An invitation to Poisson geometry and its applications

Rui Loja Fernandes

Department of Mathematics University of Illinois at Urbana-Champaign, USA

December 2019

Contents:

Poisson brackets and Hamiltonian dynamics

Poisson manifolds

- Local Poisson geometry
- Global Poisson geometry
- Deformation quantization

Definition
A Poisson bracket on a manifold M is a Lie bracket
 $\{\cdot, \cdot\} : C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying the Leibniz identity:
 $\{f, gh\} = \{f, g\}h + g\{f, h\}.$

The pair $(M, \{\cdot, \cdot\})$ is called a Poisson manifold.

Definition A Poisson bracket on a manifold *M* is a Lie bracket

 $\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$

satisfying the Leibniz identity:

 $\{f, gh\} = \{f, g\}h + g\{f, h\}.$

The pair $(M, \{\cdot, \cdot\})$ is called a Poisson manifold.

Definition A Poisson map $\phi : (M_1, \{\cdot, \cdot\}_1) \to (M_2, \{\cdot, \cdot\}_2)$ is a smooth map such that pullback is a Lie algebra morphism:

 $\{f \circ \phi, g \circ \phi\}_2 = \{f, g\}_1 \circ \phi, \quad \forall f, g \in C^\infty(M_2).$

Hamiltonian Dynamics

On a Poisson manifold $(M, \{\cdot, \cdot\})$ a function $h \in C^{\infty}(M)$ determines a hamiltonian vector field X_h by:

$$X_h(f) := \{h, f\}, \quad \forall f \in C^\infty(M).$$

Hamiltonian Dynamics

On a Poisson manifold $(M, \{\cdot, \cdot\})$ a function $h \in C^{\infty}(M)$ determines a hamiltonian vector field X_h by:

$$X_h(f) := \{h, f\}, \quad \forall f \in C^{\infty}(M).$$

Basic Properties

- *I* is a first integral of X_h if and only if $\{h, I\} = 0$;
- *h* is always a first integral of X_h ;
- If *I*₁ and *I*₂ are first integrals of *X_h*, then {*I*₁, *I*₂} is also a first integral of *X_h*.

Classical Mechanics (Newton's Equations)

▶ Motion of a particle $q(t) \in \mathbb{R}^n$ in a potential $V : \mathbb{R}^n \to \mathbb{R}$:

$$m_i \ddot{q}_i(t) = -rac{\partial V}{\partial q_i} \quad \Leftrightarrow \quad \left\{ egin{array}{c} \dot{q}_i = rac{p_i}{m_i} \ \dot{p}_i = -rac{\partial V}{\partial q_i} \end{array}
ight.$$

Classical Mechanics (Newton's Equations)

• Motion of a particle $q(t) \in \mathbb{R}^n$ in a potential $V : \mathbb{R}^n \to \mathbb{R}$:

$$m_i \ddot{q}_i(t) = -\frac{\partial V}{\partial q_i} \quad \Leftrightarrow \quad \left\{ \begin{array}{c} \dot{q}_i = rac{p_i}{m_i} \\ \dot{p}_i = -rac{\partial V}{\partial q} \end{array}
ight.$$

 $M = \mathbb{R}^{2n}$ with coordinates $(x_1, \ldots, x_{2n}) = (q_1, \ldots, q_n, p_1, \ldots, p_n)$:

$$\{f_1, f_2\} = \sum_{i=1}^n \left(\frac{\partial f_1}{\partial p_i} \frac{\partial f_2}{\partial q_i} - \frac{\partial f_1}{\partial q_i} \frac{\partial f_2}{\partial p_i} \right)$$
$$h = \sum_{i=1}^n \frac{p_i^2}{2m_i} + V(q)$$

Classical Mechanics (Newton's Equations)

• Motion of a particle $q(t) \in \mathbb{R}^n$ in a potential $V : \mathbb{R}^n \to \mathbb{R}$:

$$m_i \ddot{q}_i(t) = -\frac{\partial V}{\partial q_i} \quad \Leftrightarrow \quad \left\{ \begin{array}{c} \dot{q}_i = rac{p_i}{m_i} \\ \dot{p}_i = -rac{\partial V}{\partial q} \end{array}
ight.$$

 $M = \mathbb{R}^{2n}$ with coordinates $(x_1, \ldots, x_{2n}) = (q_1, \ldots, q_n, p_1, \ldots, p_n)$:

$$\{f_1, f_2\} = \sum_{i=1}^n \left(\frac{\partial f_1}{\partial p_i} \frac{\partial f_2}{\partial q_i} - \frac{\partial f_1}{\partial q_i} \frac{\partial f_2}{\partial p_i} \right)$$
$$h = \sum_{i=1}^n \frac{p_i^2}{2m_i} + V(q)$$

Then Newton's equations are equivalent to:

$$\dot{x}_a = \{h, x_a\}, (a = 1, ..., n)$$

Elasticity (Euler's Equation)

