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What is this chapter about:
We have seen before important classes of submanifolds of a
Poisson manifold (M,π):

I Symplectic leaves
I Poisson transvsersals

This chapter studies other important classes of submanifolds:
I Poisson submanifolds
I Poisson-Dirac submanifolds
I Coisotropic submanifolds
I Pre-Poisson submanifolds

The different notions of submanifold N ⊂ (M,π) all have to do
with how TN interacts with its π-orthogonal:

(TN)⊥π := π
](TN)0.
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1) Poisson submanifolds

Definition
A Poisson submanifold of a Poisson manifold (M,πM)
is a Poisson manifold (N,πN) together with an injective
immersion i : N ↪→M which a is Poisson map.

Proposition
Let (M,πM) be a Poisson manifold. Given an immersed
submanifold N ↪→M there is at most one Poisson
structure πN on N that makes (N,πN) into a Poisson
manifold.
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Poisson submanifolds: alternative characterizations

For a submanifold N ⊂ (M,πM) the following equivalent
conditions hold:

(i) N is a Poisson submanifold;
(ii) Imπ

#
M,x ⊂ TxN, for all x ∈ N;

(iii) (TN)⊥π = 0;
(iv) every hamiltonian vector field XH ∈ X(M) is tangent to N.

When N is a closed submanifold, these condition are also
equivalent to:

(vi) The vanishing ideal of N

I (N) := {f ∈ C∞(M) : f (x) = 0,∀x ∈ N}

is a Poisson ideal, i.e., for any f ∈I (N), g ∈ C∞(M), one
has {f ,g} ∈I (N).
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More about Poisson submanifolds

I A Poisson submanifold N ↪→M intersects a symplectic leaf
S of (M,πM) in an open subset of S.

I The connected components of the intersections N ∩S are
the symplectic leaves of (N,πN).

A complete Poisson submanifold is one consisting of a union
of symplectic leaves.

Some Examples:
(i) symplectic leaves;
(ii) h0 ⊂ g∗, provided h⊂ g is an ideal;
(iii) the spheres ||v ||= c in the dual of a compact Lie algebra g;
(iv) the singular locus in a log-symplectic submanifold;
(v) (see Lecture notes for more examples)
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Symplectic realizations of Poisson submanifolds

Proposition
Let N be a Poisson submanifold of (M,π) and

µ : (S,ω)→ (M,π)

a symplectic realization. If C := µ−1(N), ωC := ω|C ∈ Ω2(C):
(i) the kernel of ωC ,

KC := Ker ωC ⊂ TC,

defines a regular foliation on C.

(ii) if this foliation is simple and the leaf space is denoted
SN := C/KC , then ωC descends to a symplectic form ωN
on SN and µ descends to a smooth map

µN : (SN ,ωN)→ (N,πN)

which is a symplectic realization of (N,πN),



2) Poisson-Dirac submanifolds

There are relatively few examples of Poisson submanifolds.

Definition
A Poisson-Dirac submanifold of a Poisson manifold
(M,πM) is a Poisson manifold (N,πN) together with an
immersion

i : (N,LπN ) ↪→ (M,LπM )

which is a backward Dirac map.

Note that given a submanifold N of a Poisson manifold (M,πM)
there is at most one Poisson structure on N making the
inclusion a Poisson-Dirac submanifold.
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Poisson-Dirac submflds: ”Dirac-free” characterizations

N ⊂ (M,π) is a Poisson-Dirac submanifold if and only if the following
two conditions hold:

(i) TxN ∩ (TxN)⊥π = {0} for all x ∈ N,

(ii) the bivector field πN ∈ Γ(∧2TN) defined at each point by

πN(ξx ,ηx ) = π(ξ̃x , η̃x ) for ξx ,ηx ∈ T ∗x N, (1)

with ξ̃x , η̃x ∈ (T⊥π
x N)0 extensions of ξx ,ηx , is smooth.

Remarks:

I Extensions in (ii) exist by item (i).

I The proposition says that (i) and (ii) imply that πN ∈ X(N) will
automatically be Poisson.
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More about Poisson-Dirac submanifolds

I A Poisson-Dirac submanifold N ↪→M intersects each
symplectic leaf S of (M,πM) in a symplectic submanifold.

I The connected components of the intersections N ∩S are
the symplectic leaves of (N,πN).

Some Examples:
(i) Poisson submanifolds: N ∩S is open in S;
(ii) Poisson transversals: N intersects each leaf S

transversely;
(iii) Any point {x} is a Poisson-Dirac submanifold of (M,π).
(iv) h0 ⊂ g∗ is Poisson-Dirac if h⊂ g admits a complement k⊂ g

such that:
g = h⊕ k, [h,k]⊂ h.

(v) (see Lecture notes for more examples)
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Another example

Take Lotka-Volterra type Poisson structure on M = R4:

{x ,y}= xy , {x ,z}= 0, {x ,w}= xw ,

{y ,z}= yz, {y ,w}= 0, {z,w}= zw .

The embedding R2 ↪→ R4, (u,v) 7→ (u,v ,u,v) gives a
Poisson-Dirac submanifold.

The induced Poisson structure on R2 is again of Lotka-Volterra
type:

{u,v}=
1
2

uv .

