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What is this chapter about:

We are now entering the last part of these lectures:

I Aim: What are the group-like objects integrating the Poisson
algebra (C∞(M),{·, ·})?

This chapter starts unveiling these objects by looking at symplectic
realizations:

I Discuss classes of symplectic realizations;

I Look at special classes: non-degenerate, zero and linear
Poisson structures;

I Extrapolate from these examples to general symplectic
realizations.
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1) Complete symplectic realizations

Definition
A symplectic realization µ : (S,ω)→ (M,π) is called:

(i) a compact symplectic realization if S is compact.

(ii) a proper symplectic realizations if µ is a proper map, i.e.

K ⊂M is compact =⇒ µ
−1(K ) is compact.

(iii) a complete symplectic realization if µ is complete i.e., for
any smooth family ft ∈ C∞(M) of time-dependent
functions one has:

Xft ∈ X(M) is complete =⇒ Xµ∗(ft ) ∈ X(S) is complete.
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Notations: For µ : (S,ω)→ (M,π) and α ∈ Ω1(M):

• Xα := π](α) ∈ X(M)

• a(α) ∈ X(S) defined by ia(α)ω = µ∗α.

(if α = df : Xα = Xf and a(α) = Xµ∗(f ))

Proposition
The following are equivalent characterizations of
completeness of µ : (S,ω)→ (M,π):

(i) For ft ∈ C∞(M): Xft complete⇒ Xµ∗(ft ) ∈ X(S) complete.

(ii) For αt ∈ Ω1(M): Xαt complete⇒ a(αt ) ∈ X(S) complete

(iii) For ft ∈ C∞
c (M), Xµ∗(ft ) ∈ X(S) is complete.

(iv) For αt ∈ Ω1
c(M): a(αt ) ∈ X(S) is complete.

Note: given αt ∈ Ω1(M) and γ : I→M there exists ft ∈ C∞
c (M):

(αt )|γ(t) = (dft )|γ(t), ∀t ∈ I.
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2) Study case: linear Poisson structures

Proposition
Assume (S,ω) is symplectic, µ : S→ g∗ is smooth map, G the
1-connected Lie group integrating g, and let:

a : g→ X(S), ia(v)ω = dµv .

Then:
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and µ is g-equivariant



2) Study case: linear Poisson structures

Proposition
Assume (S,ω) is symplectic, µ : S→ g∗ is smooth map, G the
1-connected Lie group integrating g, and let:

a : g→ X(S), ia(v)ω = dµv .

Then:

µ : (S,ω)→ (g∗,πg)
Poisson map

⇔ a : g→ X(S) is g-action
and µ is g-equivariant

µ is complete ⇔ g-action integrates to G-action



2) Study case: linear Poisson structures

Proposition
Assume (S,ω) is symplectic, µ : S→ g∗ is smooth map, G the
1-connected Lie group integrating g, and let:

a : g→ X(S), ia(v)ω = dµv .

Then:

µ : (S,ω)→ (g∗,πg)
Poisson map

⇔ a : g→ X(S) is g-action
and µ is g-equivariant

µ is complete ⇔ g-action integrates to G-action

 Poisson maps
µ : (S,ω)→ (g∗,πg)

←̃→
g-Hamiltonian

spaces (S,ω)





2) Study case: linear Poisson structures

Proposition
Assume (S,ω) is symplectic, µ : S→ g∗ is smooth map, G the
1-connected Lie group integrating g, and let:

a : g→ X(S), ia(v)ω = dµv .

Then:

µ : (S,ω)→ (g∗,πg)
Poisson map

⇔ a : g→ X(S) is g-action
and µ is g-equivariant

µ is complete ⇔ g-action integrates to G-action


complete symplectic realizations

µ : (S,ω)→ (U,πg|U)
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3) Study case: zero Poisson structures
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∗
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Symplectic realization
µ : (S,ω)→ (M,0)

 =⇒

 infinitesimal action of abelian
Lie algebra T ∗x M on µ−1(x)
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Proposition
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symplectic realization
µ : (S,ω)→ (M,0)

 =⇒
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Lagrangian fibrations

Corollary
Symplectic realizations µ : (S,ω)→ (M,0) w/ dimS = 2dimM
are the same thing as surjective submersions µ : (S,ω)→M
with Lagrangian fibers.

Definition
A surjective submersion µ : (S,ω)→M with connected,
Lagrangian fibers is called a (regular) Lagrangian fibration.

