dt = Ff'(z,y) ¢,

for some functions ¢}, F}* € C°°(M). The completions of the anchor take the form
,5(61) = F;»'u(ﬂf, y)&pu + ufaye,
where ug should be thought of as coordinates on the fibers of L — M. The corre-
sponding completion of the derivation D is determined by Dy¢ = uf6". .
The first prolongation space M) consists of points (x*,y?, u5) for which DoD =
0. This yields a system of equations
DDz* =0,  DD¢' =0.

The first set of equations corresponds to the vanishing of the symbol torsion asso-
ciated with the extension — see (2.6):

plei)(ple;) (@) — ple;)(ple) (") — p(les, ¢5])(2") = 0,
while the second set of equations amounts to the vanishing of the torsion on the
frame {e;} — see (2.5):

[[e1, ea], 63]ﬁm + [[e2, €3], 61]ﬁm + [[es, ed], 62]ﬁm =0.
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Together they express the vanishing of the total torsion, and they give rise to the
system of equations

OF* oOF" oOF" OF*

v 0 J ,,0 v J v 7 k mu
ut — us = K — F" —c' . F
oye 7 oye ! b Oxv T Oxv ko

oc oct ct
Jk o kl. o lj o __ i m i m i m
Dy u; + e u; + _8yé’ Uy, = CpyiChy + ConkClj + CriCik
J Ot k9w ! w
ox ox ox

Assuming that M) is smooth, these equations will determine a subset of the vari-
ables u$ as functions of a#, y¢ and the remaining variables u?, call them v?. Hence,
we have a set of local coordinates (z*,%2,v?) for M™®) and the derivation D) is
then defined by (3.1) together with

DWy? = uf (2", y?,v%) ',

In what follows, given a relative algebroid it will be convenient to identify the
tableau of its 1st prolongation with the 1st prolongation of its tableau. The precise
identification is as follows.

Lemma 3.6. Let (B,V,D) be a relative algebroid. The tableau of its first prolonga-
tion is canonically isomorphic to pit™" C pi Hom(B,F) (as a tableau), where 7
is the first prolongation of the tableau T of (B,V,D).

Proof. Notice that we have the following:

(a) The 1st prolongation (B, p;, DY) has a fiberwise injective tableau map

kerdp, — piDy, X — VxDW:
(b) The 1st prolongation of 7 is the classical tableau

W = ker(6: Hom(B, F) — D(QBﬁ));

Now, the bundle p;: L — M is an affine bundle modeled on Hom(B, F), and by

Proposition 2.13, the restriction py: M® — M is an affine bundle modeled on 7(V.
It follows that we have an isomorphism of tableaux

ker dp; ~ p}‘T(l). O

3.2. Integrability. We now consider the problem of existence of prolongations and
integrability.
Definition 3.7. Given a relative algebroid (B, V,D):

e its first prolongation is the relative algebroid (B, p;, D)) given by Propo-
sition 3.3, provided it exists;
e its k-th prolongation is defined iteratively through

(B*Y, py,, DW) = (B*~2), p_y, DF=D)D),
provided it exists.

The relative algebroid (B, V, D) is called k-integrable if all the prolongations up
to and including k exist, and formally integrable if it is k-integrable for all £ € N.
If M® = M®+D for some k, then we say that the relative algebroid is of finite
type, otherwise we say that it is of infinite type.
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Our next result shows that the curvature is precisely the second order obstruction
to integrability of a relative algebroid. In order to state it, note that — see also
Example 1.36:

(a) If we view 7} as a classical tableau, then the cohomology group H~%?(7() is
isomorphic to Hom(A?B, F)/ im §;

(b) If we view 7() as a tableau of derivations, then the cohomology group H—12(7())
is isomorphic to D%/im§. This is Where the torsion class of the first prolonga-
tion lives.

(c) The curvature class Q of of (B,V,D) lives in H*?(7) = ker §/im d.

By Lemma 1.27, we have an inclusion
ker § C Hom(A?B, F) —— D%

which sends im § isomorphically onto im d, and hence induces an inclusion in Spencer
cohomology

H? (1) —— H2(rV) . (3.2)
We can state the result about 2nd order obstructions as follows.

Theorem 3.8 (Fundamental Theorem of Prolongation). Let (B,V,D) be a I-
integrable relative algebroid. Under the inclusion map (3.2) the torsion class of
the first prolongation coincides with the curvature class of (B,V,D).

Remark 3.9. The extension problem for relative algebroids asks: given a relative
algebroid (B, V, D), is there an extension D of D to Q3% such that D?> = 0? In other
words, can one complete the relative algebroid to a Lie algebroid? The curvature
serves as an obstruction to this extension problem.

On the other hand, we will see later (cf. Proposition 3.19) that realizations of
a relative algebroid are in a 1:1 correspondence with realizations of its first pro-
longation. Thus, by Proposition 2.12, the torsion of the first prolongation is an
obstruction to the existence of realizations.

Therefore, the Fundamental Theorem of Prolongation implies that, at the formal
level, the extension problem is equivalent to the realization problem.

Proof of Theorem 3.8. The statement depends only pointwise on elements in M.
So, in a neighborhood of a point in M, we can assume that we have a flat Ehres-
mann connection, which we view as bundle map h: piTM — TMWY satisfying

dp(h(Dy,,v)) = v, for all v € T, M.

The connection h induces a splitting of the map DB<1) — Dl* >~ piDL compatible
with the symbol exact sequences

0 — p} Hom(A?B, B) — piDp — p} Hom(B, TM) —— 0

| B B

0— Hom(/\2B<1>, BW) —— DL, —— Hom(BM, TM®M) —— 0.

For a point in MM, let o: M — M@ be the unique local flat section through that
point, so that

h(Dy, v) = dmo(v). (3.3)
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We denote by D, the derivation of (2% determined by o, so
Dyl = a(m).

(it is convenient to keep the distinction between o as a section and o as a derivation).
The theorem will follow from the identity:

o* o (h,DW o DW) = D2, (3.4)

Note that h,D® is a derivation in D119<1> that extends DM, so h, DM o DM is a
2-derivation in D;{ =~ piD% (see Section 1.5). Precomposing with o* is the same as
pulling back this 2-derivation to o*piD% = D%, so the equation makes sense.

Assume (3.4) holds. Passing to Spencer cohomology, the left hand side of this
equation gives

[0* o (h,DW o DW)] = W,

i.e., the torsion class of M. On the other hand, since D, is torsionless, the right
hand side of (3.4) gives the curvature class

D3] =€,

so the theorem follows.
It remains to prove that equation (3.4) holds. For that, we only need to observe
that both sides act in the same way on Q%B o)’ and that both derivations have the

same symbol precisely because h is flat, i.e, because of (3.3). U

For PDEs, Goldschmidt formulated a criterion for when a PDE is formally inte-
grable ([20, Thm 8.1]). The following result is an analogue (or rather, extension) of
that result for relative algebroids.

Theorem 3.10 (Goldschmidt’s formal integrability criterion). Let (B,V,D) be a
relative algebroid. Suppose that

(i) (B,V,D) is 1-integrable,

(ii) H*?(1) =0 for all k > 0,
then (B, V,D) is formally integrable.

For the proof we need the following two lemmas.

Lemma 3.11. Let (B,V,D) be a relative algebroid with tableau map 7. Suppose
that py: MW — M is surjective and that TV — M has constant rank. Then
(B,V,D) is 1-integrable.

Proof. Follows from Proposition 3.5 in [20]. O

Lemma 3.12. Let 7 be a tableau bundle such that 7V has constant rank and
H*2(7) =0 for all k > 0. Then 7™ has constant rank for all k > 0.

Proof. The proof of Lemma 1.5.6 in [32] holds in this setting. O

Proof of Theorem 5.10. We use induction to show that the k-th prolongation of
(B,V,D) exists. By assumption, the 1st prolongation exists. So assume that k& > 1
and that we already know that the k-th prolongation exists. We claim that

(a) 7+ = (78)() has constant rank, and

(b) pe: MEFD = (ME)D — M®) is surjective.
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Then Lemma 3.11 shows that the k-th prolongation is 1-integrable, so we are done.
Item (a) follows immediately from Lemma 3.12 and the assumptions in the state-
ment. To prove item (b), note that by Theorem 3.8, under the map

H0,2<7_(k—1)> SN H_I’Q(T(k)),
the torsion class of the k-th prolongation takes values in H®2 (7(*=1). But,
H0,2(T(k71)) ~ ]_]Ic,2(7_)7

which vanishes under our assumptions. The vanishing of this class implies that the
projection py is surjective. U

Corollary 3.13. If (B,V,D) has an involutive tableau T and vanishing torsion
class, then it is formally integrable.

Definition 3.14. A relative Lie algebroid is a formally integrable almost relative
algebroid.