This is neither a Poisson submanifold nor a Poisson transversal.
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Poisson-Dirac submanflds w/ (TN)⊥π of constant rank

Corollary
Let (M,π) be a Poisson manifold and N ⊂M a submanifold
with the property that (TN)⊥π has constant rank. Then N is a
Poisson-Dirac submanifold if and only if TN ∩ (TN)⊥π = 0.

Proposition
Given a Poisson manifold (M,π) and a Poisson-Dirac
submanifold N, the following are equivalent:

(i) (TN)⊥π has constant rank,

(ii) N is a Poisson submanifold inside some Poisson
transversal X of (M,π).

Moreover, the germ of X around N is unique up to Poisson
diffeomorphisms.



Poisson-Dirac submanflds w/ (TN)⊥π of constant rank

Proposition
Let N ⊂ (M,π) be a Poisson-Dirac submanifold with (TN)⊥π of
constant rank and assume we have a symplectic realization:

µ : (S,ω)→ (M,π).

If P := µ−1(N) and ωP := ω|P ∈ Ω2(P), then:
(i) P is pre-symplectic with ωP of constant rank;

(ii) the kernel of KP := Ker ωP ⊂ TP defines a regular
foliation on P;

(iii) if KP is a simple foliation, with leaf space denoted
SN := P/KP , then ωP descends to a symplectic form ωN
on SN and µ descends to a smooth map

µN : (SN ,ωN)→ (N,πN)

which is a symplectic realization of (N,πN).



3) Coisotropic submanifolds
The previous classes of submanifolds had the important property that
they carry induced Poisson structures. The next class is different:

Definition
A coisotropic submanifold of a Poisson manifold (M,π) is any
submanifold C ⊂M satisfying:

(TC)⊥π ⊂ TC.

Proposition
A smooth map Φ : M1→M2 between two Poisson manifolds
(M1,π1) and (M2,π2) is a Poisson map if and only if its graph,

Graph(Φ) = {(x1,Φ(x1)) : x1 ∈M1} ⊂M1×M2,

is a coisotropic submanifold of (M1,π1)× (M2,−π2).
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Characterizations of closed coisotropic submanifolds

For a closed submanifold C ⊂ (M,π) the following conditions are
equivalent:

(i) C is a coisotropic submanifold;

(ii) The vanishing ideal I (C) is a Poisson subalgebra;

(iii) For all h ∈I (C) the hamiltonian vector field Xh is tangent to C.

I So there is still a ”Poisson flavor”!

Definition
The characteristic distribution of a coisotropic submanifold
C of a Poisson manifold (M,π) is:

KC := (TC)⊥π ⊂ TC.
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Coisotropic reduction

Theorem
Let C be a coisotropic submanifold of (M,π) and assume
that characteristic distribution KC has constant rank.
Then:

(i) KC is a regular foliation,
(ii) if KC is simple then its leaf space C := C/KC

carries a canonical Poisson structure π ∈ X2(C).

I Remark:

This generalizes the symplectic reduction of a Hamiltonian G-space
µ : (S,ω)→ g∗: if 0 is regular value then µ−1(0)⊂ S is a coisotropic
submanifold. If action is proper and free then the characteristic
distribution of C = µ−1(0) are the orbits of the action, and:

C = µ
−1(0)/G = M//G
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More on coisotropic submanifolds

Many Examples:
(i) (TC)⊥π = 0: these are the Poisson submanifolds;
(ii) (TC)⊥π = TC: these are Lagrangian submanifolds;
(iii) Any codimension 1 submanifold C ⊂ (M,π);
(iv) h◦ ⊂ g∗ is a coisotropic submanifold if and only if h⊂ g is a

Lie subalgebra;
(v) (see Lecture notes for more examples)

Proposition
Let Φ : (M,πM)→ (N,πN) be a Poisson map and assume
that Φ is transverse to a submanifold C ⊂ N. Then
Φ−1(C)⊂M is coisotropic if and only if C ⊂ N is
coisotropic.
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Coisotropic embedding theorem

Theorem (Gotay’s coisotropic embedding theorem)
Let (C,ωC) be a manifold with a closed 2-form. There exists
symplectic manifold (M,ω) and coisotropic embedding
i : C ↪→M such that ωC = i∗ω if and only if Ker ωC has constant
rank.

Recall that for a Dirac structure:

kerL = L∩T ∗M.

Generalizing Gotay’s theorem:

Theorem (Coisotropic embedding theorem)
Let (C,LC) be a Dirac manifold. There exists a Poisson
manifold (M,π) and a coisotropic embedding i : C ↪→M such
that LC = i∗Lπ if and only if KerLC has constant rank.
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4) Pre-Poisson submanifolds

The previous classes can be related via the following notion:

Definition
A pre-Poisson submanifold of (M,πM) is a submanifold
P ⊂M with the property that

TP + (TP)⊥π ⊂ TM

is of constant rank.

Remark:
I For a symplectic manifold (S,ω), a submanifold P ⊂ S is a

pre-Poisson submanifold if and only if ω|P has constant
rank. In Symplectic Geometry, these are usually called
pre-symplectic submanifolds.
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Relation between submanifolds

Poisson−Dirac of constant rank

pre−Poisson submanifolds

Poisson−Dirac submanifolds

coisotropic

submanifolds

Poisson

submanifolds
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leaves

Poisson
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