Motion of a top in absence of gravity, moving around its center of mass, with moments of inertia l₁, l₂ and l₃:

$$\begin{cases} \dot{x}_1 = \frac{l_2 - l_3}{l_2 l_3} x_2 x_3 \\ \dot{x}_2 = \frac{l_3 - l_1}{l_3 l_1} x_3 x_1, \\ \dot{x}_3 = \frac{l_1 - l_2}{l_1 l_2} x_1 x_2. \end{cases}$$

Elasticity (Euler's Equation)

Motion of a top in absence of gravity, moving around its center of mass, with moments of inertia *l*₁, *l*₂ and *l*₃:

$$\begin{cases} \dot{x}_1 = \frac{l_2 - l_3}{l_2 l_3} x_2 x_3 \\ \dot{x}_2 = \frac{l_3 - l_1}{l_3 l_1} x_3 x_1, \\ \dot{x}_3 = \frac{l_1 - l_2}{l_1 l_2} x_1 x_2. \end{cases}$$

 $M = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) :

$$\{f,g\}(x) = (\nabla f(x) \times \nabla g(x)) \cdot x.$$
$$h(x) = \sum_{i=1}^{3} \frac{x_i^2}{2I_i}$$

Elasticity (Euler's Equation)

Motion of a top in absence of gravity, moving around its center of mass, with moments of inertia *l*₁, *l*₂ and *l*₃:

$$\begin{cases} \dot{x}_1 = \frac{l_2 - l_3}{l_2 l_3} x_2 x_3 \\ \dot{x}_2 = \frac{l_3 - l_1}{l_3 l_1} x_3 x_1, \\ \dot{x}_3 = \frac{l_1 - l_2}{l_1 l_2} x_1 x_2. \end{cases}$$

 $M = \mathbb{R}^3$ with coordinates (x_1, x_2, x_3) :

$$\{f,g\}(x) = (\nabla f(x) \times \nabla g(x)) \cdot x.$$
$$h(x) = \sum_{i=1}^{3} \frac{x_i^2}{2I_i}$$

Then Euler's equations are equivalent to:

$$\dot{x}_a = \{h, x_a\}, (a = 1, 2, 3)$$

The dynamics of of n biological species (x₁,..., x_n) interacting in a closed ecosystem:

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n a_{ij} x_i x_j,$$

The dynamics of of n biological species (x₁,..., x_n) interacting in a closed ecosystem:

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n a_{ij} x_i x_j,$$

Assume (a_{ij}) is skew-symmetric and there is a solution $q = (q_1, \ldots, q_n)$

$$\varepsilon_i := \sum_{j=1}^n a_{ji} q_j.$$

The dynamics of of n biological species (x₁,..., x_n) interacting in a closed ecosystem:

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n a_{ij} x_i x_j,$$

Assume (a_{ij}) is skew-symmetric and there is a solution $q = (q_1, \ldots, q_n)$

$$\varepsilon_i := \sum_{j=1}^n a_{jj} q_j.$$

 $M = \mathbb{R}^n_+$ with coordinates (x_1, \ldots, x_n) :

$$\{f_1, f_2\}(x) = \sum_{1 \le i < j \le n}^n a_{ij} x_i x_j \frac{\partial f_1}{\partial x_i} \frac{\partial f_2}{\partial x_j}$$
$$h(x) = \sum_{i=1}^n (q_i \log x_i - x_i)$$

The dynamics of of n biological species (x₁,..., x_n) interacting in a closed ecosystem:

$$\dot{x}_i = \varepsilon_i x_i + \sum_{j=1}^n a_{ij} x_i x_j,$$

Assume (a_{ij}) is skew-symmetric and there is a solution $q = (q_1, \ldots, q_n)$

$$\varepsilon_i := \sum_{j=1}^n a_{ji} q_j.$$

 $M = \mathbb{R}^n_+$ with coordinates (x_1, \ldots, x_n) :

$$\{f_1, f_2\}(x) = \sum_{1 \le i < j \le n}^n a_{ij} x_i x_j \frac{\partial f_1}{\partial x_i} \frac{\partial f_2}{\partial x_j}$$
$$h(x) = \sum_{i=1}^n (q_i \log x_i - x_i)$$

Then the Lotka-Volterra equations are equivalent to:

$$\dot{x}_i = \{h, x_i\}, (i = 1, ..., n)$$

Problems in Hamiltonian Dynamics

- How does the Poisson geometry constrain the dynamics?
- Is the system stable under perturbation?
- What are symmetries of a system? Reduction using symmetries?
- What is a (completely) integrable system?
- How to build numerical integrators that take into account the Poisson geometry?

Problems in Hamiltonian Dynamics

- How does the Poisson geometry constrain the dynamics?
- Is the system stable under perturbation?
- What are symmetries of a system? Reduction using symmetries?
- What is a (completely) integrable system?
- How to build numerical integrators that take into account the Poisson geometry?