The appearance of the term “Lie” in the terminology is motivated by the full
prolongation tower of a formally integrable relative algebroid:

(B, D)) ;. —— Bk — =1 . B ——~B

T T

M MW ) s D)

Pk P1

The derivation D(>), defined on profinite sections of B(>) — M) (i.e., on those
that locally factor through some M ®*)) does square to zero:

(D) =,

so (B(*) D)) is a “profinite Lie algebroid of finite rank”. We leave a deeper study
of these objects for future work (see also Section 7 for further discussion).

3.3. Some examples. In this section, we discuss several simple examples that
illustrate the various issues that can arise with prolongations of relative algebroids.
We provide examples of relative algebroids that: (i) are of infinite type, (ii) are of
finite type, (iii) do not admit a prolongation, and (iv) have a first prolongation but
not a second prolongation.

While such examples already exist in the context of PDEs, the ones presented
here are independent of PDE theory. These examples should also help the reader
develop intuition for the general framework.

Example 3.15 (Relative vector fields and control systems). If a relative algebroid
is 1-integrable and has an involutive tableau with non-zero Cartan characters, it is
always of infinite type. Such examples, with the smallest rank, arise from relative
vector fields.
A vector field relative to a submersion p: M — N is asection X € I'(p*T'N).
It gives rise to a relative algebroid
R——
~ _ -
| o
g

z2<—I=
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where the derivation is given by
Dx: C%®(N) = Q'(R), Dx(f)m = Xn(f)dt,

where dt is a basis of R*. Conversely, any relative algebroid with vector bundle
R gives rise to a relative vector field. In particular, the prolongation of a relative
vector field is again a relative vector field.

For a relative vector field X, the tableau map of the corresponding algebroid is

7=VX: kerdp — Hom(R,p*TN) = p*TN,

d
T(W)(A) i = A ETRASI0)

t=0

where 7(t) is a curve in a fiber of p with 4(0) = v. The Spencer differential
6,: Hom(R,kerdp) — Hom(A?R,p*T'N) vanishes identically, and therefore the
tableau is involutive, with Cartan character

51 = rank(kerdp) = dim M — dim N.

A lift of Dx to R — M is a vector field X on M such that dp(X) = X. The
corresponding derivation Dy always squares to zero, so the relative algebroid has
vanishing torsion and curvature, and is therefore formally integrable.

A local realization can be described explicitly as a curve v™: I — M such that
AN := p o 4™ satisfies the ODE

AN () = X (3.5)

In local coordinates, if (z*,4?) are submersion coordinates on M, then the vector
field looks like

0
X = X'z, y)—
(@) 50
so the ODE (3.5) takes the form

(1) = X' (x(t), y(1)). (3.6)

This shows that locally, realizations (integral curves) are completely determined by
the choice of the dim M —dim N family of functions y?(¢) and the choice of an initial
point (xg, o). Equation (3.6) is a control system (with unspecified observables),
where the choice of the functions y¢() is the control input. In particular, according
to the results in [22], when the vector field is real analytic, then N is partitioned
into a singular foliation with the property that for each point ng € N, the integral
curves of X through ng saturate a neighborhood of ny inside the leaf through ny.

As a very particular case, consider p: R — % with the zero relative vector field.
A realization of the corresponding relative algebroid is just an R-valued function
x!(t) defined on an interval. The prolongation tower consists of a sequence of vector
fields X}, relative to the projection pj: R¥ — RF-1

(B, DXoo) Lo K E K K
~N_ _ - N _ -
j l Dx, l L Dxq, l
R ... R* RF-1 R *
Pk p
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Denoting by (z!,...,2") the coordinates on R¥, the relative vector fields X, are
given by
k 00
0 . 0
X, = .I'Z+1—, Xoo = iL'ZJrl—..
g ; oxt’ ; ox?

The profinite vector field X, appears later in Section 6.

Example 3.16 (Finite-type relative algebroid). Consider the submersion p: R? —
R2, (z,y, 2) — (z,y) and the relative algebroid (R?, p, D) determined by

DO = 0 A 62,
D6? = 0,

Dz = 26%,

Dy = 262,

To compute the prolongation, we find an extension D of D satisfying
= D(Dz) =Dz A 0" + 20" A H?
= D(Dy) = Dz A 62
Writing Dz = af' + 562, we see that we must have
Dz = 262,

This defines a prolongation where MM = M = R3 so D is a derivation relative
to the identity. At this point, we only know that D o D = 0, but one checks
casily that D2 = 0. Hence, the first prolongation is actually a Lie algebroid and so
M® ~ MO for all k> 1. The resulting algebroid (R2, D) — R? is isomorphic to
an action algebroid g x R?, where g is the non-abelian two-dimensional Lie algebra.

Example 3.17 (1-Integrable relative algebroid that is not 2-integrable). Let us
modify the derivation in the previous example by setting

DO = 6! A 62,
D#? =0,

Dz = 26!,

Dy = 26% — 0.

Proceeding as before, the first prolongation D is now given by
Dz = 0! + 26°.
However, in this case D2z = 20" A 62 = 0, so the second prolongation does not exist.

Example 3.18 (Torsion from tableau of derivations). In the previous example,
the equations determining the prolongation and obstructions to integrability arose
solely from the symbol tableau of the relative algebroid. We now illustrate how
the full tableau of derivations can give rise to torsion. Of course, this can only
happen when the rank is at least three, otherwise the symbol torsion completely
determines the torsion. One way to achieve this is to consider relative algebroids
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with zero anchor. So, consider the algebroid relative to (R* p, D), with p: R — *
and D determined by

DO = 20" A 62,
DO? = 262 A 63, (3.7)
DO = 26° A 01,

where z in the coordinate on R. A lift D Qf D is determined by Dz = 2,0 4+ 200% +
x30° and the torsion is the 2-derivation (D o D) relative to R3 x R — x defined by

Do D' = (z54 2)0" AO2 A 63,

Do D#? = (z1 + 2)0" AN 6? A 63,

Do D@ = (zy + x)0 N> N O3
We find that the first prolongation space is

MY =z =2y = 23 = —z},
so the first prolongation is given by

DWy = —2(0" + 62 + 6%).
Note that the curvature is only zero at z = 0:
(DW)* &z = —2(0" A 6% + 6% A 6P+ 6° N OY).

Hence, to obtain an actual Lie algebroid one has to restrict to the space x = 0, in
which case the relative algebroid is just the abelian Lie algebra R3.

3.4. Realizations and prolongations. Prolongations arose as a tool for con-
structing and computing obstructions to the existence of realizations. The realiza-
tions of the prolongations are related to realizations of the original relative algebroid
in the following manner.

Proposition 3.19. Let (B, V,D) be a relative algebroid. Then:

(1) If (By,p1,D1) is a prolongation, then any realization of (By,p1,D1) induces a
realization of (B,V,D).

(ii) If (B,V,D) is I-integrable, then realizations of the canonical prolongation
(BW p;,DW)Y are in 1-1 correspondence with realizations of (B,V,D).

Proof. To prove (i), let (By, p1, D) be a prolongation and let (P, ry, 01)_a realization
of (By,p1,D1). The fact that (P, pory, (p1)«061) is a realization of (B, V, D) follows
by restricting to QiB,v) the identity valid on Qk:

do (01)* = (91)* o Dl.

To prove (ii), let (P,r,6) be a realization of (B, V,D). By Proposition 2.12, we
can define the map
p) )

r. P MW, W) = Dgp = (Hp_l)* o (d@*
Clearly, p; o 7™ = r, and since B(Y) = p* B there is a natural bundle map
O ry. TP — BW | with (p;), 0 8 = 6.
Using that 6 is a realization, we find that
do (0V) opi=do" =0 oD = ()" o DYV op}, on QF, <.
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D and the tautological nature of D™ it also follows that

do (rWy) (f) = (6W) o D(f), for f € C=(M),

so (r, M) is a realization of B, The construction in (i) when applied to the 1st
prolongation is an inverse to this construction, so we have a 1:1 correspondence. [J

Theorem 3.20 (Cartan-Bryant [8, Thm. 3 and Thm. 4]). Let (B,V,F) be an
analytic relative Lie algebroid. Then, for each k and each x € M®) | there exists a
realization through x.

From our formula for r(

Proof. Since, by assumption, (B, V, F) is formally integrable, induction and Propo-
sition 3.19 shows that it is enough to prove the result for £ = 1. Moreover, since
every tableau is involutive after finitely many prolongations, we can assume that
the tableau 7 is involutive. But then, the realization problem for B in local an-
alytic coordinates (see Remark 2.8 and Example 3.5) satisfies the assumptions of
[8, Thm. 3]). The latter result shows that there exists a realization through every
point in M, U

3.5. Naturality. Let (¢, p): (Bl,vl) — (B2,v2) be a morphism of flat foliated
vector bundles covering a map p: (M, F1) — (Ma, F2), such that ¢ is a fiberwise
isomorphism. As we saw in Section 1.5, ¢ induces a bundle map

. k k
SO* . D(Bl,ﬁl) — D(BQ7§2)

More generally, in this situation, there is a bundle map
: ! k l k
p,: Hom </\ Bl,D(Blﬁl)> — Hom (/\ BQ,D(B2’§2)>

that intertwines the Spencer differentials: 0 o ¢, = @, 0. All constructions with
derivations that we discussed before behave naturally relative to these induced
maps.

