Math 595 - Poisson Geometry Chapter 8 - Submanifolds

Rui Loja Fernandes

Department of Mathematics University of Illinois at Urbana-Champaign, USA

March 23, 2020

We have seen before important classes of submanifolds of a Poisson manifold (M, π) :

We have seen before important classes of submanifolds of a Poisson manifold (M, π) :

Symplectic leaves

We have seen before important classes of submanifolds of a Poisson manifold (M, π) :

- Symplectic leaves
- Poisson transvsersals

We have seen before important classes of submanifolds of a Poisson manifold (M, π) :

- Symplectic leaves
- Poisson transvsersals

This chapter studies other important classes of submanifolds:

- Poisson submanifolds
- Poisson-Dirac submanifolds
- Coisotropic submanifolds
- Pre-Poisson submanifolds

We have seen before important classes of submanifolds of a Poisson manifold (M, π) :

- Symplectic leaves
- Poisson transvsersals

This chapter studies other important classes of submanifolds:

- Poisson submanifolds
- Poisson-Dirac submanifolds
- Coisotropic submanifolds
- Pre-Poisson submanifolds

The different notions of submanifold $N \subset (M, \pi)$ all have to do with how *TN* interacts with its π -orthogonal:

$$(TN)^{\perp_{\pi}} := \pi^{\sharp}(TN)^{0}.$$

1) Poisson submanifolds

Definition

A **Poisson submanifold** of a Poisson manifold (M, π_M) is a Poisson manifold (N, π_N) together with an injective immersion $i : N \hookrightarrow M$ which a is Poisson map.

1) Poisson submanifolds

Definition

A **Poisson submanifold** of a Poisson manifold (M, π_M) is a Poisson manifold (N, π_N) together with an injective immersion $i : N \hookrightarrow M$ which a is Poisson map.

Proposition

Let (M, π_M) be a Poisson manifold. Given an immersed submanifold $N \hookrightarrow M$ there is at most one Poisson structure π_N on N that makes (N, π_N) into a Poisson manifold.

Poisson submanifolds: alternative characterizations

For a submanifold $N \subset (M, \pi_M)$ the following equivalent conditions hold:

(i) N is a Poisson submanifold;

(ii) Im
$$\pi_{M,x}^{\#} \subset T_x N$$
, for all $x \in N$;

(iii) $(TN)^{\perp_{\pi}} = 0;$

(iv) every hamiltonian vector field $X_H \in \mathfrak{X}(M)$ is tangent to N.

Poisson submanifolds: alternative characterizations

For a submanifold $N \subset (M, \pi_M)$ the following equivalent conditions hold:

(i) *N* is a Poisson submanifold;

(ii) Im
$$\pi_{M,x}^{\#} \subset T_x N$$
, for all $x \in N$;

(iii) $(TN)^{\perp_{\pi}} = 0;$

(iv) every hamiltonian vector field $X_H \in \mathfrak{X}(M)$ is tangent to N.

When *N* is a closed submanifold, these condition are also equivalent to:

(vi) The vanishing ideal of N

$$\mathscr{I}(N) := \{ f \in C^{\infty}(M) : f(x) = 0, \forall x \in N \}$$

is a Poisson ideal, i.e., for any $f \in \mathscr{I}(N)$, $g \in C^{\infty}(M)$, one has $\{f,g\} \in \mathscr{I}(N)$.

More about Poisson submanifolds

- A Poisson submanifold N → M intersects a symplectic leaf S of (M, π_M) in an open subset of S.
- The connected components of the intersections N ∩ S are the symplectic leaves of (N, π_N).

More about Poisson submanifolds

- A Poisson submanifold N → M intersects a symplectic leaf S of (M, π_M) in an open subset of S.
- The connected components of the intersections N ∩ S are the symplectic leaves of (N, π_N).

A **complete Poisson submanifold** is one consisting of a union of symplectic leaves.