Many open questions beyond the symplectic case.

1:1 correspondence:

$$\begin{cases} \text{Poisson brackets } \{\cdot, \cdot\} \\ \text{on a manifold } M \end{cases} \xrightarrow{\leftarrow} \begin{cases} \text{bivector fields } \pi \in \Gamma(\wedge^2 TM) \\ \text{satisfying } [\pi, \pi] = 0 \end{cases} \end{cases}$$
$$\pi(\mathrm{d}f, \mathrm{d}g) = \{f, g\}$$

1:1 correspondence: $\left\{ \begin{array}{l} \text{Poisson brackets } \{\cdot, \cdot\} \\ \text{on a manifold } M \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \text{bivector fields } \pi \in \Gamma(\wedge^2 TM) \\ \text{satisfying } [\pi, \pi] = 0 \end{array} \right\}$ $\pi(\mathrm{d}f, \mathrm{d}g) = \{f, g\}$

In a local chart (U, x^i) :

$$\pi|_U = \sum_{i < j} \pi^{ij}(x) rac{\partial}{\partial x^i} \wedge rac{\partial}{\partial x^j}, \quad ext{where } \pi^{ij} = \{x^i, x^j\}.$$

1:1 correspondence: $\left\{\begin{array}{l} \text{Poisson brackets } \{\cdot, \cdot\} \\ \text{on a manifold } M \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{bivector fields } \pi \in \Gamma(\wedge^2 TM) \\ \text{satisfying } [\pi, \pi] = 0 \end{array}\right\}$ $\pi(\mathrm{d}f, \mathrm{d}g) = \{f, g\}$

In a local chart (U, x^i) :

$$\pi|_{U} = \sum_{i < j} \pi^{ij}(x) \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}}, \text{ where } \pi^{ij} = \{x^{i}, x^{j}\}.$$
 $\pi^{\sharp} : T^{*}M \to TM, \alpha \mapsto \pi(\alpha, \cdot),$

1:1 correspondence: $\begin{cases}
\text{Poisson brackets } \{\cdot, \cdot\} \\
\text{on a manifold } M
\end{cases} \xrightarrow{\leftarrow} \begin{cases}
\text{bivector fields } \pi \in \Gamma(\wedge^2 TM) \\
\text{satisfying } [\pi, \pi] = 0
\end{cases}$ $\pi(\mathrm{d}f, \mathrm{d}g) = \{f, g\}$

In a local chart (U, x^i) :

$$\pi|_U = \sum_{i < j} \pi^{ij}(x) \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \text{ where } \pi^{ij} = \{x^i, x^j\}.$$

$$\pi^{\sharp}: T^*M \to TM, \alpha \mapsto \pi(\alpha, \cdot),$$

In this language:

- ► Hamiltonian vector field: X_h = π[♯](df) ("gradient of h")
- ▶ rank at $x \in M$: rank_x $\pi = \dim(Im(\pi^{\sharp}))$ (even integer).

► symplectic manifolds: (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 $\{f,g\} := X_f(g), \text{ with } i_{X_f}\omega = \mathrm{d}f$

symplectic manifolds: (M, ω) where ω ∈ Ω²(M) is closed and non-degenerate:

 $\{f,g\} := X_f(g), \text{ with } i_{X_f}\omega = \mathrm{d}f \quad \Leftrightarrow \quad \pi = \omega^{-1}$

symplectic manifolds: (M, ω) where ω ∈ Ω²(M) is closed and non-degenerate:

 $\{f, g\} := X_f(g), \text{ with } i_{X_f} \omega = \mathrm{d} f \quad \Leftrightarrow \quad \pi = \omega^{-1}$

Conversely, any Poisson structure π with rank_x $\pi = \dim M$, everywhere, defines a symplectic structure.

▶ symplectic manifolds: (M, ω) where $\omega \in \Omega^2(M)$ is closed and non-degenerate:

 $\{f,g\} := X_f(g), \text{ with } i_{X_f}\omega = \mathrm{d}f \quad \Leftrightarrow \quad \pi = \omega^{-1}$

Conversely, any Poisson structure π with rank_x $\pi = \dim M$, everywhere, defines a symplectic structure.

Duals of Lie algebras: $M = g^*$ with Poisson bracket:

 $\{f, g\}(\xi); = \langle [\mathrm{d}_{\xi}f, \mathrm{d}_{\xi}g], \xi \rangle$

symplectic manifolds: (M, ω) where ω ∈ Ω²(M) is closed and non-degenerate:

 $\{f, g\} := X_f(g), \text{ with } i_{X_f} \omega = \mathrm{d} f \quad \Leftrightarrow \quad \pi = \omega^{-1}$

Conversely, any Poisson structure π with rank_x $\pi = \dim M$, everywhere, defines a symplectic structure.