Proposition 3.21. Let (¢,p): (Bl,vl, Dy) — (Bg,v27 Ds) be a morphism of rela-
tive algebroids, which is a fiberwise isomorphism. Then

(i) The tableau maps are (px, ps)-related: p,om = mop,. In particular, ¢ induces
a morphism in Spencer cohomology

Ox: Hk’l(ﬁ) — Hk’l(Tz),

that maps the torsion class of By to the one of By,

(i) If (P,r,0) is a realization of (Bl,vl, D,), then (P,por,¢p o) is a realization
of (Bs, V", Ds);

(111) If (Bl,vl,Dl) and (BQ,vQ,DQ) are k-integrable, then ¢ induces a morphism
of relative algebroids (o™, p*)): (Bik), (p1)k, ng)) — (B;k), (p2)k, Dék)) that is
fiberwise an isomorphism;

(iv) ]f(Bl,vl, D) and (BQ,WQ, Ds) are formally integrable, then ¢ induces a mor-
phism (), p(>)) (BY)O), D§°°)) — (Béoo), D;OO)) of profinite Lie algebroids.

Notice that if (B, p;,D;) is a prolongation of a relative algebroid (B, V, D), then

the torsion class of (B,p;,D;) is in the kernel of (p1).. Hence, the proposition
implies:
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Corollary 3.22. If a relative algebroid (B, V,D) admits a prolongation (B,p;,Dy),
then its torsion class must vanish.

Proof. First, we show that ¢, and p, intertwine the tableau maps. For that, notice
that if a € Q(Bl o then, for any X € F, we have

= =1
(VyDi)a = Vy(Dya).
Using this and the definition of the tableaux, we find for a € QZB V2):
2,

(pri(X))a = (. (ViD1)) o= (Vx (DlsO*Oz)>
= . (Vo' (D20)) = . (¢°9;, () (Da0)

=2
= V,.00(D20) = (V,, ) Da)(a) = ma(p(X))(a).

Since ¢, intertwines the Spencer differentials, it induces maps on the Spencer
complexes of 71 and 7, commuting with the differentials, and therefore ¢, descends
to the level of cohomology. To check that it relates the torsion classes, let Dy be a
pointwise lift of D; above x € M;. Its torsion is the 2-derivation T1|D1 = D; oD.

Because D; and Dy are p-related, the derivation gp*(ﬁl) is a pointwise lift of D,

above p(z) € M,. The 2-derivations Tl‘D and TZ‘DQ are also p,-related since
<T1}D ) %(DloD )(@) = ¢, 0Dy 0Dy 0 ¢ ()
=Dz 0 Dy(a) =175 (a

for any o € Q' ) Passing down to the Spencer cohomology item (i) follows.

Item (ii) follows by observing that, for o € Q' L5 one has

(po0) Doy = 0" p"Dycx = 0" Dlap a=d(pofd)a

In order to prove item (iii) it is enough to prove the case k = 1. By the previous
calculation, if Dy is a torsionless lift of Dy, then ¢,(D;) is also a torsionless lift
of Dy. So ¢, restricts to a map between the base spaces of the first prolongation
pW =, MY — M) satistying

(p2)10pM = (p2)10 0 =po ()1
This map and ¢ combine into a map between the pullbacks B( ) = = (p;)i B
oM = (p,pM): BYY — BYY.

Note that ¢ is again a fiberwise isomorphism and also a map of relative algebroids
because of the tautological nature of the derivations Dgl) and Dél). Indeed, we find

DIV (¢* ()], = Di(¢"a) = ¢* (¢.(D1)(a))
= (DY (@), 5)) = (V) (DY (@)

for any a € Q°_ _, , where we used that p™) = ¢,.
(B27V )

Finally, item (iv) follows from item (iii). d
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4. CONSTRUCTIONS

To better understand relative algebroids, we will now develop several important
constructions involving them.

4.1. The universal relative algebroid. Let A — N be any vector bundle, and
p1: DX — N its bundle of k-derivations. There is a tautological k-derivation
D relative to the projection p;: D% — N, which at each point D, € (D’j‘)w is the
derivation itself:

D(a)(D,) = Dya € AFHA% for a € QY(A).
Definition 4.1. The universal relative Lie algebroid of a vector bundle A — N

is the triple (A, p1, f))7 where p;: D} — N and D is the tautological 1-derivation.

The bundle over D} of the universal relative algebroid will be denoted B:= piA.
In order to justify the use of the term “universal”, let us introduce the following
notation.

Definition 4.2. Let (A, p, D) be an algebroid relative to a submersion p: M — N.
The classifying map cp of (A, p, D) is the composition

cp
/\
M~ p*D}y ——~ D} .

Proposition 4.3. Every relative algebroid (A, p,D) is canonically isomorphic to

the pullback of the universal relative Lie algebroid (A,p1,D) along its classifying
map.

Proof. Note that p; o cp = p, and that the pullback CBD coincides with D under
the canonical identification ¢;,piDY = p*DY. O

Example 4.4. When N = {x}, so A =V is a vector space, we have
Dy, = Hom(A*V, V) — x.

A relative algebroid (V,p,D), for p: M — {x}, is the same thing as a skew-
symmetric bilinear map [-,-]: V x V' — C*(M, V), viewed a bracket on V' relative
to p. This is determined by a map cp: M — Hom(A?V, V), cp(z) (v, w) = [v, w](z),
which is precisely the classifying map. This construction was already considered by
Bryant in relation to his Theorem 4 in [8].

Example 4.5. For almost Lie algebroids, the previous proposition says that any
such structure D on a fixed vector bundle p: A — N is obtained by pulling back
the tautological derivation D along a section cp: M — DY: ¢,D = D.

Example 4.6. The classifying map of the first prolongation of a 1-integrable
relative algebroid (B,V,D) is the inclusion M) < DL. In fact, given an al-
gebroid (B, p1,D1) relative to a submersion p;: My — M with classifying map
¢p,: My — D4, one has that:

(i) (B,p1,Dq) is an extension of (B,V,D) if and only if ¢p, takes values in the
space of pointwise lifts L C Dj;

(ii) (B,p1,Dy) is a prolongation of (B,V,D) if and only if the image of cp, is
contained in M®,
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In particular, among all prolongations of (B,V,D), the canonical prolongation is
the universal one.

Next, we will study properties of the universal relative Lie algebroid. We start
by justifying the use of the term “Lie”.

Proposition 4.7. The universal relative Lie algebroid of a vector bundle A — N
1s formally integrable.

Proof. The tableau of the universal algebroid is the identity map D} — DY, so it
is involutive by Proposition 1.48. The torsion class vanishes automatically because
H='2(DY) = 0 by Lemma 1.49. Then, by Corollary 3.13 of Goldschmidt’s Formal
Integrability Criterion, the universal algebroid is formally integrable. U

The realizations of the universal relative Lie algebroid have a nice geometric
interpretation. For that, given a manifold P and a vector bundle A — N, by an
A-coframe on P we mean a bundle map 64: TP — A covering a map ry: P — N
which is fiberwise an isomorphism. These objects have appeared in the literature
under the name “generalized coframes” in the context of Dirac spinors coupled to
Einstein’s equations — see [29].

Proposition 4.8. The realizations of the universal relative Lie algebroid of A — N
are in one-to-one correspondence with manifolds equipped with A-coframes.

Proof. In one direction, it is clear that a realization (6,r): TP — pjA of the univer-

v

sal relative Lie algebroid (A, p, D), gives rise to the A-frame 6,: TP — A covering
rN = p1 or given by

$ =pr,yob.
In the opposite direction, given an A-frame 64: TP — A covering a map ry: P —

N, we can define a bundle map (6,7): TP — p;A which is a fiberwise isomorphism
by

’f’(p) = DT‘]\](]D)?
(v, € T,P),
{Q(Up) = (Dyry(p), 0a(vp)), 8 ?
where D, (p) € (D})ry(p) 1S given by
Drypa = (0a)c 0 dyo 04(a), (o € Q'(A)).
This ensures that the condition
0*oD=dof"opt

holds, so (0, ) is a realization of (A, p, f))

These constructions are inverse to each other, so the proposition follows. Il

Recall that a relative algebroid (A, p, D) is called standard when its tableau map
7: kerdp — p*D}, is fiberwise injective.

Proposition 4.9. An algebroid (A,p,D) relative to a submersion p: M — N is
standard if and only if its classifying map cp: M — DY is an immersion.