More about Poisson submanifolds

- A Poisson submanifold N → M intersects a symplectic leaf S of (M, π_M) in an open subset of S.
- The connected components of the intersections N ∩ S are the symplectic leaves of (N, π_N).

A **complete Poisson submanifold** is one consisting of a union of symplectic leaves.

Some Examples:

- (i) symplectic leaves;
- (ii) $\mathfrak{h}^0 \subset \mathfrak{g}^*$, provided $\mathfrak{h} \subset \mathfrak{g}$ is an ideal;
- (iii) the spheres ||v|| = c in the dual of a compact Lie algebra g;
- (iv) the singular locus in a log-symplectic submanifold;
- (v) (see Lecture notes for more examples)

Symplectic realizations of Poisson submanifolds

Proposition

Let N be a Poisson submanifold of (M, π) and

 $\mu:(S,\omega)
ightarrow (M,\pi)$

a symplectic realization. If $C := \mu^{-1}(N)$, $\omega_C := \omega|_C \in \Omega^2(C)$:

(i) the kernel of ω_C ,

$$\mathscr{K}_{\mathcal{C}} := \operatorname{Ker} \omega_{\mathcal{C}} \subset \mathcal{TC},$$

defines a regular foliation on C.

(ii) if this foliation is simple and the leaf space is denoted $S_N := C/\mathscr{K}_C$, then ω_C descends to a symplectic form ω_N on S_N and μ descends to a smooth map

$$\mu_N: (S_N, \omega_N) \rightarrow (N, \pi_N)$$

which is a symplectic realization of (N, π_N) ,

2) Poisson-Dirac submanifolds

There are relatively few examples of Poisson submanifolds.

2) Poisson-Dirac submanifolds

There are relatively few examples of Poisson submanifolds.

Definition

A **Poisson-Dirac submanifold** of a Poisson manifold (M, π_M) is a Poisson manifold (N, π_N) together with an immersion

$$i: (N, L_{\pi_N}) \hookrightarrow (M, L_{\pi_M})$$

which is a backward Dirac map.

Note that given a submanifold N of a Poisson manifold (M, π_M) there is at most one Poisson structure on N making the inclusion a Poisson-Dirac submanifold.

Poisson-Dirac submflds: "Dirac-free" characterizations

 $N \subset (M, \pi)$ is a Poisson-Dirac submanifold if and only if the following two conditions hold:

(i)
$$T_x N \cap (T_x N)^{\perp_{\pi}} = \{0\}$$
 for all $x \in N$,

(ii) the bivector field $\pi_N \in \Gamma(\wedge^2 TN)$ defined at each point by

$$\pi_{N}(\xi_{x},\eta_{x}) = \pi(\tilde{\xi}_{x},\tilde{\eta}_{x}) \quad \text{for } \xi_{x},\eta_{x} \in T_{x}^{*}N,$$
(1)

with $\tilde{\xi}_x, \tilde{\eta}_x \in (T_x^{\perp_{\pi}}N)^0$ extensions of ξ_x, η_x , is smooth.

Poisson-Dirac submflds: "Dirac-free" characterizations

 $N \subset (M, \pi)$ is a Poisson-Dirac submanifold if and only if the following two conditions hold:

(i)
$$T_x N \cap (T_x N)^{\perp_{\pi}} = \{0\}$$
 for all $x \in N$,

(ii) the bivector field $\pi_N \in \Gamma(\wedge^2 TN)$ defined at each point by

$$\pi_{N}(\xi_{x},\eta_{x}) = \pi(\tilde{\xi}_{x},\tilde{\eta}_{x}) \quad \text{for } \xi_{x},\eta_{x} \in T_{x}^{*}N,$$
(1)

with $\tilde{\xi}_x, \tilde{\eta}_x \in (T_x^{\perp_{\pi}} N)^0$ extensions of ξ_x, η_x , is smooth.

Remarks:

- Extensions in (ii) exist by item (i).
- The proposition says that (i) and (ii) imply that π_N ∈ 𝔅(N) will automatically be Poisson.