Duals of Lie algebras: $M = g^*$ with Poisson bracket:

$$\{f, g\}(\xi); = \langle [\mathrm{d}_{\xi}f, \mathrm{d}_{\xi}g], \xi \rangle \quad \Leftrightarrow \quad \pi = \sum_{i < j, k} c_k^{ij} x^k \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}$$

Conversely, a Poisson structure on a vector space V such that the bracket of linear functions is linear, takes this form: $V = g^*$.

symplectic manifolds: (M, ω) where ω ∈ Ω²(M) is closed and non-degenerate:

 $\{f, g\} := X_f(g), \text{ with } i_{X_f} \omega = \mathrm{d} f \quad \Leftrightarrow \quad \pi = \omega^{-1}$

Conversely, any Poisson structure π with rank_x $\pi = \dim M$, everywhere, defines a symplectic structure.

Duals of Lie algebras: $M = g^*$ with Poisson bracket:

$$\{f, g\}(\xi); = \langle [\mathrm{d}_{\xi}f, \mathrm{d}_{\xi}g], \xi \rangle \quad \Leftrightarrow \quad \pi = \sum_{i < j, k} \boldsymbol{c}_{k}^{ij} \boldsymbol{x}^{k} \frac{\partial}{\partial \boldsymbol{x}^{j}} \wedge \frac{\partial}{\partial \boldsymbol{x}^{j}}$$

Conversely, a Poisson structure on a vector space V such that the bracket of linear functions is linear, takes this form: $V = g^*$.

Oriented 3-manifolds: (M³, μ) where μ ∈ Ω³(M) is a volume form. Every F ∈ C[∞](M) determines a Poisson structure:

$$\{f,g\}_F := \mu^{-1}(\mathrm{d} f,\mathrm{d} g,\mathrm{d} F)$$

symplectic manifolds: (M, ω) where ω ∈ Ω²(M) is closed and non-degenerate:

 $\{f, g\} := X_f(g), \text{ with } i_{X_f} \omega = \mathrm{d} f \quad \Leftrightarrow \quad \pi = \omega^{-1}$

Conversely, any Poisson structure π with rank_x $\pi = \dim M$, everywhere, defines a symplectic structure.

Duals of Lie algebras: $M = g^*$ with Poisson bracket:

$$\{f, g\}(\xi); = \langle [\mathrm{d}_{\xi}f, \mathrm{d}_{\xi}g], \xi \rangle \quad \Leftrightarrow \quad \pi = \sum_{i < j, k} \boldsymbol{c}_{k}^{ij} \boldsymbol{x}^{k} \frac{\partial}{\partial \boldsymbol{x}^{j}} \wedge \frac{\partial}{\partial \boldsymbol{x}^{j}}$$

Conversely, a Poisson structure on a vector space V such that the bracket of linear functions is linear, takes this form: $V = g^*$.

Oriented 3-manifolds: (M³, μ) where μ ∈ Ω³(M) is a volume form. Every F ∈ C[∞](M) determines a Poisson structure:

$$\{f,g\}_F := \mu^{-1}(\mathrm{d}f,\mathrm{d}g,\mathrm{d}F) \quad \Leftrightarrow \quad \pi = i_{\mathrm{d}F}\mu^{-1}$$

b-symplectic structures: A symplectic form with a log-type singularity along a divisor Z ⊂ M, determines a *smooth* Poisson structure. In local coordinates:

$$\omega = \frac{1}{x} \mathrm{d}x \wedge \mathrm{d}y + \sum_{i=1}^{n-1} \mathrm{d}q_i \wedge \mathrm{d}p_i \quad \leftrightarrow \quad \pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \sum_{i=1}^{n-1} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$$

b-symplectic structures: A symplectic form with a log-type singularity along a divisor Z ⊂ M, determines a *smooth* Poisson structure. In local coordinates:

$$\omega = \frac{1}{x} \mathrm{d}x \wedge \mathrm{d}y + \sum_{i=1}^{n-1} \mathrm{d}q_i \wedge \mathrm{d}p_i \quad \leftrightarrow \quad \pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \sum_{i=1}^{n-1} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$$

Poisson-Lie groups: A Lie group G with a Poisson structure π such that the multiplication is a Poisson map:

$$m: (G \times G, \pi \oplus \pi) \rightarrow (G, \pi), \quad (g, h) \mapsto gh.$$

These are semi-classical limits of quantum groups (examples can be obtained from solutions of CYBE).

b-symplectic structures: A symplectic form with a log-type singularity along a divisor Z ⊂ M, determines a *smooth* Poisson structure. In local coordinates:

$$\omega = \frac{1}{x} \mathrm{d}x \wedge \mathrm{d}y + \sum_{i=1}^{n-1} \mathrm{d}q_i \wedge \mathrm{d}p_i \quad \leftrightarrow \quad \pi = x \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \sum_{i=1}^{n-1} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$$

Poisson-Lie groups: A Lie group G with a Poisson structure π such that the multiplication is a Poisson map:

$$m: (G \times G, \pi \oplus \pi) \to (G, \pi), \quad (g, h) \mapsto gh.$$

These are semi-classical limits of quantum groups (examples can be obtained from solutions of CYBE).