Proof. Note that p = p; o cp. This means that the classifying map cp: M — D}
is an immersion if and only if its vertical derivative ch|ker . kerdp — kerdp; is

fiberwise injective. We claim that the tableau map 7: kerdp — p*D} is given by
7(Xm) = (m,dep(X)), (X, € kerd,,p), (4.1)
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so the result follows. To prove the above formula, just observe that we have, by
Proposition 4.3,

7(X)m = Vx,,D = Vx, (hD) = Vaep (x,)D = dep(X,). O

4.2. Restriction. Almost relative algebroids are so flexible that they can easily be
restricted to subspaces. From the point of view of Cartan’s realization problem,
imposing restrictions on a relative algebroid structure is equivalent to adding extra
conditions to the realization problem of the original relative algebroid. This will
be clear from examples at the end of this section. For now, let us be precise about
what we mean by “restriction”.

In this section we fix an ambient relative algebroid (B, V,D).

Definition 4.10. A map ¢: Q — M is invariant for (B, V, D) if the image of dq
contains the image of the anchor of D, i.e., if for every z € @,

O'(Dq(x)) - Hom(Bq(I), im(qu)/fq(x)) g HOHl(Bq(x), l/(./—"q(x))).

Remark 4.11. In the special case of an algebroid (A, p, D) relative to a submersion
p: M — N, the invariance condition on a map q: () — M says that

im pp) CimT,(pogq), foralzeq@.

If (A, D) is an almost Lie algebroid ¢ is an immersion, we recover the usual notion
of invariant submanifold for such an algebroid.

Proposition 4.12. Suppose that a map q: Q — M satisfies the following condi-
tions:

(a) q is invariant for D;

(b) (dyq) H(Fy)) has constant rank for all x € Q.

Then there exists a unique relative algebroid (¢*B,q*V, Dq) for which the map
Gx: ¢*B — B is a morphism of relative algebroids.

Remark 4.13. The morphism ¢,: (¢*B,¢*V,Dg) — (B,V,D) is a fiberwise an
isomorphism, so it follows from from Proposition 3.21 that:
(i) realizations of (¢* B, q*V,Dq) vield realizations of (B, V,D);
(ii) there is an induced morphism at level of the Spencer cohomologies of the
tableaux q,: H*!(1g) — H"!(7), which relates the torsion classes;
(iii) if both algebroids are k-integrable, there is an induced algebroid morphism
0.+ ((4"B)®, (p)s. D) = (B, py, DY)
(iv) if both algebroids are formally integrable, there is an induced algebroid mor-
phism ¢.: ((¢*B)>,Dg) — (B>, D).
Note also that if ¢: Q@ — M is transverse to F, then both conditions (a) and (b) in
the proposition are automatically satisfied.

Proof. The regularity condition (b) means that that the pullback foliation q'F ex-
ists. It follows that one has a flat foliated vector bundle (¢*B, ¢*V) over (Q, ¢'F),
as well as a map of foliated vector bundles

. == (g,pr): (¢*B,q°V) = (B, V).

Since this is a fiberwise isomorphism, as we saw in Section 1.5, it induces a bundle
map

— D!

st
qg.: D (BT

(¢*B,q*V)
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which covers gq.
It is easy to check that the short exact sequence in Lemma 1.25 is natural in g,.
This means that there is a commutative diagram of short exact sequences

0—— Hom(/\2q*B, q*B) — D(lq*B,q*V) I H0m<q*B7 V(q'F)) —0

qx 9 l 9x

0 —— ¢* Hom(A?B, B) — q*D(lBﬁ) —— ¢*Hom(B,v(F)) ——0
Both vertical arrows on the sides are injective, and therefore so is the the middle
vertical arrow. Since q: () — M is an invariant map, the section ¢*D is in the image
of q., so there is a unique relative derivation Dg on (Q, ¢'F, ¢* B, ¢*V) that satisfies
¢.(Dg) = ¢*D. This completes the proof. O

Definition 4.14. If ¢ is an injective immersion that satisfies the conditions of
Proposition 4.12, we call (¢*B, ¢*V, Dg) the restriction of (B, V,D) to Q.

Example 4.15. If (A, p, D) is a l-integrable relative algebroid, then its first prolon-

gation (B, p;, DM) is the restriction of the tautological relative algebroid (A4, py, ]5)
to M) < DY,

It should be noted that, in general, restriction does not preserve any kind of
integrability of the relative algebroid. From the point of view of the realization
problem, restriction amounts to add extra equations to the problem. So a problem
that originally had realizations may stop having them.

The vanishing locus of the anchor is always invariant.

Proposition 4.16. Let (B,V,D) be a relative algebroid and let Q C M be a sub-
manifold along which p vanishes. Then @Q is an invariant submanifold.

Proof. In this case, im p, = 0 for all x € @, so @ is clearly invariant. O

If (B> D(*)) is the prolongation tower of a relative algebroid (B, V,D), then
the kernel of the anchor at each point zq € ker p(* is a Lie algebra. This is the Lie
algebra of a group of symmetries of a realization whose image contains p, (o) € M.
So, in general, the larger the group of symmetries of a realization of a geometric
problem is, the larger the kernel of the anchor of the corresponding relative algebroid
must be.

Example 4.17 (Submanifolds where anchor has constant rank). In general, sub-
manifolds along which the rank of the anchor is constant are not invariant, unless
involutivity conditions are imposed.

For example, take the algebroid R* — R? (relative to the identity), with deriva-
tion defined by

D' = D§? = 0,
Dz = —yb!,
Dy = 62

The corresponding anchor satisfies p(e;) = —y0,, p(e2) = 0,. Therefore, the sub-
manifold ) = {rankp = 1} = {y = 0} is not invariant. In this example, there are
no realizations anywhere, as D%z = 6! A 62 £ 0.
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Understanding manifolds along which the anchor has constant rank requires
studying the full prolongation tower. This is more delicate and will be discussed in
future work.

Example 4.18 (Universal bundle of Lie algebras). The universal bundle of Lie
algebra structures on a vector space V' can be constructed, in an ad hoc manner, as
the bundle of Lie algebras — a Lie algebroid with zero anchor — V. — g where

g = {c € Hom(A*V,V) | Jac. = 0}

with Jac.(vq, va, v3) = ¢(vy, ¢(vg, v3)) +c.p. for vy, ve,v3 € V. The bracket on V. — g
is the tautological bracket: [v1,vs](c) = c(v1,v2). A realization of this algebroid
above a point ¢ € g is a local Lie group integrating the Lie algebra (V/ ¢).

This Lie algebroid arises by imposing maximal symmetry on the classifying alge-
broid for all V-coframes. Namely, let p;: D, = Hom(A?V, V) — * be the tautolog-
ical relative algebroid corresponding to a vector space V. Consider its prolongation
(ptV, pa, DY), relative to the projection py: (Di)M) — D}, where

(Dy)V = {¢. € p; Hom(V, Hom(A*V, V) | Jac, = 6&.},  pa(&) = c.

The anchor of this prolongation at &, € (Dj,)(!) vanishes if and only if & = 0.
The restriction of ps to this invariant subvariety gives a canonical identification
{p(l) = 0} = g. The restricted relative algebroid is precisely V — g, the universal
bundle of Lie algebra structures on V.

Realizations of the relative algebroid V' — g correspond to V-coframes with
maximal symmetry: these are just local Lie groups with their Maurer-Cartan forms!

Example 4.19 (Jacobi manifolds). Fixing a vector space V', Bryant in [8] defines
a Jacobi manifold as a submanifold M C D}, = Hom(A?V, V) such that

Jac, € §(Hom(V,T.M)), forall c€ M,

where §: Hom(V, D},) — D% is the Spencer differential. In our language, this is the
same as saying that the restriction of the tautological algebroid to M has vanishing
torsion class. Theorem 4 in [8] states that, when M is real analytic, if T.M C Dy, is
an involutive tableau of derivations, then there exists a realization of the restricted
algebroid through every point in M.

Example 4.20 (Riemannian metrics). As we recalled in the introductory section,
the orthonormal frame bundle of a Riemannian manifold has a canonical coframe
(0, w) with values in R™ & o(n) satisfying the Cartan’s structure equations (0.1).
This suggests that the realization problem for (locally orthonormal frame bundles
of) Riemannian metrics can be obtained by restricting D ) to derivations of
the form

n @U(H

{Déz—w/\e, (4.2)

Dw=RONO)—wAw

1

The space of such derivations is an affine subspace of Do

R € Hom(A’R", 0(n)).

The resulting restricted algebroid has a non-zero torsion class, and therefore the
algebroid needs to be restricted further to the subspace where the torsion class
vanishes. The torsion class can be computed by taking an extension D of D. Such

0) parametrized by
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extension is completely determined by DR, and to find this value one applies D to
(4.2):

0=D*=-DwAfl+wADI=RONOI) AO
0=DDw=DRA(OA0)+RDIAG) — RO ADI) —Dw Aw+w A Dw
—=DRA (A A0)

The torsion class can be identified with R(0 A6) A6, and its vanishing is precisely
the first (algebraic) Bianchi identity.

The vanishing of the curvature class, when imposing o(n)-invariance of the pro-
longation, gives rise to the second Bianchi identity. A precise formulation requires
the notion of a relative G-structure algebroid, which will be the subject of future
work (see Section 7).