More about Poisson-Dirac submanifolds

- ► A Poisson-Dirac submanifold $N \hookrightarrow M$ intersects each symplectic leaf *S* of (M, π_M) in a symplectic submanifold.
- The connected components of the intersections N ∩ S are the symplectic leaves of (N, π_N).

More about Poisson-Dirac submanifolds

- ► A Poisson-Dirac submanifold $N \hookrightarrow M$ intersects each symplectic leaf *S* of (M, π_M) in a symplectic submanifold.
- The connected components of the intersections N ∩ S are the symplectic leaves of (N, π_N).

Some Examples:

- (i) Poisson submanifolds: $N \cap S$ is open in S;
- (ii) Poisson transversals: N intersects each leaf S transversely;
- (iii) Any point $\{x\}$ is a Poisson-Dirac submanifold of (M, π) .
- (iv) $\mathfrak{h}^0\subset\mathfrak{g}^*$ is Poisson-Dirac if $\mathfrak{h}\subset\mathfrak{g}$ admits a complement $\mathfrak{k}\subset\mathfrak{g}$ such that:

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{k}, \quad [\mathfrak{h}, \mathfrak{k}] \subset \mathfrak{h}.$$

(v) (see Lecture notes for more examples)

Another example

Take Lotka-Volterra type Poisson structure on $M = \mathbb{R}^4$:

$$\{x,y\} = xy, \quad \{x,z\} = 0, \quad \{x,w\} = xw, \\ \{y,z\} = yz, \quad \{y,w\} = 0, \quad \{z,w\} = zw.$$

The embedding $\mathbb{R}^2 \hookrightarrow \mathbb{R}^4$, $(u, v) \mapsto (u, v, u, v)$ gives a Poisson-Dirac submanifold.

Another example

Take Lotka-Volterra type Poisson structure on $M = \mathbb{R}^4$:

$$\{x, y\} = xy, \quad \{x, z\} = 0, \quad \{x, w\} = xw, \\ \{y, z\} = yz, \quad \{y, w\} = 0, \quad \{z, w\} = zw.$$

The embedding $\mathbb{R}^2 \hookrightarrow \mathbb{R}^4$, $(u, v) \mapsto (u, v, u, v)$ gives a Poisson-Dirac submanifold.

The induced Poisson structure on \mathbb{R}^2 is again of Lotka-Volterra type:

$$\{u,v\}=\frac{1}{2}uv.$$

Another example

Take Lotka-Volterra type Poisson structure on $M = \mathbb{R}^4$:

$$\{x, y\} = xy, \quad \{x, z\} = 0, \quad \{x, w\} = xw, \\ \{y, z\} = yz, \quad \{y, w\} = 0, \quad \{z, w\} = zw.$$

The embedding $\mathbb{R}^2 \hookrightarrow \mathbb{R}^4$, $(u, v) \mapsto (u, v, u, v)$ gives a Poisson-Dirac submanifold.

The induced Poisson structure on \mathbb{R}^2 is again of Lotka-Volterra type:

$$\{u,v\}=\frac{1}{2}uv.$$

This is neither a Poisson submanifold nor a Poisson transversal.

Poisson-Dirac submanflds w/ $(TN)^{\perp_{\pi}}$ of constant rank

Corollary

Let (M, π) be a Poisson manifold and $N \subset M$ a submanifold with the property that $(TN)^{\perp_{\pi}}$ has constant rank. Then N is a Poisson-Dirac submanifold if and only if $TN \cap (TN)^{\perp_{\pi}} = 0$.

Proposition

Given a Poisson manifold (M, π) and a Poisson-Dirac submanifold N, the following are equivalent:

- (i) $(TN)^{\perp_{\pi}}$ has constant rank,
- (ii) N is a Poisson submanifold inside some Poisson transversal X of (M,π).

Moreover, the germ of *X* around *N* is unique up to Poisson diffeomorphisms.

