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What is this chapter about:

We are now entering the last part of these lectures:

» Aim: What are the group-like objects integrating the Poisson
algebra (C~(M),{-,-})?

This chapter starts unveiling these objects by looking at symplectic
realizations:

» Discuss classes of symplectic realizations;

» Look at special classes: non-degenerate, zero and linear
Poisson structures;

» Extrapolate from these examples to general symplectic
realizations.
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1) Complete symplectic realizations

Definition
A symplectic realization u : (S, ) — (M, r) is called:
(i) a compact symplectic realization if S is compact.

(i) a proper symplectic realizations if u is a proper map, i.e.

K C Miscompact = pu~'(K) is compact.

(iii) a complete symplectic realization if u is complete i.e., for
any smooth family f; € C*(M) of time-dependent
functions one has:

Xi, € X(M) is complete = Xy:(5,y € X(S) is complete.

compact SR = proper SR = complete SR
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o Xy :=7t(a) € X(M)
e a(a) € X(S) defined by izqy0 = u*a.
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Proposition

The following are equivalent characterizations of
completeness of u : (S, w) — (M, x):

(i) Forfre C=(M): X complete = X1,y € X(S) complete.
(i) Fora; € Q' (M): Xy, complete = a(ay) € X(S) complete
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o Xy :=7t(a) € X(M)
e a(a) € X(S) defined by izqy0 = u*a.

(if a =df: Xy = Xr and a(a) = X,+(r))
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Proposition
The following are equivalent characterizations of

completeness of u : (S, w) — (M, x):
(i) Forfre C=(M): X complete = X1,y € X(S) complete.
(i) Fora; € Q' (M): Xy, complete = a(ay) € X(S) complete
(iii) Forfr e CZ(M), X1,y € X(S) is complete.
)

(iv) Foroy € QL(M): (oct) € X(S) is complete.

Note: given o € Q' (M) and y: | — M there exists f; € C3(M):

(a)lyey = (dfe)lyry, Viel



2) Study case: linear Poisson structures

Proposition

Assume (S, o) is symplectic, 1 : S — g* is smooth map, G the
1-connected Lie group integrating g, and let:

329—):{(8), ia(V)C()Zd[.LV.
Then:
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Proposition

Assume (S, ) is symplectic, 1 : S — g* is smooth map, G the
1-connected Lie group integrating g, and let:

a:g— X(S), [av)® = dpty.
Then:
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(S, 0) = (g, mg) (7 spaces (S, o)




2) Study case: linear Poisson structures

Proposition

Assume (S, o) is symplectic, 1 : S — g* is smooth map, G the
1-connected Lie group integrating g, and let:

ag—>:f(8), ia(v)a):duv.
Then:

u:(S,0)—=(g°,15) ~ a:g— X(S)isg-action
Poisson map and u is g-equivariant

u is complete < g-action integrates to G-action

complete symplectic realizations locally free
p: (S, 0) — (U, mgly) <= { G-Hamiltonian
with U C g* open G-invariant spaces (S, o)
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Proposition
Assume (S, ) is symplectic, i : S — M a submersion, and let:
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3) Study case: zero Poisson structures

Proposition
Assume (S, o) is symplectic, i : S — M a submersion, and let:

a: Q' (M) = x(S),  lae)(0)=pa.

Then:
u:(S,0)—(M0) . alx)aretangent to the fibers to u:
Poisson map Im(a) C X(Fy)

In this case, one has [a(«),a(B)] = 0.

Symplectic realization infinitesimal action of abelian
u:(S,0)— (M,0) (= Liealgebra T;Mon u~'(x)




3) Study case: zero Poisson structures

Proposition
Assume (S, ) is symplectic, i : S — M a submersion, and let:

a: Q' (M) = x(S), i) =p"a

Then:
p:(S,w)—(M0) . ala)aretangent to the fibers to u:
Poisson map Im(a) C X(Fy)

In this case, one has [a(a),a(B)] = 0.

Complete { action of abelian }
=

symplectic realization , ) y
u: (S ,0)— (M,0) Lie group (T;M,+) on u="(x)
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Lagrangian fibrations

Corollary

Symplectic realizations u : (S, ®) — (M,0) w/dim S =2dimM
are the same thing as surjective submersions i : (S,®) — M
with Lagrangian fibers.

Definition
A surjective submersion u : (S, w) — M with connected,
Lagrangian fibers is called a (regular) Lagrangian fibration.

If u:(S,w) — Mis proper Lagrangian fibration:
> (T;M,+) acts on the fiber u~'(x): locally free and transitive;
> isotropy groups:
M={E € TiM 93y =idy 109}

This is called the subgroup of periods of the Lagrangian
fibration at x.



