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What is this chapter about:

We have seen before important classes of submanifolds of a
Poisson manifold (M, ):

» Symplectic leaves

» Poisson transvsersals

This chapter studies other important classes of submanifolds:
» Poisson submanifolds
» Poisson-Dirac submanifolds
» Coisotropic submanifolds
» Pre-Poisson submanifolds

The different notions of submanifold N C (M, r) all have to do
with how TN interacts with its z-orthogonal:

(TN)*= .= 7 (TN)C.



1) Poisson submanifolds

Definition

A Poisson submanifold of a Poisson manifold (M, my,)
is a Poisson manifold (N, my) together with an injective
immersion i : N — M which a is Poisson map.
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Definition

A Poisson submanifold of a Poisson manifold (M, my,)
is a Poisson manifold (N, my) together with an injective
immersion i : N — M which a is Poisson map.

Proposition

Let (M, my) be a Poisson manifold. Given an immersed
submanifold N — M there is at most one Poisson
structure mn on N that makes (N, my) into a Poisson
manifold.




Poisson submanifolds: alternative characterizations

For a submanifold N c (M, my,) the following equivalent
conditions hold:

(i) Nis a Poisson submanifold;
(ii) Imzfy, C TxN, for all x € N;
(iiiy (TN)*= =0;
(iv) every hamiltonian vector field Xy € X(M) is tangent to N.



Poisson submanifolds: alternative characterizations

For a submanifold N c (M, my,) the following equivalent
conditions hold:

(i) Nis a Poisson submanifold;
(ii) Imzfy, C TxN, for all x € N;
(iiiy (TN)*= =0;
(iv) every hamiltonian vector field Xy € X(M) is tangent to N.

When N is a closed submanifold, these condition are also
equivalent to:

(vi) The vanishing ideal of N
F(N):={fe C°(M):f(x)=0,Vx € N}

is a Poisson ideal, i.e., for any f € .#(N), g € C*(M), one
has {f,g} € Z(N).
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» A Poisson submanifold N < M intersects a symplectic leaf
S of (M, ) in an open subset of S.

» The connected components of the intersections NN S are
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More about Poisson submanifolds

» A Poisson submanifold N < M intersects a symplectic leaf
S of (M, ) in an open subset of S.

» The connected components of the intersections NN S are
the symplectic leaves of (N, zy).

A complete Poisson submanifold is one consisting of a union
of symplectic leaves.
Some Examples:

(i) symplectic leaves;

(i) B° c g*, provided b C g is an ideal;

(iii) the spheres ||v|| = c in the dual of a compact Lie algebra g;
(iv) the singular locus in a log-symplectic submanifold;

(v) (see Lecture notes for more examples)



Symplectic realizations of Poisson submanifolds

Proposition
Let N be a Poisson submanifold of (M, ) and

w: (S o)— (M,r)

a symplectic realization. If C := u='(N), ¢ := o|¢ € Q?(C):
(i) the kernel of w¢,

Hc:=Kerwg C TC,

defines a regular foliation on C.

(i) if this foliation is simple and the leaf space is denoted
Sy = C/#¢, then o¢ descends to a symplectic form wy
on Sy and u descends to a smooth map

un = (Sn, on) — (N, 7ty)

which is a symplectic realization of (N, mty),
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Definition
A Poisson-Dirac submanifold of a Poisson manifold
(M, my,) is a Poisson manifold (N, my) together with an
immersion

i:(N,Lg,) = (M,Lg,)

which is a backward Dirac map.

Note that given a submanifold N of a Poisson manifold (M, )
there is at most one Poisson structure on N making the
inclusion a Poisson-Dirac submanifold.



Poisson-Dirac submflds: "Dirac-free” characterizations

N C (M, r) is a Poisson-Dirac submanifold if and only if the following
two conditions hold:

(i) TeNN(TeN)L= = {0} forall x € N,
(i) the bivector field my € I'(A2 TN) defined at each point by
N (Ex, Tx) = ”(E)ﬁﬁx) for &x,1x € Ty N, (1)

with &, 7ix € (T N)O extensions of &, 1, is smooth.



Poisson-Dirac submflds: "Dirac-free” characterizations

N C (M, r) is a Poisson-Dirac submanifold if and only if the following
two conditions hold:

(i) T«kNN(T¢N)*= = {0} forall x € N,
(ii) the bivector field my € [(A2TN) defined at each point by

N (Ex Mx) = ”(Exﬂ’lx) for &x,1x € TYN, (1)
with &, 7ix € (T N)O extensions of &, 1, is smooth.