Moduli spaces of flat connections: The moduli space M of principal G-bundles with a flat connection over a surface Σ with boundary:

$$\mathcal{M} = \operatorname{Hom}(\pi_1(\Sigma), G)/G,$$

has a natural Poisson structure (symplectic if $\partial \Sigma = \emptyset$).

Symplectic Foliation

For any two hamiltonian functions h_1 and h_2 :

$$[X_{h_1}, X_{h_2}] = X_{\{h_1, h_2\}}$$

Define an **equivalence relation** on *M* by declaring two points equivalent if they can be joined by trajectories of hamiltonian vector fields.

Symplectic Foliation

For any two hamiltonian functions h_1 and h_2 :

$$[X_{h_1}, X_{h_2}] = X_{\{h_1, h_2\}}$$

Define an **equivalence relation** on *M* by declaring two points equivalent if they can be joined by trajectories of hamiltonian vector fields.

Theorem (Weinstein, 1983) The equivalence classes form a singular foliation of $(M, \{\cdot, \cdot\})$ by symplectic submanifolds.

Examples of symplectic foliations

symplectic manifolds: symplectic leaves of (M, ω) = connected components of M

Examples of symplectic foliations

- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:
- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:

 $\mathfrak{su}^*(2)$

- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:

- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:

- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:

Oriented 3-manifolds: leaves of (M³, µ, F) are contained in the level sets of F : M³ → ℝ.

- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:

- Oriented 3-manifolds: leaves of (M³, µ, F) are contained in the level sets of F : M³ → ℝ.
- Regular Poisson structures: Poisson structures whose rank is constant are just symplectic foliations:

- symplectic manifolds: symplectic leaves of (M, ω) = connected components of M
- Duals of Lie algebras: symplectic leaves of g* = coadjoint orbits:

- Oriented 3-manifolds: leaves of (M³, µ, F) are contained in the level sets of F : M³ → ℝ.
- Regular Poisson structures: Poisson structures whose rank is constant are just symplectic foliations:

Local Poisson Geometry

A point $x_0 \in M$ where π vanishes is called a **singular point** (so $\{x_0\}$ is a 0-dim symplectic leave).

Definition

The **isotropy Lie algebra** of a singular point x_0 is:

$$\mathfrak{g}_{x_0} := T^*M$$
 with $[\mathrm{d}_{x_0}f, \mathrm{d}_{x_0}g] := \mathrm{d}_{x_0}\{f, g\}.$

The dual space $T_x M$ with its linear Poisson structure is called the **linear approximation** to (M, π) at x_0 .

Local Poisson Geometry

A point $x_0 \in M$ where π vanishes is called a **singular point** (so $\{x_0\}$ is a 0-dim symplectic leave).

Definition

The **isotropy Lie algebra** of a singular point x_0 is:

$$\mathfrak{g}_{x_0} := T^*M$$
 with $[\mathrm{d}_{x_0}f, \mathrm{d}_{x_0}g] := \mathrm{d}_{x_0}\{f, g\}.$

The dual space $T_x M$ with its linear Poisson structure is called the **linear approximation** to (M, π) at x_0 .

In local coordinates centered at x_0 :

$$\{x^{i}, x^{j}\}(x) = \{x^{i}, x^{j}\}(x_{0}) + \sum_{k} \frac{\partial \{x^{i}, x^{j}\}}{\partial x^{k}}(x_{0}) \ x^{k} + o(2).$$
$$= \sum_{k} c_{k}^{ij} \ x^{k} + o(2).$$

Local Poisson Geometry

A point $x_0 \in M$ where π vanishes is called a **singular point** (so $\{x_0\}$ is a 0-dim symplectic leave).

Definition

The **isotropy Lie algebra** of a singular point x_0 is:

$$\mathfrak{g}_{x_0} := T^*M$$
 with $[\mathrm{d}_{x_0}f, \mathrm{d}_{x_0}g] := \mathrm{d}_{x_0}\{f, g\}.$

The dual space $T_x M$ with its linear Poisson structure is called the **linear approximation** to (M, π) at x_0 .

In local coordinates centered at x_0 :

$$\{x^{i}, x^{j}\}(x) = \{x^{i}, x^{j}\}(x_{0}) + \sum_{k} \frac{\partial \{x^{i}, x^{j}\}}{\partial x^{k}}(x_{0}) x^{k} + o(2).$$
$$= \sum_{k} c_{k}^{ij} x^{k} + o(2).$$

Linearization Problem: Can one choose coordinates around x_0 where π is linear (no higher order terms)?