Poisson-Dirac submanflds w/ $(TN)^{\perp_{\pi}}$ of constant rank

Proposition

Let $N \subset (M, \pi)$ be a Poisson-Dirac submanifold with $(TN)^{\perp_{\pi}}$ of constant rank and assume we have a symplectic realization:

 $\mu: (S, \omega) \rightarrow (M, \pi).$

- If $P := \mu^{-1}(N)$ and $\omega_P := \omega|_P \in \Omega^2(P)$, then:
 - (i) P is pre-symplectic with ω_P of constant rank;
 - (ii) the kernel of ℋ_P := Ker ω_P ⊂ TP defines a regular foliation on P;
- (iii) if *ℋ_P* is a simple foliation, with leaf space denoted
 S_N := *P*/*ℋ_P*, then ω_P descends to a symplectic form ω_N on *S_N* and μ descends to a smooth map

$$\mu_N$$
: $(S_N, \omega_N) \rightarrow (N, \pi_N)$

which is a symplectic realization of (N, π_N) .

3) Coisotropic submanifolds

The previous classes of submanifolds had the important property that they carry induced Poisson structures. The next class is different:

Definition A **coisotropic** submanifold of a Poisson manifold (M, π) is any submanifold $C \subset M$ satisfying:

 $(TC)^{\perp_{\pi}} \subset TC.$

3) Coisotropic submanifolds

The previous classes of submanifolds had the important property that they carry induced Poisson structures. The next class is different:

Definition A **coisotropic** submanifold of a Poisson manifold (M, π) is any submanifold $C \subset M$ satisfying:

 $(TC)^{\perp_{\pi}} \subset TC.$

Proposition

A smooth map $\Phi : M_1 \to M_2$ between two Poisson manifolds (M_1, π_1) and (M_2, π_2) is a Poisson map if and only if its graph,

 $Graph(\Phi) = \{(x_1, \Phi(x_1)) : x_1 \in M_1\} \subset M_1 \times M_2,$

is a coisotropic submanifold of $(M_1, \pi_1) \times (M_2, -\pi_2)$.

Characterizations of closed coisotropic submanifolds

For a **closed** submanifold $C \subset (M, \pi)$ the following conditions are equivalent:

- (i) *C* is a coisotropic submanifold;
- (ii) The vanishing ideal $\mathscr{I}(C)$ is a Poisson subalgebra;
- (iii) For all $h \in \mathscr{I}(C)$ the hamiltonian vector field X_h is tangent to C.

Characterizations of closed coisotropic submanifolds

For a **closed** submanifold $C \subset (M, \pi)$ the following conditions are equivalent:

- (i) *C* is a coisotropic submanifold;
- (ii) The vanishing ideal $\mathscr{I}(C)$ is a Poisson subalgebra;
- (iii) For all $h \in \mathscr{I}(C)$ the hamiltonian vector field X_h is tangent to C.

So there is still a "Poisson flavor"!

Definition The characteristic distribution of a coisotropic submanifold C of a Poisson manifold (M, π) is:

$$\mathscr{K}_{\mathcal{C}} := (T\mathcal{C})^{\perp_{\pi}} \subset T\mathcal{C}.$$

Coisotropic reduction

Theorem

Let C be a coisotropic submanifold of (M, π) and assume that characteristic distribution \mathcal{K}_C has constant rank. Then:

(i) \mathscr{K}_{C} is a regular foliation,

(ii) if \mathscr{K}_C is simple then its leaf space $\underline{C} := C/\mathscr{K}_C$ carries a canonical Poisson structure $\underline{\pi} \in \mathfrak{X}^2(\underline{C})$.

Coisotropic reduction

Theorem

Let C be a coisotropic submanifold of (M, π) and assume that characteristic distribution \mathcal{K}_C has constant rank. Then:

- (i) \mathscr{K}_C is a regular foliation,
- (ii) if \mathscr{K}_{C} is simple then its leaf space $\underline{C} := C/\mathscr{K}_{C}$ carries a canonical Poisson structure $\underline{\pi} \in \mathfrak{X}^{2}(\underline{C})$.