4.3. Systatic foliation and reduction. Recall that a relative algebroid is stan-
dard when its tableau map 7 is fiberwise injective. As we saw in the previous
section, this happens precisely when the classifying map is an immersion. We will
now show that the directions in which the tableau map is zero — i.e., the directions
in which the classifying map is constant — are essentially “redundant” from the per-
spective of the realization problem. The notion of systastic space and inessential
invariants goes back to Cartan — a modern formulation and discussion can be found
in [16].

Again, in this section we fix a relative algebroid (B, V,D) over (M, F). We also
assume that the kernel of its tableau map 7: F — D(lBV) has constant rank.
Definition 4.21. The systatic foliation of (B, V,D) is the foliation

Fays i=kerm C F,

where 7 is the tableau map of (B, V,D).

1

Note that Fy is involutive because the F-connection V induced on D( BY) is

flat. Next, we present two useful characterizations of the systatic foliation.

Proposition 4.22. For a a relative algebroid (B,V,D) the systatic foliation is

given by

fsys = {X € f . vX[b17b2] = O, fOT all bl,bQ € F(B,ﬁ) },
where [-, -] denotes the bracket associated to D.
Proof. By (2.4), for each X € F, we have

VD=0 «— vx[bl, bo] = 0, for all by, by € 1—‘(B,V)' .

Proposition 4.23. The systatic foliation of an algebroid (A,p,D) relative to a
submersion coincides with the connected components of the fibers of the classifying
map cp.

Proof. By (4.1), we have ker 7 = ker dcp, so the result follows. O
Let us now discuss how to get rid of directions along the systatic foliation.

Definition 4.24. Let (B,V,D) be a relative algebroid. A foliation Fy C Fiys 18
called inessential if it is a simple foliation and V has no holonomy along its leaves.
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Notice that a inessential foliation of (B, V,D) is given by the fibers of a submer-
sion ¢: M — M,.q. The foliation F descends to a foliation F,.q of the leaf space
M..q characterized by

F = (dg) (Frea).

Moreover, by Corollary 1.17, there is a unique flat foliated bundle (Bieq, V) over
M,eq whose pullback under q: M — M,q is (B, V).

We use these notations in the statement of the following theorem showing that
the derivation D can also be reduced, preserving all its essential properties.

Theorem 4.25 (Reduction). Let (B,V,D) be a relative algebroid and let Fy C Fuys
be an inessential foliation with leaf space q: M — M,eq. Then:

(i) There erists a unique structure of a relative algebroid algebroid (Byed, V, Dyed)
such that the q.: B — Bieq 1S a morphism of relative algebroids;
(ii) The tableauz T and Treq of (B,V,D) and (Bied, V, Drea), have naturally iso-
morphic Spencer cohomologies;
(i4i) The relative algebroid (B,V,D) is k-integrable if and only if (Bred, V, Dred) i8
k-integrable;
(iv) There is a one-to-one correspondence

(realizations (P,7,0) of (Brea, V, Dred) |
together with a lift v of 7:
{realizations (P,r, Q)} 1:1 M
—

of (B,V,D) /9/¢q

P —7:> Mred

\

Moreover, if Fo = Fgys then the reduced algebroid (Bred,v, Died) is standard.

/

Remark 4.26. The reduced algebroid (Bred,v, Dieqa) can be seen as a quotient
of the relative algebroid (B,V,D) by the pseudogroup generated by the flows of
vector fields tangent to the inessential foliation Fy. A detailed discussion of such
pseudogroups of symmetries is left for future work (see Section 7.1).

Remark 4.27. The prolongation of the reduction can not be a (systatic) reduction
of the prolongation. The reason is that the prolongation is always standard (see
Lemma 3.6). Intuitively, the prolongation before reduction adds extra equations
that (locally) encode a map from a realization to the fibers of ¢, while this is lost in
the prolongation of the reduction. However, since the morphism ¢,: (B,V,D) —
(Bred; V, Dieq) is a fiberwise isomorphism, it follows from from Proposition 3.21 that,
assuming k-integrability, there is an induced morphism between the k-prolongations.

Proof. To prove item (i), note that the map of flat foliated vector bundles
g« - (B7 v) — (Brcd7 v)
is a fiberwise isomorphism. It follows from Section 1.5 that we have a bundle map
. Pl 1
¢ Pip9) = Py

We claim that there is a unique D,oq which is (g, g.)-related to D, so (i) holds.
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To prove this claim, note that we have a commutative diagram of short exact
sequences

0 Hom(A*1B, B) D?Bﬁ) Hom(A*B, v(F)) ——0
qx q*l q*l
0—— HOIH(/\kJrlBred, Bred) —— Dk = HOIH(/\kBred, V(]:red» —0

(Brecl:v)

Since the sides are fiberwise isomorphisms, so is the map in the middle. Now,
because ker(dg) C ker7, we have that VyD = 0 for any X € ker(dg), and since
the holonomy of V vanishes along the directions of ker(dg), we conclude that the

section D € F(D(lBV) is the pullback of a section D,eq € F(D(lBred’V)). This also

means that D and D,eq are (g, g.)-related, so the claim follows.

In order to prove item (ii), we look at the relationship between the tableau maps
of B and Bieq. According to Proposition 3.21, the map ¢, intertwines the tableau
maps and the Spencer differentials. For k£ > 1 this amounts to the commutativity
of the following diagram where the rows are short exact sequences:
qx

* k
Hom (A!B, Hom(S* B, ker(dq)) Hom(A!'B, 7(#)) q* Hom(A! Breg, Tr(e(i)

| | |

Hom (A" B, Hom(S*~! B, ker(dq)) — Hom(A1 B, 7¢-=1) 25 ¢* Hom (A Byeg, Tr(ekdfl))

while for £ = 0 one has the commutative diagram

Hom(A!B, ker(dq)) — Hom(A!B, F) —2> ¢* Hom(A! Breq, Frea)

| | o

I+1 9 s yl+1
0 Pee) TP (e )
Setting [ = 1, we conclude that 7(*) has constant rank if and only if Tr(fd) has

constant rank. Moreover, since the restriction T}ker( dq is the zero tableau map,

)
which is involutive, the map ¢, descends to an isomorphism in cohomology:

s : Hk’l(T) = q*Hk’l(Tred).

Now, using this isomorphism, item (iii) also follows: by Proposition 3.21 (i),
torsion classes of the k-th prolongations are ¢,-related; hence, if B and B,.q are
(k — 1)-integrable, then B is k-integrable if and only if B,.q is k-integrable.

Finally, to prove item (iv), observe that by Proposition 3.21 (ii) every realization
(P,r,0) of (B,V,D) induces a realization (P, 7, é) of (Bred, V, Dreq) With 7 = qor.
Conversely, given a a realization (P, 7, é) of (Bred, V, Drea) and a lift 7: P — M of

7, using the fact that g,: D(lsﬁ) — Q*D(lBredﬁ) is an isomorphism of vector bundles,

there is a unique vector bundle map (6,r): TP — B such that = g of. Moreover,
since ¢, is a morphism of relative algebroids, we have

¢(dof*—0"0oD)=dof*oqg"—0"0oDog"
=do(g.08) —(q.060) 0Dyq=dobf* —foD=0.
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Since ¢, is a fiberwise isomorphism we must have d o §* = 6* o D, so (0,r) is a
morphism of almost relative algebroids.
These constructions are inverse to each other, so this completes the proof. Il

5. RELATIVE CONNECTIONS AND PDESs

We will now show that any partial differential equation can be recast as a relative
algebroid in such a way that the formal theory of prolongations [20] coincides with
the prolongation theory for relative algebroids. The relative algebroid of a PDE
arises from a relative connection, so we start by discussing this notion.

5.1. Relative connections and the Cartan distribuition. Let N % X be a
submersion. A connection for ¢ is a splitting TN = ker(dq) ® ¢*T'X. Sometimes,
however, the splitting does not arise on the level of N, but rather depends on
additional coordinates. Let us illustrate this with an important example.

Example 5.1. Let ¢: N — X be any submersion. The bundle p;: J'q — N of first
jets of local sections can be identified with the bundle of horizontal compliments of
ker(dg) in T'N, that is

(J'q), = {C, C T,N : C, @ ker(d,q) = T,N}.
There is no canonical splitting of T'N into the components ker(dq) and ¢*T'X, but
there is a tautological splitting of piT'N, given by the identifications
piTN = piker(dg) ©C, (p)T'N)q, =kerTq® C,

The subbundle C C piT'N is called the Cartan distribution. We recall that its
relevance arises from the fact that it detects which sections 7 of ¢;: J'q — X are
holonomic, i.e., of the form 7 = jlo, with o : X — N section of ¢: N — X. In
fact, one has:
e A local section 7: X — J'q is holonomic if and only if it is tangent to the
Cartan distribution, i.e., if

imd,(p1 0o7) C Cr(y) for all € dom 7.