Theorem (Conn, 1985)

Let x_0 be a singular point of (M, π) . If \mathfrak{g}_{x_0} is a compact semisimple Lie algebra then π can be linearized around x_0 : there are local coordinates (x^1, \ldots, x^m) centered at x_0 where the Poisson bracket is linear:

$$\{x^i, x^j\} = \sum_k c_k^{ij} x^k.$$

Theorem (Conn, 1985)

Let x_0 be a singular point of (M, π) . If \mathfrak{g}_{x_0} is a compact semisimple Lie algebra then π can be linearized around x_0 : there are local coordinates (x^1, \ldots, x^m) centered at x_0 where the Poisson bracket is linear:

$$\{x^i, x^j\} = \sum_k c^{ij}_k x^k.$$

Remarks:

The original proof used a Nash-Moser fast convergence method, requiring some hard analysis. A (more soft) geometric proof was obtain in 2011 by M. Crainic & RLF.

Theorem (Conn, 1985)

Let x_0 be a singular point of (M, π) . If \mathfrak{g}_{x_0} is a compact semisimple Lie algebra then π can be linearized around x_0 : there are local coordinates (x^1, \ldots, x^m) centered at x_0 where the Poisson bracket is linear:

$$\{x^i, x^j\} = \sum_k c^{ij}_k x^k.$$

Remarks:

- The original proof used a Nash-Moser fast convergence method, requiring some hard analysis. A (more soft) geometric proof was obtain in 2011 by M. Crainic & RLF.
- For other types of singularities one does not know a complete set of invariants.

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π :

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π :

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π :

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π :

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π :

Stability of leaves: In general, one does not expect symplectic leaves to persist under perturbations of π :

Let *L* be a compact symplectic leaf of (M, π) and assume that $H_{\pi}^{2}(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_{\pi}(M, L)$.

Let *L* be a compact symplectic leaf of (M, π) and assume that $H_{\pi}^{2}(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_{\pi}(M, L)$.

H[•]_π(M, L) is the relative Poisson cohomology, the cohomology of the complex of multivector fields along L:

 $\mathfrak{X}^{ullet}(M,L) = \Gamma(\wedge^{ullet} T_L M), \quad \mathbf{d}_{\pi} = [\pi, \cdot] : \mathfrak{X}^{ullet}(M,L) \to \mathfrak{X}^{ullet+1}(M,L).$

(this is an *elliptic complex*).

Let *L* be a compact symplectic leaf of (M, π) and assume that $H_{\pi}^{2}(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_{\pi}(M, L)$.

H[•]_π(M, L) is the relative Poisson cohomology, the cohomology of the complex of multivector fields along L:

 $\mathfrak{X}^{ullet}(M,L) = \Gamma(\wedge^{ullet} T_L M), \quad \mathbf{d}_{\pi} = [\pi, \cdot] : \mathfrak{X}^{ullet}(M,L) \to \mathfrak{X}^{ullet+1}(M,L).$

(this is an *elliptic complex*).

There is also a version for strong stability where "diffeomorphic" is replaced by "symplectomorphic".

Let *L* be a compact symplectic leaf of (M, π) and assume that $H_{\pi}^{2}(M, L) = 0$.

Then L is stable: every nearby Poisson structure has a family of nearby diffeomorphic leaves smoothly parametrized by $H^1_{\pi}(M, L)$.

 H[•]_π(M, L) is the *relative Poisson cohomology*, the cohomology of the complex of multivector fields along L:

 $\mathfrak{X}^{\bullet}(M,L) = \Gamma(\wedge^{\bullet}T_LM), \quad \mathbf{d}_{\pi} = [\pi,\cdot] : \mathfrak{X}^{\bullet}(M,L) \to \mathfrak{X}^{\bullet+1}(M,L).$

(this is an *elliptic complex*).

- There is also a version for strong stability where "diffeomorphic" is replaced by "symplectomorphic".
- The proofs involve some ideas on deforming linear complexes to non-linear complexes, that can be traced back to unpublished work of R. Hamilton on deformations of foliations.

Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes $(C^{\infty}(M), \{\cdot, \cdot\})$ into a Lie algebra.

• **Question:** Is there a Lie group "integrating" $(M, \{\cdot, \cdot\})$?

Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes $(C^{\infty}(M), \{\cdot, \cdot\})$ into a Lie algebra.

• **Question:** Is there a Lie group "integrating" $(M, \{\cdot, \cdot\})$?

Such a ∞ -dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:
Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes $(C^{\infty}(M), \{\cdot, \cdot\})$ into a Lie algebra.

• **Question:** Is there a Lie group "integrating" $(M, \{\cdot, \cdot\})$?

Such a ∞ -dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:

► Answer: (M. Karasev; A. Weinstein) There is a group-like object, a symplectic groupoid, associated with every Poisson manifold (*M*, {·, ·}).

Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes $(C^{\infty}(M), \{\cdot, \cdot\})$ into a Lie algebra.

