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Preface

The aim of this book is to provide an introduction to Poisson geometry.
The book grew out of several sets of lecture notes that we have prepared
along many years while teaching master and graduate level courses at our
home institutions and mini-courses at various Poisson geometry schools.
In particular, the writing of the book was influenced by our experiences
teaching the material and by the interactions we have had with the students
who attended those lectures. Although it is fair to say that the book has
grown and includes a bit more material that one can actually hope to cover
in class during a one semester course, the aim remains the same: to provide
lecture notes for a graduate level course giving an introduction to Poisson
geometry, addressed to students and researchers which have some familiarity
with classical differential geometry and differentiable manifolds. Some basic
knowledge of algebraic topology and symplectic geometry would be a plus,
but not a requirement, to fully grasp some parts of the book. Some standard
topics from differential geometry that we need, but might be missing from
an introductory course, are summarized in the appendices at the end of the
text.

Poisson geometry emerged from the mathematical formulation of clas-
sical mechanics. Historically, it all started with the work of Siméon Denis
Poisson on the mechanics of particles which led him to the discovery in 1809
of the so-called Poisson bracket as a method for obtaining new integrals of
the motion. Poisson computations occupied many pages, and his results
where rediscovered and simplified two decades later by Carl Gustav Jacob
Jacobi, who was the first to realize the fundamental role played by the Pois-
son bracket in rational mechanics and who identified its main properties:
an operation (bracket) which associates to any two observables f and g a

xiii
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new observable {f, g}, and which satisfies the Leibniz and Jacobi identity.
Jacobi’s work on Poisson brackets, including the discovery of his famous
identity, the commutator of derivations, etc., greatly influenced Sophus Lie
in his foundational study at the end of the 19th century of symmetries of
partial differential equations, which led him to the discovery of Lie groups
and Lie algebras (see [102]). Linear Poisson structures correspond to Lie
algebra structures, so Lie was in fact the first to study them and it is remark-
able how deep Lie’s work dives into Poisson geometric aspects. For instance,
Lie explicitly poses the realization problem for linear Poisson structures, a
problem which turns out to be the same as that of searching for a Lie group
integrating a Lie algebra. However, perhaps somewhat surprisingly, the first
geometric, systematic, study of Poisson structures occurred much more re-
cently in the work of André Lichnerowicz [108] in the 1970s, which marks
the birth of Poisson geometry in its modern formulation.

The spectacular development of Poisson geometry from the last few
decades owes much to the foundational work of Alan Weinstein [146] in
the 80s and his discovery of symplectic groupoids as the global objects be-
hind Poisson structures [150]. In retrospective, this discovery follows the
same path as in Lie’s work: the search for non-degenerate (symplectic) real-
izations led to the discovery of interesting global structures. In some sense,
this book can be seen as an updated and expanded exposition of Weinstein’s
pioneer work. In particular, our aim here is not to provide a survey of the
vast amount of work done in this subject in the last 30-40 years, but rather
to provide an introduction to the subject that will allow the reader to plunge
into any of these recent exciting developments, some of which are mentioned
throughout the text.

We have tried to provide our own insight into the subject while resisting
the temptation of concentrating on our contributions. Our philosophy can
be summarized as follows: Poisson geometry is an amalgam of foliation
theory (partition into leaves), symplectic geometry (along the leaves) and Lie
theory (transverse to the leaves). In particular, it provides the framework
in which these geometries get to interact with each other in a beautiful
symbiosis. While this is already, we believe, the main message in Weinstein’s
foundational paper [146], the full extent of this interaction came to life
later with the discovery of the global counterparts to Poisson structures:
symplectic Lie groupoids. These objects codify all these 3 different aspects
and we have organized the book so that one is led naturally to uncover them,
giving an upgraded view on Weinstein’s and Lichnerowicz’s works.

The monograph by Vaisman [140] was for a long period of time the only
text book on Poisson geometry, apart from an earlier account by Bhaskara
and Viswanath [15]. The book by Cannas da Silva and Weinstein [30]
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contains a nice elementary introduction to the subject, aimed towards non-
commutative geometry and quantization. A more up-to-date account of
Poisson geometry, with a strong emphasis on local normal forms, was pro-
vided by Dufour and Zung in their research monograph [59]. More recently,
appeared the beautiful book by Laurent-Gengoux, Pichereau and Vanhaecke
[105], which is highly recommended for people with an algebraic-geometric
background. As the authors point out in the introduction, “The main topic
about Poisson structures which is absent from this book is what should be
called Poisson geometry.” We hope that our book provides an introduc-
tion to Poisson geometry, which can be assimilated during a semester-long
course, or can be used as material for self-study of the topic.

The main body of the book is divided into four parts, followed by the
appendices that were already mentioned. Each part ends with a small set of
notes containing brief historical comments and directions for further read-
ing. The best overview of the book is its table of contents. Still, we would
like to emphasize that we payed special attention to the way we introduce
those basic concepts in the theory that are more complex and require a
deeper thought process. Take for example the notion of symplectic leaf:
set-theoretically, we introduce them right away in the first chapter as the
orbits of Hamiltonian diffeomorphisms, promising the reader that the actual
structure (smooth, symplectic) will be discussed later. In the second chap-
ter, we take advantage of the bivector field point of view to indicate how
the smooth structure may arise from a Frobenius type theorem. However,
the actual local result that is needed, the Weinstein Splitting Theorem, is
then dealt with in chapter three. Finally, we discuss properly their smooth
and symplectic structure in the fourth chapter of the book. We have also
paid special attention to examples and exercises - at the price of increasing
the size of the book. Several sections of the book are called “Examples”
or “Case study”, and there are well over 200 exercises, split into two types:
the ones spread throughout the text, called “Exercises”, which are helpful
in understanding the main material, and the ones listed at the end of each
chapter, called “Problems”, which are useful in consolidating the material
and providing further examples. We have tried to fill in a gap in the existing
literature by providing a longer list of concrete examples of symplectic real-
izations and symplectic groupoids. We have made an effort to include full
proofs for all the results we discuss, the exception being Lie’s 3rd Theorem
for Lie algebroids. Some of the arguments used in the proofs are new, others
simplify and fill some gaps in the literature (see the notes and references at
the end of each Part).

There are a few topics, which may be now considered standard in Pois-
son geometry, which we have decided not to include, such as Poisson-Lie
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groups, deformation quantization, generalized complex structures or inte-
grable systems. They go beyond our purpose here and they deserve a sep-
arate volume. We hope that our book will provide a solid background for
learning such topics, or for moving to more advanced ones in the cutting
edge of research.
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