Geometry of proper Lagrangian fibrations
Notations: For u : (S,0) — M proper Lagrangian fibration:
e group of periods Ay (isotropy of ( T;;M,+)-action on u~"(x))
o Th = TiM/A
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Geometry of proper Lagrangian fibrations
Notations: For u : (S,0) — M proper Lagrangian fibration:
e group of periods Ay (isotropy of ( T;;M,+)-action on u~"(x))
o Th = TiM/A
Tnon” 00 = (), (1E1:P) = 04y (P): (1)

Proposition
(i) each Ay C T;M is a lattice so Ip, ~T"=R"/Z";
(i) A=UxemNx C T*M is an integrable lattice;

(iii) the actions (1) are free and transitive, so u='(x) ~ T”,

Ih O(S,0)

Y

(M.,0)




Lagrangian fibrations and integral affine structures

Definition
An integrable lattice A ¢ T*M consists of abelian subgroups
Ax = AN T; M forming a lattice and such that A is locally

spanned by closed 1-forms.
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Lagrangian fibrations and integral affine structures

Definition

An integrable lattice A ¢ T*M consists of abelian subgroups
Ax = AN T; M forming a lattice and such that A is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(U;, ¢;)}ic; such
that the transition functions are integral affine transformations:

9io¢ () =Ax+v, AeGL(nZ),veR"

Given A C T*M define a local chart (U, ¢) = (U, x) to be an integral
affine chart if:

Ny = {kydx" 4+ kndx" : k; € Z}.



Lagrangian fibrations and integral affine structures
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Definition

An integrable lattice A C T*M consists of abelian subgroups
Ax = AN T; M forming a lattice and such that A is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(U;, ¢;)};c; such
that the transition functions are integral affine transformations:

9o '(x)=Ax+v, AeGL(nZ),veR"

. J

Conversely, given integral affine structure {(U;, ¢;)};c; define a lattice:

/\x — {k1dx1|x+...+kndxn‘x : k,'EZ},

for any integral affine chart (U, ¢) = (U, x) containing x



Lagrangian fibrations and integral affine structures
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Definition

An integrable lattice A ¢ T*M consists of abelian subgroups
Ax = AN T; M forming a lattice and such that A is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(U;, ¢;)}ic; such
that the transition functions are integral affine transformations:

9io¢ ' (x)=Ax+v, A€eGL(nZ),veR"

integrable lattices | integral affine structures
AC T*M A on M



Lagrangian fibrations and integral affine structures

Definition

An integrable lattice A C T*M consists of abelian subgroups
Ax = AN T; M forming a lattice and such that A is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(U;, ¢;)}ic; such
that the transition functions are integral affine transformations:

9io¢ '(x)=Ax+v, AeGL(nZ),veR".

Conclusion: The base of a proper Lagrangian fibration (=proper
symplectic realization of zero Poisson structure with connected fibers)

has a natural integral affine structure.
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Any surjective local diffeomorphism p : S — M with the
pullback symplectic form u*(n~') is a realization.

W is complete <=> | is a covering map.




4) Study case: nondegenerate Poisson structures

e (M,r) is non-degenerate (n~' is symplectic form)

Proposition
Any surjective local diffeomorphism p : S — M with the
pullback symplectic form u*(n~') is a realization.

W is complete <=> | is a covering map.

Proposition

For any u : (S,®) — (M, r), the integrable distribution
H = 9,f c S,

defines a flat Ehresmann connection on .:

TS =Kerdu @ 5.
U is complete <= I is complete
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An Ehresmann connection for submersion u : S — M is a splitting:
TS =kerdu @ 52,
It allows to lift paths y: [0,1] — M to horizontal paths in S:

Given py € u~'(y(0)) there is unique 77 : [0,e[— S:
{ 92 (1) e A,

770(0) = po,  u(¥Pe(t)) = (1)

The Ehresmann connection is:
» complete if every horizontal lift is defined for t € [0, 1]
» flat if 27 is integrable distribuition

Complete = parallel transport map:

TY:.LL71(XO)_>#71(X1)3 pH7P(1)a

Complete + Flat = 7, is invariant under path-homotopy



Homotopy groupoid
The homotopy groupoid of M:
_{r:01]—->M} ¢

—_—_—M

nm) -

~

source/target maps:

s:N(M) =M, [y]— ¥(0),
(M) =M, [v]—v(1)

multiplication:

nlolrl:=[norl if s(nl)=t{rl])




Homotopy groupoid
The homotopy groupoid of M:
_{r:01]—->M} ¢

— =M

nm) -

~

source/target maps:

s:N(M) =M, [y]— ¥(0),
(M) =M, [v]—v(1)

multiplication:

nlolrl:=[norl if s(nl)=t{rl])

We have an "action”:
MM, x0,x1) x ™" (x0) = 1~ ' (x1),  ([1,p) = [1]- P = 7(0),
where:
MM, xo,x1) :={[y] € N(M) : s([7]) = X0, t([7]) = x1 }.