Remark:

This generalizes the symplectic reduction of a Hamiltonian *G*-space $\mu : (S, \omega) \to \mathfrak{g}^*$: if 0 is regular value then $\mu^{-1}(0) \subset S$ is a coisotropic submanifold. If action is proper and free then the characteristic distribution of $C = \mu^{-1}(0)$ are the orbits of the action, and:

$$\underline{C} = \mu^{-1}(0)/G = M//G$$

More on coisotropic submanifolds

Many Examples:

- (i) $(TC)^{\perp_{\pi}} = 0$: these are the **Poisson submanifolds**;
- (ii) $(TC)^{\perp_{\pi}} = TC$: these are Lagrangian submanifolds;
- (iii) Any codimension 1 submanifold $C \subset (M, \pi)$;
- (iv) $\mathfrak{h}^\circ\subset\mathfrak{g}^*$ is a coisotropic submanifold if and only if $\mathfrak{h}\subset\mathfrak{g}$ is a Lie subalgebra;
- (v) (see Lecture notes for more examples)

More on coisotropic submanifolds

Many Examples:

- (i) $(TC)^{\perp_{\pi}} = 0$: these are the **Poisson submanifolds**;
- (ii) $(TC)^{\perp_{\pi}} = TC$: these are Lagrangian submanifolds;
- (iii) Any codimension 1 submanifold $C \subset (M, \pi)$;
- (iv) $\mathfrak{h}^\circ\subset\mathfrak{g}^*$ is a coisotropic submanifold if and only if $\mathfrak{h}\subset\mathfrak{g}$ is a Lie subalgebra;
- (v) (see Lecture notes for more examples)

Proposition

Let $\Phi : (M, \pi_M) \to (N, \pi_N)$ be a Poisson map and assume that Φ is transverse to a submanifold $C \subset N$. Then $\Phi^{-1}(C) \subset M$ is coisotropic if and only if $C \subset N$ is coisotropic.

Coisotropic embedding theorem

Theorem (Gotay's coisotropic embedding theorem)

Let (C, ω_C) be a manifold with a closed 2-form. There exists symplectic manifold (M, ω) and coisotropic embedding $i : C \hookrightarrow M$ such that $\omega_C = i^* \omega$ if and only if Ker ω_C has constant rank.

Coisotropic embedding theorem

Theorem (Gotay's coisotropic embedding theorem) Let (C, ω_C) be a manifold with a closed 2-form. There exists symplectic manifold (M, ω) and coisotropic embedding $i : C \hookrightarrow M$ such that $\omega_C = i^* \omega$ if and only if Ker ω_C has constant rank.

Recall that for a Dirac structure:

 $\ker \mathbb{L} = \mathbb{L} \cap T^* M.$

Generalizing Gotay's theorem:

Theorem (Coisotropic embedding theorem) Let (C, \mathbb{L}_C) be a Dirac manifold. There exists a Poisson manifold (M, π) and a coisotropic embedding $i : C \hookrightarrow M$ such that $\mathbb{L}_C = i^* \mathbb{L}_{\pi}$ if and only if Ker \mathbb{L}_C has constant rank.

4) Pre-Poisson submanifolds

The previous classes can be related via the following notion:

Definition A **pre-Poisson submanifold** of (M, π_M) is a submanifold $P \subset M$ with the property that

 $TP + (TP)^{\perp_{\pi}} \subset TM$

is of constant rank.

4) Pre-Poisson submanifolds

The previous classes can be related via the following notion:

Definition A **pre-Poisson submanifold** of (M, π_M) is a submanifold $P \subset M$ with the property that $TP + (TP)^{\perp_{\pi}} \subset TM$

is of constant rank.

Remark:

For a symplectic manifold (S, ω), a submanifold P ⊂ S is a pre-Poisson submanifold if and only if ω|_P has constant rank. In Symplectic Geometry, these are usually called pre-symplectic submanifolds.

Relation between submanifolds