Remarks:
» Extensions in (ii) exist by item (i).

» The proposition says that (i) and (ii) imply that my € X(N) will
automatically be Poisson.



More about Poisson-Dirac submanifolds

» A Poisson-Dirac submanifold N — M intersects each
symplectic leaf S of (M, my,) in a symplectic submanifold.

» The connected components of the intersections NN S are
the symplectic leaves of (N, zy).



More about Poisson-Dirac submanifolds

» A Poisson-Dirac submanifold N — M intersects each
symplectic leaf S of (M, my,) in a symplectic submanifold.

» The connected components of the intersections NN S are
the symplectic leaves of (N, zy).

Some Examples:
(i) Poisson submanifolds: NN S is open in S;

(ii) Poisson transversals: N intersects each leaf S
transversely;

(i) Any point {x} is a Poisson-Dirac submanifold of (M, ).
(iv) h° c g* is Poisson-Dirac if h C g admits a complement ¢ C g
such that:
g=hot, [hECh

(v) (see Lecture notes for more examples)



Another example

Take Lotka-Volterra type Poisson structure on M = R*:

{x,y}=xy, {x,z}=0, {x,w}=xw,
{y,z} =yz, {y,w}=0, {z,w}=2zw.

The embedding R? < R*, (u,v) — (u,Vv,u,Vv) gives a
Poisson-Dirac submanifold.
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Another example

Take Lotka-Volterra type Poisson structure on M = R*:

{x.y}=xy, {xz}=0, {x,w}=xw,
{y,z} =yz, {y,w}=0, {z,w}=2zw.

The embedding R? < R*, (u,v) — (u,Vv,u,Vv) gives a
Poisson-Dirac submanifold.

The induced Poisson structure on R? is again of Lotka-Volterra
type:

1
{u,v}= Suv.

This is neither a Poisson submanifold nor a Poisson transversal.



Poisson-Dirac submanflds w/ (TN)*= of constant rank

s )

Corollary

Let (M, ) be a Poisson manifold and N C M a submanifold
with the property that (TN)*= has constant rank. Then N is a
Poisson-Dirac submanifold if and only if TN N (TN)*= = 0.

Proposition
Given a Poisson manifold (M, ) and a Poisson-Dirac
submanifold N, the following are equivalent:

(i) (TN)*= has constant rank,

(i) N is a Poisson submanifold inside some Poisson
transversal X of (M, ).

Moreover, the germ of X around N is unique up to Poisson
diffeomorphisms.




Poisson-Dirac submanflds w/ (TN)*= of constant rank

Proposition
Let N c (M, ) be a Poisson-Dirac submanifold with (TN)*= of
constant rank and assume we have a symplectic realization:

u: (S 0)— (M,r).
If P:=u="(N) and wp := w|p € Q?(P), then:
(i) P is pre-symplectic with wp of constant rank;

(i) the kernel of #p .= Kerwp C TP defines a regular
foliation on P;

(iii) if p is a simple foliation, with leaf space denoted
Sy = P/p, then op descends to a symplectic form wy
on Sy and u descends to a smooth map

HN - (SvaN) — (an-N)

which is a symplectic realization of (N, my).




3) Coisotropic submanifolds
The previous classes of submanifolds had the important property that
they carry induced Poisson structures. The next class is different:

Definition
A coisotropic submanifold of a Poisson manifold (M, ) is any
submanifold C c M satisfying:

(TC)*= c TC.




3) Coisotropic submanifolds
The previous classes of submanifolds had the important property that
they carry induced Poisson structures. The next class is different:

Definition
A coisotropic submanifold of a Poisson manifold (M, ) is any
submanifold C c M satisfying:

(TC)*= c TC.

Proposition
A smooth map ¢ : My — M, between two Poisson manifolds
(My,my) and (Mo, o) is a Poisson map if and only if its graph,

Graph(®) = {(x1,®(x1)) : X1 € My} C My x My,

is a coisotropic submanifold of (My,m1) x (Mo, —mp).




Characterizations of closed coisotropic submanifolds
For a closed submanifold C C (M, ) the following conditions are
equivalent:

(i) Cis a coisotropic submanifold;
(i) The vanishing ideal .#(C) is a Poisson subalgebra;
(iii) For all h e .#(C) the hamiltonian vector field X}, is tangent to C.