n(MaXOaX1) X :LL_1 (XO) — #_1 (X1)7 ([’}/]7p) — [’}/] Pi= Ty(p)a

(i) the class of the constant path y(t) = x acts as an identity:
X]-p=p
(i) if [r],[r2] € N(M) are composable one has:
(Inlelrel)-p=Inl-(lrl-p)



n(MaXOaX1) X ,LL_1 (XO) — #_1 (X1)7 ([’}/]7p) — [’}/] Pi= TY(p)a

(i) the class of the constant path y(t) = x acts as an identity:
X]-p=p
(i) if [r],[r2] € N(M) are composable one has:
(Inlelrel)-p=Inl-(lrl-p)

Proposition

If (M, ) is a nondegenerate Poisson manifold then any
complete symplectic realization p1 : (S, ®) — (M, &) carries a
canonical action of (M)

nm) O(S. )
)

N

M,z
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5) General symplectic realizations
w: (S 0)— (M,x)

» vertical foliation: .7, = Kerdy,;
> orbit foliation: .7-.

Definition
The infinitesimal action associated with the symplectic
realization is
a:p'TM—TS
where:
lay@ = p*a, Yaec TM.

(a) pointwise: linear map ap : Tﬂ*(p)M — TpSforeachpe S
(b) sections: amap a: Q' (M) — X(S)
a([a, Blz) = [a(e),a(B)], VB €Q'(M).



Properties of the action
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(i) infinitesimal action is pointwise free, i.e., it is injective:
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Properties of the action
ToS
> |
TipM —= TupM
(i) infinitesimal action is pointwise free, i.e., it is injective:

(i) The image is the orbit foliation:

Im(a) = 7.

(iii) in the isotropy Lie algebra gives a linear isomorphism

. f ~
ap: Gu(p) = Kermy  ——= FupN Ty -



Geometry of symplectic realizations

Corollary

Each orbit Op € 7, ”i is a presymplectic manifold and the
restriction [, := U|o, is a submersion onto the symplectic leaf
containing u(p):

(S 0)

0, o= ut .
p Fo=Hg,0s,,




Complete symplectic realizations

wTM-2~TS

|

T

Think of a: u*T*M — TS has "horizontal lift” of covectors in M to
tangent vectors in S



Complete symplectic realizations

wTM-2~TS

|

"M ——TM

ﬂli
Think of a: u*T*M — TS has "horizontal lift” of covectors in M to
tangent vectors in S

Definition

Given a symplectic realization, a lift of a cotangent path
a:[0,1] — T*Mto Sis any path

() = agp(a()),
u(¥(t)) = va(t).

We call ¥ a complete lift if it is defined for t € [0, 1].

¥:10,e[— S, such that {




Complete symplectic realizations

(S o) = (M)

Proposition
Given cotangent path a: [0,1] — T*M and pg € u~"(72(0)):
> there exists a unique lift ¥7° : [0,e[— S starting at py.

> there exist complete lifts ¥° if and only if u is complete.




Complete symplectic realizations

(S o) = (M)

Proposition
Given cotangent path a: [0,1] — T*M and py € 1" (72(0)):
> there exists a unique lift ¥7° : [0,e[— S starting at py.

> there exist complete lifts ¥° if and only if u is complete.

\.

Complete realization = parallel transport:

Ta i (1(0)) = n ' (1a(1)), P FE(T).



Complete symplectic realizations

(S o) = (M)

Proposition
Given cotangent path a: [0,1] — T*M and py € 1" (72(0)):
> there exists a unique lift ¥7° : [0,e[— S starting at py.

> there exist complete lifts ¥° if and only if u is complete.

\.

Complete realization = parallel transport:

Ta i (1(0)) = n ' (1a(1)), P FE(T).

Proposition
> a~b < if75° ~ 75 in aleaf of 7.

> a~b=— T,=1p.




Groupoid of a Poisson manifold

~ {a:[0,1] — T*M : cotangent path} _ ¢

MM, r): —y” |
~ s
source/target:
s:N(M,x)— M, [a]— va(0),
t:N(M, ) — M, [a~— va(1).
multiplication:

[a]o[b];= [acb] it s([a]) = t([b])-



Groupoid of a Poisson manifold

~ {a:[0,1] — T*M : cotangent path} _ ¢

N(M, =) —=M
~ S
source/target:
s:N(M,x)— M, [a]— va(0),
t:N(M, ) — M, [a~— va(1).
multiplication:

[a]o[b];= [acb] it s([a]) = t([b])-

Proposition (action on complete realization)
Any complete symplectic realization . : (S, w) — (M, r) carries
a canonical action of (M, ) defined by:

NM,z) O(S. 0

[a-p=ta(p) i s(la)=u(p) \ L“

)
(M, )
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