The notion of a relative connection formalizes this type of behavior found in the
previous example.

Definition 5.2. Let M & N % X be two submersions. A connection on ¢
relative to p is a vector bundle C' C p*T'N complementary to p* ker(dq):

pT'N = C @ p*ker(dg).
Equivalently, it is a map c: M — J'q such that p; o ¢ = p, where p;: J'¢ — N is

the projection.

A relative connection C on M & N % X gives rise to an algebroid (A, p,D)
relative to p. For the vector bundle, we take A = ¢*T'X and, under the identification
p*A = O, the anchor map corresponds to the inclusion

p:p*A = C Cp*TN.
If Xy, X, € I'(TX) are vector fields on X, then the relative bracket is determined
by
[¢" X1, ¢" Xo]p = p"¢"[ X1, Xa],
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and extended to any sections of A through the Leibniz rule using the anchor. The
resulting relative algebroid is an example of a relative algebroid with injective an-
chor.

To identify the derivation D of this relative algebroid one proceeds as follows.
Recall from Section 1.5 that there is a canonical map g.: Dy.px — ¢*Dpx, which
pulls back to a map

P*¢s: P*Dyerx = P*¢*Drx
The derivation D is a lift of the de Rham differential d in the sense that one has
p*q.(D) = p*q*d, where d is interpreted as a section d € T'(Dky).

* P"qx * %
P*Dhpx p*q¢*Drx

This is the defining feature of the relative derivation associated to a relative con-
nection.

Proposition 5.3. Let M % N % X be two submersions. There is a one-to-one
correspondence between p-relative connections C' on q and sections D & F(p*D;*TX)
with p*q. D = p*q¢*d. In particular, given C' the corresponding derivation D¢ is
determined by

Dof = (p*df)le.  if f e C=(N),
De(¢*a) = p*¢*da, if a € Q*(X).

Proof. Let D € T'(p*D,.rx). The equation

(r"ae.D)(¢" ) =p*¢"d(¢”f), (f € C™(X)),
holds if and only if for any vector field X € I'(T'X) one has
(P*aD)(¢" /) (p*q" X) = (p*¢"d(¢" f))(p"q" X)
and this is equivalent to:
po(p* ¢ X) (P f) = p q" X (f).
This last equation holds if and only if pp: p*A — p*T'N is injective with image a

subbundle C' complementary to p* ker(dgq).
On the other hand, the equation

(r*a.D)(¢"a) = p'g"d(¢"a), (a € Q'(X)),
holds if and only if any vector fields X, X5 € T'(T'X) one has
(p*¢.D)(¢" ) (p"q¢" X1, p"q" X2) = (p*¢"d(¢" ) (" ¢" X1, p"¢" X)),
and in terms of the bracket of D this is equivalent to
[q" X1, ¢" Xo]p = p*q*[ X1, Xa],
so the result follows. Il

The Cartan distribution C C p{T'N in Example 5.1, being a relative distribution

for the submersions J'¢ 2 N % X, has an associated relative algebroid with

derivation
De: Q*(¢*TX) — Qg TX).
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where ¢; := qgop;: J'¢ — X. Notice that, by the previous proposition, one has

{Dcf = (prdf)le, if f e C=(N),

5.1
De(¢*a) = gidey, if a € Q*(X). (5.1)

Definition 5.4. The derivation D¢ is called the Cartan derivation.
The previous proposition leads to the following description of De.

Corollary 5.5. Let g: N — X be a submersion. The bundle of first jets is naturally
1somorphic to

J'q = ¢ (d) = {Dyn € Dprx | ¢(Dn) = dyim) }

where the natural isomorphism is given by restriction of the symbol map o : D;*TX —
Hom(¢*T'X,TN). The relative algebroid (¢*TX,p1,Dc) has classifying map the
resulting inclusion

oot J'q—sDipx -
Proof. The previous result applied to p = id shows that for a fixed n € N, we have
{Dy € (Dyerx)n | ¢:(Dy) =dgny} ={Cn C T,N : C,, ® ker(d,q) = T,N}.
The left side is canonically isomorphic to (J1q),. O

Example 5.6 (Cartan derivation in local coordinates). Let us assume that we have
fixed local charts (V,z") for X and (U = ¢~ *(V), 2",u®) for N, so that
¢: N =X, q(2',u*) ="

Then we have an induced chart (p; ' (U), 2%, u®, u?) on the total space of the first jet
bundle so that

Pb1: qu_>N7 pl(xi>ua7u?) = (xi’ua)'
Also, let e; = 0, be the corresponding local frame for TX with dual coframe
0° = dz’. Then a form a € QF(¢*TV') can be expressed as

g Qiy oy (my0) dz™ A - A da™,
11 <<t

and it follows from (5.1) that the Cartan derivation acts on such a form as the total
exterior derivative

Dea = Z Z (Djcy, .. i) da? Adz™ A~ Ada™,
] i< <ip

where

j:axf aaﬂ

One obtains higher order Cartan derivations by considering the higher order jet
spaces of the submersion ¢: N — X. For any integer £ > 1, one constructs a connec-
tion on J*"'¢ — X relative to p: J*¢ — J*"'¢ by considering first the inclusion
JEq — JY(J*"1q) and then restricting the Cartan distrbution C C p;TJ* ¢ —
JY(J*1q) to J¥q. The resulting relative connection will also be called the (higher
order) Cartan distribution.
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The higher order Cartan distibution being a relative distribution for the submer-
sions JEq 28 Jk1g 224 X has an associated relative algebroid with derivation

De: Q°(qi_,TX) — Qg TX).

We also call D¢ the (higher order) Cartan derivation. Again, applying Proposi-
tion 5.3, one has

5.2
De(gi_ja) = gida, if a € Q°(X). (5:2)

{Dcf = (ppdf)le, it f € C=(JF1g),
Example 5.7 (Higher order Cartan derivation in local coordinates). Similar to
the case of first order, we can describe the higher order Cartan derivation in local
coordinates as follows. We let d = dim X (number of dependent variables) and
n = dim N — dim X (number of independent variables) and we fix local charts
(V,2%) for X and (U = ¢}, (V),2%,u% us) for J*lq, with J = (j,...,J,) all
unordered r-tuples of integers with 1 < j; < n, and #J =r < k — 1. Then a form
a € QF(q;_,TV) can be expressed as

.....

i1 < <ip

and the Cartan derivation (5.2) acts on such a form as the total exterior derivative

Dea = Z Z (Djail ..... zk) dzd Adz™ A - A d$ik’

where now

5.2. The relative algebroid of a PDE. We now wish to associate a relative
algebroid to a PDE. By the latter we mean:

Definition 5.8. A partial differential equation (PDE) of order k& on a sub-
mersion ¢: N — X is a submanifold E C J¥q. A solution to E is a (local) section
o of ¢: N — X such that im j*0 C FE.

If we will assume that the image py(E) C J* !¢ is a manifold and that the map
G = Qr—1 © pr: E — X is a submersion, then the Cartan distribution restricts to a
connection of gz_1: pr(E) — X relative to the submersions E 25 pp(E) 2% X
The corresponding relative algebroid of the PDE is an algebroid (¢;_,7'X, px, Dg)

relative to the submersion py: E — pi(E), and the derivation Dg is determined by

{DEf = (ppdf)le, it f € C®(p(E)),

5.3
Dp(g_jo) = ipqida, if a € Q*(X). (5:3)

where ip: E < J¥q is the inclusion.

Definition 5.9. We call (¢; T X, px, Dg) the relative algebroid of the PDE
E c Jkq.
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Remark 5.10. If we make the weaker assumption that the PDE E C J*q inter-
sects the fibers of p;: J*¢ — J¥~!¢ in submanifolds of a fixed dimension. Then,
by Proposition 4.12, the relative algebroid (¢;_,7'X, px, Dc) associated to the Car-
tan distribution can be restricted to E. Hence, we still have a relative algebroid
(¢;_,TX,V,Dg) associated to E. The results that follow are valid in this more
general setting, replacing (¢;_,7X, px, Dg) by this algebroid relative to a foliation.
To simplify the exposition, we choose to stay within the framework of algebroids
relative to a submersion.

Our next result shows that the relative algebroid of the PDE encodes its solutions.

Theorem 5.11. Let E C J*q be a PDE with relative algebroid (q;_,TX, px, DE).
Then germs of solutions to E are in 1-1 correspondence with germs of realizations
of (¢4_1TX,pr, Dg) modulo diffeomorphisms.

Proof. Let 0: U — N be a local solution of E. The we construct a realization
0,7): TP — q;TX of (¢;_TX,pr, Dg) by setting:

P:=U, r():=jjo, 0(va) = (r(z), va).
That 6 preserves anchors is clear. Using (5.3) one finds that for any o € Q'(X)
0*Dg(qp_1a) = 0%ipgda = da = df*a.