If µ : (S,ω)→M is proper Lagrangian fibration:
I (T ∗x M,+) acts on the fiber µ−1(x): locally free and transitive;
I isotropy groups:

Λx = {ξ ∈ T ∗x M : φ
1
a(ξ ) = id

µ−1(x)}.

This is called the subgroup of periods of the Lagrangian
fibration at x .
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Geometry of proper Lagrangian fibrations
Notations: For µ : (S,ω)→M proper Lagrangian fibration:

• group of periods Λx (isotropy of (T ∗x M,+)-action on µ−1(x))

• TΛx := T ∗x M/Λx

TΛx ×µ
−1(x)→ µ

−1(x), ([ξ ],p) 7→ φ
1
a(ξ )(p). (1)

Proposition
(i) each Λx ⊂ T ∗x M is a lattice so TΛx ' Tn = Rn/Zn;

(ii) Λ =
⋃

x∈M Λx ⊂ T ∗M is an integrable lattice;

(iii) the actions (1) are free and transitive, so µ−1(x)' Tn,

TΛ

��

(S,ω)	
µ

��
(M,0)
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Lagrangian fibrations and integral affine structures

Definition
An integrable lattice Λ⊂ T ∗M consists of abelian subgroups
Λx = Λ∩T ∗x M forming a lattice and such that Λ is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(Ui ,φi )}i∈I such
that the transition functions are integral affine transformations:

φi ◦φ
−1
j (x) = Ax + v , A ∈ GL(n,Z),v ∈ Rn.
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Definition
An integrable lattice Λ⊂ T ∗M consists of abelian subgroups
Λx = Λ∩T ∗x M forming a lattice and such that Λ is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(Ui ,φi )}i∈I such
that the transition functions are integral affine transformations:

φi ◦φ
−1
j (x) = Ax + v , A ∈ GL(n,Z),v ∈ Rn.

Conversely, given integral affine structure {(Ui ,φi )}i∈I define a lattice:
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Definition
An integrable lattice Λ⊂ T ∗M consists of abelian subgroups
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Lagrangian fibrations and integral affine structures

Definition
An integrable lattice Λ⊂ T ∗M consists of abelian subgroups
Λx = Λ∩T ∗x M forming a lattice and such that Λ is locally
spanned by closed 1-forms.

Definition
An integral affine structure on M is an atlas {(Ui ,φi )}i∈I such
that the transition functions are integral affine transformations:

φi ◦φ
−1
j (x) = Ax + v , A ∈ GL(n,Z),v ∈ Rn.

Conclusion: The base of a proper Lagrangian fibration (=proper
symplectic realization of zero Poisson structure with connected fibers)
has a natural integral affine structure.



4) Study case: nondegenerate Poisson structures

• (M,π) is non-degenerate (π−1 is symplectic form)

Proposition
Any surjective local diffeomorphism µ : S→M with the
pullback symplectic form µ∗(π−1) is a realization.

µ is complete ⇐⇒ µ is a covering map.

Proposition
For any µ : (S,ω)→ (M,π), the integrable distribution

H := F⊥
µ ⊂ S,

defines a flat Ehresmann connection on µ:

TS = Ker dµ⊕H .

µ is complete ⇐⇒ H is complete
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An Ehresmann connection for submersion µ : S→M is a splitting:

TS = ker dµ⊕H ,

It allows to lift paths γ : [0,1]→M to horizontal paths in S:

Given p0 ∈ µ−1(γ(0)) there is unique γ̃ p0 : [0,ε[→ S:
dγ̃

p0
dt (t) ∈H ,

γ̃ p0(0) = p0, µ(γ̃ p0(t)) = γ(t).

The Ehresmann connection is:

I complete if every horizontal lift is defined for t ∈ [0,1]

I flat if H is integrable distribuition

Complete =⇒ parallel transport map:

τγ : µ
−1(x0)→ µ

−1(x1), p 7→ γ̃
p(1),

Complete + Flat =⇒ τγ is invariant under path-homotopy
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Homotopy groupoid

The homotopy groupoid of M:

Π(M) :=
{γ : [0,1]→M}

∼ s
//

t // M

source/target maps:

s : Π(M)→M, [γ] 7→ γ(0),

t : Π(M)→M, [γ] 7→ γ(1)

multiplication:

[γ1]◦ [γ2] := [γ1 ◦ γ2] if s([γ1]) = t([γ2])

We have an ”action”:

Π(M,x0,x1)×µ
−1(x0)→ µ

−1(x1), ([γ],p) 7→ [γ] ·p := τγ (p),

where:

Π(M,x0,x1) := {[γ] ∈ Π(M) : s([γ]) = x0, t([γ]) = x1}.