Characterizations of closed coisotropic submanifolds
For a closed submanifold C C (M, ) the following conditions are
equivalent:

(i) Cis a coisotropic submanifold;
(i) The vanishing ideal .#(C) is a Poisson subalgebra;
(iii) For all h e .#(C) the hamiltonian vector field X}, is tangent to C.

» So there is still a "Poisson flavor”!

Definition
The characteristic distribution of a coisotropic submanifold
C of a Poisson manifold (M, r) is:

He = (TC)*= c TC.




Coisotropic reduction

Theorem

Let C be a coisotropic submanifold of (M, ) and assume

that characteristic distribution ¢ has constant rank.
Then:

() #¢ is a regular foliation,

(i) if #¢ is simple then its leaf space C := C/.%¢
carries a canonical Poisson structure &t € ¥2(C).




Coisotropic reduction

Theorem

Let C be a coisotropic submanifold of (M, ) and assume

that characteristic distribution ¢ has constant rank.
Then:

() #¢ is a regular foliation,

(i) if #¢ is simple then its leaf space C := C/. ¢
carries a canonical Poisson structure &t € ¥2(C).

» Remark:

This generalizes the symplectic reduction of a Hamiltonian G-space
u: (S, ) — g*: if 0 is regular value then u~'(0) C S is a coisotropic
submanifold. If action is proper and free then the characteristic
distribution of C = u~1(0) are the orbits of the action, and:

C=pu'0)/G=M//G




More on coisotropic submanifolds

Many Examples:
(i) (TC)*= =0: these are the Poisson submanifolds;
(i) (TC)*= = TC: these are Lagrangian submanifolds;
(iii) Any codimension 1 submanifold C C (M, r);
)

(iv) h° C g* is a coisotropic submanifold if and only if h C g is a
Lie subalgebra;
(v) (see Lecture notes for more examples)



More on coisotropic submanifolds

Many Examples:
(i) (TC)*= =0: these are the Poisson submanifolds;
(i) (TC)*= = TC: these are Lagrangian submanifolds;
(iii) Any codimension 1 submanifold C C (M, r);
(iv) h° C g* is a coisotropic submanifold if and only if h C g is a
Lie subalgebra;
(v) (see Lecture notes for more examples)

Proposition

Letd: (M,my) — (N,myn) be a Poisson map and assume
that ® is transverse to a submanifold C ¢ N. Then
®~1(C) c M is coisotropic if and only if C C N is
coisotropic.




Coisotropic embedding theorem

Theorem (Gotay’s coisotropic embedding theorem)

Let (C,wc) be a manifold with a closed 2-form. There exists
symplectic manifold (M, ®) and coisotropic embedding

i: C— M such that wc = i*® if and only if Ker wc has constant
rank.




Coisotropic embedding theorem

Theorem (Gotay’s coisotropic embedding theorem)
Let (C,w¢c) be a manifold with a closed 2-form. There exists
symplectic manifold (M, ®) and coisotropic embedding

i: C— M such that wc = i*® if and only if Ker wc has constant
rank.

Recall that for a Dirac structure:

kerL =LNT*M.

Generalizing Gotay’s theorem:

Theorem (Coisotropic embedding theorem)

Let (C,L¢) be a Dirac manifold. There exists a Poisson
manifold (M, ) and a coisotropic embedding i : C — M such
that Lo = i*Ly if and only if KerLc has constant rank.




4) Pre-Poisson submanifolds

The previous classes can be related via the following notion:

Definition
A pre-Poisson submanifold of (M, my,) is a submanifold
P c M with the property that

TP+ (TP)**Cc TM

is of constant rank.




4) Pre-Poisson submanifolds

The previous classes can be related via the following notion:

Definition
A pre-Poisson submanifold of (M, my,) is a submanifold
P c M with the property that

TP+ (TP)**Cc TM

is of constant rank.

Remark:

» For a symplectic manifold (S, ®), a submanifold P C Sis a
pre-Poisson submanifold if and only if o|p has constant
rank. In Symplectic Geometry, these are usually called
pre-symplectic submanifolds.




Relation between submanifolds

pre—Poisson submanifolds 3

Poisson—Dirac of constant rank

coisotropic submanifolds
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