• **Question:** Is there a Lie group "integrating" $(M, \{\cdot, \cdot\})$?

Such a ∞ -dim Lie group, if it exists, should play a fundamental role in global Poisson geometry. Amazingly, the answer is even better:

► Answer: (M. Karasev; A. Weinstein) There is a group-like object, a symplectic groupoid, associated with every Poisson manifold (*M*, {·,·}).

But there are no free meals...

Addenda: (M.Crainic & RLF) This object always exists as a topological groupoid, is finite dimensional, but may fail to be smooth. The precise obstructions to smoothness are known.

Х

X – topological space; look at paths $\gamma : [0, 1] \rightarrow X$

identity:

X

 $u: X \hookrightarrow \Pi_1(X)$

X – topological space; look at paths $\gamma : [0, 1] \rightarrow X$

inverse:

X – topological space; look at paths $\gamma : [0, 1] \rightarrow X$

$$\begin{array}{c|c} & \Pi_1(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \\ & t \\ X \\ & X \\ & \chi \\ &$$

► The space $\Pi_1(X)$ has a natural topology and the source, target, multiplication and inverse are all continous maps: $\Pi_1(X) \rightrightarrows X$ is an example of a topological groupoid.

$$\begin{array}{c} & \Pi_1(X) = \{ [\gamma] \mid \gamma : [0, 1] \to X \} \\ & \mathsf{t} \bigcup_{X} \mathsf{s} \\ & X \end{array}$$

- ► The space $\Pi_1(X)$ has a natural topology and the source, target, multiplication and inverse are all continous maps: $\Pi_1(X) \rightrightarrows X$ is an example of a topological groupoid.
- If X = M is a manifold, the space Π₁(M) is a manifold and the source, target, multiplication and inverse are all smooth maps: then Π₁(M) ⇒ M is an example of a Lie groupoid.

For any Poisson manifold (M, π), there is a topological groupoid Σ(M) ⇒ M "integrating" it.

- For any Poisson manifold (M, π), there is a topological groupoid Σ(M) ⇒ M "integrating" it.
- Σ(M) = P(T*M)//G is a symplectic quotient (A. Cattaneo & G. Felder).

 $\Sigma(M) \rightrightarrows M$ and $\Pi_1(M) \rightrightarrows M$ differ substantially:

- $\Sigma(M) \rightrightarrows M$ and $\Pi_1(M) \rightrightarrows M$ differ substantially:
 - $\Pi_1(M) \Rightarrow M$ is always smooth while $\Sigma(M) \Rightarrow M$ may fail to be smooth;

 $\Sigma(M) \rightrightarrows M$ and $\Pi_1(M) \rightrightarrows M$ differ substantially:

- $\Pi_1(M) \Rightarrow M$ is always smooth while $\Sigma(M) \Rightarrow M$ may fail to be smooth;
- Π₁(*M*) has one orbit (if *M* connected) while orbits of Σ(*M*) are the symplectic leaves of (*M*, π);

 $\Sigma(M) \rightrightarrows M$ and $\Pi_1(M) \rightrightarrows M$ differ substantially:

- $\Pi_1(M) \rightrightarrows M$ is always smooth while $\Sigma(M) \rightrightarrows M$ may fail to be smooth;
- Π₁(*M*) has one orbit (if *M* connected) while orbits of Σ(*M*) are the symplectic leaves of (*M*, π);
- The homotopy groups

$$\pi_1(M, x) = \frac{\{\text{loops in } M \text{ based at } x\}}{\text{homotopy}}$$

are discrete while the Poisson homotopy groups

$$\Sigma(M, x) = \frac{\{\text{cotangent loops in } M \text{ based at } x\}}{\text{cotangent homotopy}}$$

are Lie groups (if smooth).

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(\mathbf{L}, \mathbf{x}) \to \nu_{\mathbf{x}}^*(\mathbf{L})$

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(L, \mathbf{x}) \to \nu_{\mathbf{x}}^*(L)$

$$\langle \partial_x(\gamma_0), \mathsf{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} \int_{\mathbb{S}^2} \gamma_t^* \omega_L \right|_{x=0}$$

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(L, \mathbf{x}) \to \nu_{\mathbf{x}}^*(L)$

$$\langle \partial_x(\gamma_0), \mathsf{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} \int_{\mathbb{S}^2} \gamma_t^* \omega_L \right|_{x=0}$$

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(L, \mathbf{x}) \to \nu_{\mathbf{x}}^*(L)$

$$\langle \partial_x(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} \int_{\mathbb{S}^2} \gamma_t^* \omega_L \right|_{x=0}$$

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(L, \mathbf{x}) \to \nu_{\mathbf{x}}^*(L)$

$$\langle \partial_x(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} \int_{\mathbb{S}^2} \gamma_t^* \omega_L \right|_{x=0}$$