Conversely, assume that (P, r, 0) is a realization around p € P of (¢;_,TX, px, Dg)
such that r(p) = e € E. Then the map g o r is a local diffeomorphism, so in a
neighborhood of a p € P it factors through a (local) section 7: X — E.

P——sE

N
el
/
X
The compatibility of (r,#) with the anchor, gives

imd,(pr o 7) C Crp for all z € dom .

So 7 is tangent to the Cartan distribuition, and we can conclude that it is holonomic.
Hence, 7 = j¥o for a local section o: X — N, which is the desired local solution of
E.

O

5.3. Prolongation and integrability of PDEs. We will now show that the for-
mal theory of prolongations [20] for PDEs coincides with the prolongation theory
for the associated relative algebroids.

Theorem 5.12. Let E C J*q be a PDE with relative algebroid (q;_,TX, px, DE).
Then:

(i) E is a 1-integrable PDE if and only if the relative algebroid (qf_,TX, pi, Dg)
15 1-integrable;
(i1) If E is a I-integrable PDE, then the relative algebroid corresponding to the
prolongation BV C J*+1q is the prolongation of (qi_,TX,pr, D).
In particular, a PDFE is formally integrable if and only if its associated relative
algebroid is.
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Remark 5.13 (Variational bicomplex). When E = J'm Theorem 5.12 shows that
the prolongations of E correspond to the higher order Cartan derivations. From
their expression in local coordinates (see Example 5.7), one sees that they assemble
together into the horizontal differential of the first row the variational bicomplex
(see, e.g., [5]). In other words, the profinite Lie algebroid corresponding to the
prolongation tower has as derivation the horizontal differential of the variational
bicomplex:

(m:.TX,dg): ... —mTX —m \/TX — ... — 1 TX —1"TX

| | |

JOm: .. Jkr JE—1n Jir - N.

Pk

Proof of Theorem 5.12. Let us consider first the case F = J*q, so Dy = D¢. On
the one hand, F as a PDE, has first prolongation

EW = jhtlg {jleZ TE F(qu) holonomic} C Jl(qu).

On the other hand, by Corollary 5.5, we have the following description of the first
jet bundle of J¥¢:

Jl(JkCI) = {Dy S ’D;,’;TX: (qr)«Dy = qu(y)} :
This gives a description of E() in terms of derivations as

EW = {Dy = D;;;TX: (qx)«Dy = dg, (), Dy oDe = O}

= {Dy € D;;;TX3 (4r)«Dy = (De)py(y), Dy o De = O}

which is precisely the first prolongation space of the relative algebroid (¢; 7' X, px, Dc).
It follows that the theorem holds in this case.

For general E C J*q, the result follows because the first prolongation of F can
be described as BV = J'E N J*1q in J'(J*q), which corresponds to the first
prolongation of the relative algebroid using the description for J**!¢ in terms of
derivations. This proves both (i) and (ii). O

Example 5.14. We illustrate the theorem with the simple PDE u, = y, where
u = u(x,y). As a manifold, this PDE has coordinates (uy, u,z,y) and sits inside

{(x7uy7u7 x? y)} C Jlﬂ = {(ux7uy7u7 :C, y)}?

where 7: R?* — R? is the projection m(u,z,y) = (x,y). The corresponding relative
algebroid is obtained by restricting the Cartan derivation to F, so it can be described
by the trivial vector bundle R? — R3, with derivation D determined by

DO! — DP? — 0,
Dz = 0,
Dy = 02,

Du = y6' + u,0%

The free variable is u,, so to compute the prolongation we start with an extension
of D, which is determined by Du, = u.,60" + u,,6% We find that D must satisfy

0=DDu = 6% A 0" + (ugy0' + u,y0*) A 0" = (uyy, — 1)0" A 6%
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We find that the 1st prolongation of the relative algebroid is characterized by ug, = 1
and that w,, is the new variable. This is corresponds exactly to the relative algebroid
underlying the prolongation E(Y C J?r of the PDE: the latter is given by the
equations {u, = Y, Uzs = 0, Uy, = 1}, so EW is parametrized by {(uyy, u,, u, v, y)}.

Remark 5.15 (PDEs with symmetries). Symmetries of PDEs are given by pseu-
dogroups of diffeomorphism (see, e.g., [26]). In future work, we will show that the
symmetries of a PDE also preserve the underling relative algebroid, so that the
structure of the relative algebroid descends to the quotient.

Remark 5.16 (Pfaffian fibrations). A different framework for PDEs with sym-
metries comes from Pfaffian fibrations and Pfaffian actions of Pfaffian groupoids
[1, 2, 10, 11, 30]. We will explain in future work how relative algebroids underlie
Pfaffian fibration, and how Pfaffian actions give rise to symmetries of the underlying
relative algebroids.

6. POSTLUDE: AN EXAMPLE

In this final section, we will revisit Example 0.2 from the Introduction and we
discuss it using the framework developed in the paper. This example, considered by
Bryant in [8, §5.1], is simple enough that can be solved directly, but it is extremely
insightful to study it from the perspective of relative derivations.

As discussed in the Introduction, the existence and classification problem of sur-

faces with a metric whose Gauss curvature satisfies |[VK| = 1 is govern by the
equations
dot = —63 A 6,
do? = 6° A 0*
3 jgl p g2 (6.1)
do® = K6* A 67,

dK = cos(p)0' + sin(p)6>.

These equations define a derivation D4 on the trivial vector bundle A := R? — R,
relative to the projection p: S' x R — R, where R has coordinate K and S! has
coordinate . Here {0,602 63} is a basis of sections of A* and if we let {ej, s, €3}
be the dual basis of sections of A, the anchor of this relative algebroid is given by

ple1) = cos(p)Ik, plez) = sin(p)Ik, ples) =0,
while the bracket takes the form
le1, ea] = —Kes, [ea, €3] = —eq, les, e1] = —ea.

Using this expression for the anchor, a straightforward computation shows that this
relative algebroid has tableau map 7: ker(dp) — p* Hom(R3, TR) given by

7(9,) = (—sin(p)8" + cos()0?) @ .

In the sequel, it will be convenient to use the following notation for the expression
appearing in the tableau:

9,(dK) := —sin(p)0" + cos(¢)6?.
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All higher prolongations can be explicitly computed, giving the full prolongation
tower

R? . R? R3 . R?

| | | |

RmXSIXR%...%RkXSIXRTRk—lXSlXR_)___TR’

where R* x S! x R has coordinates (¢, ..., c1, @, K), and the relative derivation is
determined by (6.1) together with

Dck = _fk[cla B ,Ck]dK + Ck-‘rlaw(dK) (62)
where filci, ..., ¢ are polynomials given by

f1 [Cl] = —C% — K

" om+ 1
me[Cla'--702m] = —Z ( ; )Ci02m+1—i

=1

2m + 1 = (2m + 2
f2m+1[cla~"702m+1]:_( m >C1271+1—Z( . )Cic2m+2—i

i=1 !
for m > 1. Note that we can also interpret (6.2) as defining a profinite derivation
on R - R*® x S' x R
Equation (6.2) suggests using the new global coframe {dK, 9,(dK), #*}, for which
the anchor is decoupled such that the profinite part is concentrated in one basis
vector only. The frame {b, by, b3} dual to this coframe is given by

by = (cosp)e; + (sing)es
by = —(sinp)e; + (cos p)es — cre3 (6.3)
b3 = e3.

The profinite Lie algebroid R? — R* x S! x R, with respect to the new frame, has
bracket
[bl, bg] = —Clbg, [bl, bg] = [bQ, bg] = 0 (64)

and anchor

Poo(b1) =0k + Z fk[Ch e 7Ck]8cka Poo(bQ) = chﬂack, Poo(ba) = aap' (6-5)
k=1 k=1
The algebroid decouples as the product of TS' — S and R? — R* x R, where
the latter has global frame {by,by}. It will be convenient to set X¥ := R* x R, and
denote by
A:=R* 5 ¥®
the algebroid with global frame {by, by }.

The vector field p.(b1) is levelwise profinite in nature, and its flow can be ex-
plicitly computed in terms of the solution of a Riccati equation. However, by
[13, Lemma 3.3], the flow of ps(b2) has no flow defined on profinite open sub-
sets. For this reason, there can not be a smooth groupoid, whose source fibers
are 2-dimensional manifolds; if there was one, the right-invariant vector field cor-
responding to by would have a flow restricted to each source fiber, which would
descend to a flow of p(b2) on the base 3.
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The vector field p(by) does have a flow on a different space. For this, note
that this vector field lives entirely on R, with coordinates ¢y, = (¢x)ren, and is
completely decoupled from the coordinate K on ¥°°. So let C¢'(R) and C§°(R) be
the space of germs of analytic, respectively smooth, functions around 0. The jet
map j° relates the vector field poo(b2) to the vector field 0; on the spaces of germs.