Homotopy groupoid

The homotopy groupoid of M:

Π(M) :=
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//
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Π(M,x0,x1)×µ
−1(x0)→ µ

−1(x1), ([γ],p) 7→ [γ] ·p := τγ (p),

(i) the class of the constant path γ(t) = x acts as an identity:

[x ] ·p = p

(ii) if [γ1], [γ2] ∈ Π(M) are composable one has:

([γ1]◦ [γ2]) ·p = [γ1] · ([γ2] ·p)

Proposition
If (M,π) is a nondegenerate Poisson manifold then any
complete symplectic realization µ : (S,ω)→ (M,π) carries a
canonical action of Π(M):

Π(M)

    

(S,ω)	
µ

��
(M,π)
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5) General symplectic realizations

µ : (S,ω)→ (M,π)

I vertical foliation: Fµ = Ker dµ;
I orbit foliation: F⊥

µ .

Definition
The infinitesimal action associated with the symplectic
realization is

a : µ
∗T ∗M → TS

where:
ia(α)ω = µ

∗
α, ∀α ∈ T ∗M.

(a) pointwise: linear map ap : T ∗
µ(p)M → TpS for each p ∈ S

(b) sections: a map a : Ω1(M)→ X(S)

a([α,β ]π ) = [a(α),a(β )], ∀α,β ∈ Ω1(M).
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Properties of the action

TpS

dµ

��
T ∗

µ(p)M

ap
::

π]
// Tµ(p)M

(i) infinitesimal action is pointwise free, i.e., it is injective:

ap : T ∗µ(p)M → TpS

(ii) The image is the orbit foliation:

Im(a) = F⊥
µ .

(iii) in the isotropy Lie algebra gives a linear isomorphism

ap : gµ(p) = Ker π
]
µ(p)

∼ // Fµ,p ∩F⊥
µ,p .
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Geometry of symplectic realizations

Corollary
Each orbit Op ∈F⊥

µ is a presymplectic manifold and the
restriction µOp := µ|Op is a submersion onto the symplectic leaf
containing µ(p):

(S,ω)

Op
( �

i
66

µOp ((

i∗ω = µ∗Op
ωSµ(p)

.

(Sµ(p),ωSµ(p)
)



Complete symplectic realizations

µ∗T ∗M

��

a // TS

dµ

��
T ∗M

π]
// TM

Think of a : µ∗T ∗M → TS has ”horizontal lift” of covectors in M to
tangent vectors in S

Definition
Given a symplectic realization, a lift of a cotangent path
a : [0,1]→ T ∗M to S is any path

γ̃ : [0,ε[→ S, such that


dγ̃

dt (t) = aγ̃(t)(a(t)),

µ(γ̃(t)) = γa(t).

We call γ̃ a complete lift if it is defined for t ∈ [0,1].
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Complete symplectic realizations

µ : (S,ω)→ (M,π)

Proposition
Given cotangent path a : [0,1]→ T ∗M and p0 ∈ µ−1(γa(0)):
I there exists a unique lift γ̃

p0
a : [0,ε[→ S starting at p0.

I there exist complete lifts γ̃
p0
a if and only if µ is complete.

Complete realization =⇒ parallel transport:

τa : µ
−1(γa(0))→ µ

−1(γa(1)), p 7→ γ̃
p
a (1).

Proposition
I a∼ b ⇐⇒ if γ̃

p0
a ∼ γ̃

p0
a in a leaf of F⊥

µ .

I a∼ b =⇒ τa = τb.
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Groupoid of a Poisson manifold

Π(M,π) :=
{a : [0,1]→ T ∗M : cotangent path}

∼ s
//

t // M

source/target:
s : Π(M,π)→M, [a] 7→ γa(0),

t : Π(M,π)→M, [a] 7→ γa(1).

multiplication:
[a]◦ [b];= [a◦b] if s([a]) = t([b]).

Proposition (action on complete realization)
Any complete symplectic realization µ : (S,ω)→ (M,π) carries
a canonical action of Π(M,π) defined by:

[a] ·p := τa(p) if s([a]) = µ(p)

Π(M,π)

!!!!

(S,ω)	
µ

��
(M,π)
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