(C5°(R), 1)

(///////////7 J6°

(C5(R), )¢ - B, ¥, c1nd,)

Now observe that:

e On the space of analytic germs C§(R), the vector field 0, has a flow ®y,
given by

Oy (germy(f(+))) = germy(f(- + 1))

whenever t is in the maximal domain to which the germ of f can be extended;
e On C§°(R), the vector field 0; has no flow, since there are many distinct
integral curves through a point, due to the existence of flat functions;
e On R*, as we already mentioned, the vector field ), cx410,, also has no
flow.

It is therefore natural to restrict p(f2) to the space of convergent power series:

. |Ck’ l/k
RY := < ¢ € R*: limsup | — <00
k k!

This space is in bijection with C§°(R) and it is more natural to equip R¥ with the
smooth structure of C§°(R) rather than the profinite smooth structure of R>®. In a
similar vein, we let

¥ :=RYx R C X%,
and consider the restricted algebroid
AY = Alge — X%,

which makes sense since p.(f2) is tangent to ¥“. The integral manifolds of A“
partition ¥* into well-defined leaves, and the algebroid can (at least) leafwise be
integrated to a smooth groupoid G* = ¥ whose source-fibers are simply connected
manifolds.

The original classification problem can be solved on this space: it is governed by
the S'-structure algebroid T'S' x A¥ — S! x 3 whose canonical S'-integration is
the Sl-structure groupoid (S x S') x G¥ = S! x ¥¥, whose source fibers are of
the form S' X s;i(cs). These are the coframe bundles of non-extendable simply
connected solutions to the realization problem! The leaves and the groupoid G¥ can
be explicitly described, and their isometry groups can be listed. The appropriate
smooth structure on the total space of this groupoid has yet to be studied, but we
believe its a type of diffeological groupoid that differentiates to the given algebroid,
in the sense of Aintablian and Blohmann [4].
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Solutions with additional symmetry. Even without delving into the complicated
theory of infinite-dimensional geometry, to make sense of the algebroid governing
the full realization problem, a glance at the profinite algebroid T'S' x A — St x 3°°
can already lead to interesting insights and solutions. For example, it is possible to
find solutions by looking at the locus where the anchor drops rank, which amounts
to imposing extra symmetry on realizations.

The expression for the anchor shows that the algebroid A — ¥*° drops rank on
the subspace

Y =A{(teo, K) € 2% : ¢, = 0 for k > 2}.

This locus is finite-dimensional! One obtains a restricted algebroid with anchor
and bracket given by

p(bl) = aK - (K + C%)acu p(bQ) = 07 [bbe] - _Cle-

This algebroid can be explicitly integrated (in terms of solutions to a Riccati equa-
tion) to a finite dimensional Lie groupoid. By the work of Fernandes and Struchiner
[18], it represents the stack of complete, simply connected, solutions of the realiza-
tion problem with translational symmetry. Geometrically, the extra symmetry is
translation in the direction orthogonal to VK.

7. OUTLOOK

In this paper, we have established the foundational framework of the theory.
There are numerous directions to further explore. Below, we outline a few key
directions that we are currently investigating and its relationships with existing
literature.

7.1. PDEs with symmetries. In the context of the formal theory of PDEs, one
of the key advantages of the framework of relative algebroids is its stability under
quotients by symmetries. In Section 5, we saw that every PDE has an associated
canonical relative algebroid whose realizations, up to diffeomorphism, correspond
to solutions of the PDE. Classification problems in geometry are often governed
by PDEs with large symmetry groups. In future work, we will precisely define
symmetries of relative algebroids and their quotients by symmetries. Moreover,
one can show that the symmetries of a PDE correspond to the symmetries of its
associated relative algebroid. Our ultimate goal is to provide a rigorous explanation
of how Bryant’s equations arise from a geometric problem formulated as a PDE.

We expect that the quotient algebroid associated with a PDE with symmetries
will be related to various existing approaches to symmetries in the literature. For
example, given a Lie pseudogroup I' acting on a differential equation £ C J¥q, it is
known that, under relatively mild assumptions, the space of differential invariants of
the PDE is finitely generated and can be computed through established algorithms
(see, e.g., [24, 28]). We conjecture that the differential algebra of these invariants
coincides with the exterior algebra of the prolongation tower of the quotient relative
algebroid. This would provide a Lie-theoretic interpretation of the results in [24, 28].
Establishing this precise connection should not only broaden the theory developed
in loc. cit. but also lead to powerful new tools.

On a related note, we saw in Remark 5.13 that the profinite differential of the pro-
longation tower of a formally integrable PDE E C J*q corresponds to the horizontal
differential (at the bottom row) of the variational bicomplex of E. The prolongation
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tower of the symmetry quotient of the relative algebroid then should correspond to
the horizontal differential (at the bottom row) of the invariant variational bicomplex
of the PDE [23].

The tableau of the quotient algebroid associated with a PDE with symmetries
is much smaller than the tableau of the PDE itself. Moreover, PDEs with very
large symmetry groups (such as the group of diffeomorphisms) can never possess
desirable properties like ellipticity or finite type. In certain cases, however, PDEs
with symmetries may exhibit these properties within a fixed gauge. This suggests
that the tableau of the corresponding quotient may also retain such properties.
One of our goals is to investigate whether properties of the tableau of the relative
algebroid can lead to existence results.

Another connection to the existing literature arises through Pfaffian fibrations
and Pfaffian actions [1, 2, 10, 11, 30]. Just as PDEs give rise to relative algebroids,
Pfaffian fibrations induce relative algebroids, and Pfaffian actions give rise to sym-
metries of these algebroids. We hope to explore this connection further in future
work.

7.2. Relative G-structure algebroids. The Bryant-Cartan existence result for
realizations in the analytic setting (Theorem 3.20) provides local manifolds with
coframes that solve the realization problem. However, in many realization problems,
such as those arising from Riemannian manifolds or more general G-structures, the
realization problem is naturally formulated in terms of coframes on the orthonormal
frame bundle or a principal G-bundle. In general, the local solutions obtained
from the Bryant-Cartan theorem do not yield such principal bundles, as it does
not account for the presence of a structure group. Therefore, it is desirable to
incorporate structure groups into the theory of relative algebroids.

In the case of finite-dimensional Lie algebroids, this has been achieved in [18],
where a theory of G-structure algebroids and G-structure groupoids is developed.
That work also establishes necessary and sufficient conditions for the existence of G-
structure realizations. We aim to extend this theory to relative algebroids to better
understand the role of the structure group G in solving the realization problem
for G-structure relative algebroids. In some preliminary work we have established
the existence of a universal (profinite) G-structure algebroid through which every
G-structure algebroid factors.

7.3. Profinite Lie algebroids. Profinite-dimensional manifolds and bundles ap-
pear extensively in the theory of formal PDEs (see, e.g., [1, 3, 21, 27]). Hence,
their emergence in the theory of relative algebroids is not surprising: the base space
of the prolongation tower of a relative algebroid is the space of formal realizations
modulo symmetries.

There are several challenges regarding the existence of smooth groupoids inte-
grating the prolongation tower of a relative algebroid. In fact, we suspect that such
groupoids may not exist for any prolongation tower. Intuitively, this stems from
the fact that there is no “continuous” way to assign a smooth function to each jet.

However, the prolongation tower of a relative algebroid exhibits much richer ge-
ometry when restricted to smaller spaces, such as the space of convergent power
series. The algebroid, when restricted to this space, has leaves and can be leafwise
integrated into a groupoid. Moreover, in this case, tools from finite-dimensional Lie
theory become available to study the space of global solutions to the realization
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problem. One main goal is to understand the moduli stack of complete solutions,
which requires a precise understanding of the smooth structure on the integrating
object. One possible approach is through diffeologies; in this context, the recent
work of Aintablian and Blohmann [4] on diffeological Lie groupoids and algebroids
should be particularly relevant. Another possible approach, suggested to us by
Ivan Contreras, is to consider formal Lie groupoids (see, e.g., [12, 14]) integrating a
profinite Lie groupoid. Since formal Lie groupoids arise from power series, it seems
plausible that integrating objects of such nature for profinite Lie algebroids may
exist.

7.4. Applications to and interactions with control theory. Example 3.15
illustrates how a control system arises from a relative algebroid defined by a relative
vector field. The interaction between control theory and relative algebroids should
also work in the other direction.

As a particular example, the notion of controllability (the equivalence relation of
points connected by realizations — see [22]) should also be present for relative alge-
broids. This notion should induce a partition of the base of a relative algebroid into
invariant submanifolds. This bidirectional interaction suggests deeper connections
between the two fields. Here are two other relations worth exploring:

In control theory, one typically works with a relative distribution H C p*T'N,
where p: M — N is a submersion. There seems to be no canonical way to define
a derivation relative to p on H itself, without assuming some additional structure.
However, there is a well-defined notion of an integral manifold, namely a subman-
ifold L € M such that dp(T'L) = H|,. The precise relationship between relative
distributions and relative algebroids remains to be fully understood.

Furthermore, since relative algebroids are particularly well-suited for studying
realization problems with symmetry, they could also provide a useful framework for
the study of control systems with symmetries.
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