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(L, \mathbf{x}) \to \nu_{\mathbf{x}}^*(L)$

$$\langle \partial_x(\gamma_0), \mathsf{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} \int_{\mathbb{S}^2} \gamma_t^* \omega_L \right|_{x=0}$$

Let (M, π) be a Poisson manifold and fix a symplectic leaf L. There is a group morphism

 $\partial_{\mathbf{x}}: \pi_2(L, \mathbf{x}) \to \nu_{\mathbf{x}}^*(L)$

$$\langle \partial_x(\gamma_0), \operatorname{var}_{\nu}(\gamma_t) \rangle = \left. \frac{d}{dt} \int_{\mathbb{S}^2} \gamma_t^* \omega_L \right|_{x=0}$$

Theorem (Crainic & Marcut (2012))

Let (M, π) be a Poisson manifold. If $\Sigma(M, x)$ is smooth and the source map is proper, then a neighborhood of any symplectic leaf L is Poisson diffeomorphic to the first order model of π around L.

Theorem (Crainic & Marcut (2012)) Let (M, π) be a Poisson manifold. If $\Sigma(M, x)$ is smooth and the source map is proper, then a neighborhood of any symplectic leaf L is Poisson diffeomorphic to the first order model of π around L.

- There is an explicit local model, which depends on some choices.
- This result can be strengthen by replacing Σ(M) by other symplectic groupoids integrating (M, π)
- This result can be generalized by replacing the symplectic leaf L by more general Poisson submanifolds.
- Several proofs are available. The most geometric uses a new notion of *simplicial metric* on the nerve of a groupoid, which has many potential applications (del Hoyo and RLF (2016)).

Definition

A star product is an associative product \star_{\hbar} on $C^{\infty}(M)[[\hbar]]$ deforming the usual product:

$$f\star_\hbar g = \sum_{n=0}^\infty B_n(f,g)\hbar^n, \quad ext{where } B_0(f,g) = fg.$$

Definition

A star product is an associative product \star_{\hbar} on $C^{\infty}(M)[[\hbar]]$ deforming the usual product:

$$f\star_{\hbar}g=\sum_{n=0}^{\infty}B_n(f,g)\hbar^n, \hspace{1em} ext{where}\hspace{1em} B_0(f,g)=fg.$$

We assume that ***_ħ is *natural*, meaning that each *B_k* is a bidifferential operator of order ≤ *k*.

Definition

A star product is an associative product \star_{\hbar} on $C^{\infty}(M)[[\hbar]]$ deforming the usual product:

$$f\star_\hbar g=\sum_{n=0}^\infty B_n(f,g)\hbar^n, \quad ext{where } B_0(f,g)=fg.$$

- We assume that ★ħ is natural, meaning that each Bk is a bidifferential operator of order ≤ k.
- A natural star product induces a Poisson structure on *M*:

$$\{f,g\}:=\lim_{\hbar\to 0}rac{1}{\hbar}[f,g]_{\star_{\hbar}}$$

Definition

A star product is an associative product \star_{\hbar} on $C^{\infty}(M)[[\hbar]]$ deforming the usual product:

$$f\star_\hbar g = \sum_{n=0}^\infty B_n(f,g)\hbar^n, \quad ext{where } B_0(f,g) = fg.$$

- We assume that ★ħ is natural, meaning that each Bk is a bidifferential operator of order ≤ k.
- ► A natural star product induces a Poisson structure on *M*:

$$\{f,g\} := \lim_{\hbar \to 0} \frac{1}{\hbar} [f,g]_{\star_{\hbar}} = \lim_{\hbar \to 0} \frac{1}{\hbar} (f \star_{\hbar} g - g \star_{\hbar} f)$$

Definition

A star product is an associative product \star_{\hbar} on $C^{\infty}(M)[[\hbar]]$ deforming the usual product:

$$f\star_\hbar g = \sum_{n=0}^\infty B_n(f,g)\hbar^n, \quad ext{where } B_0(f,g) = fg.$$

- We assume that ★_ħ is *natural*, meaning that each B_k is a bidifferential operator of order ≤ k.
- ► A natural star product induces a Poisson structure on *M*:

$$\{f,g\} := \lim_{\hbar o 0} rac{1}{\hbar} [f,g]_{\star_\hbar} = \lim_{\hbar o 0} rac{1}{\hbar} (f \star_\hbar g - g \star_\hbar f)$$

• Given $h \in C^{\infty}(M)$ we have Shrödinger's Equation:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{1}{\hbar} [h, f]_{\star_{\hbar}}$$
Theorem (Kontsevich (2002))

Given a Poisson manifold (M, π) there exists a star product \star_{\hbar} inducing π .

Theorem (Kontsevich (2002))

Given a Poisson manifold (M, π) there exists a star product \star_{\hbar} inducing π .

This theorem is a consequence of a much more general result, Kontsevich's Formality Theorem, which asserts the existence of a certain L_∞-isomorphism between two DGLA.

Theorem (Kontsevich (2002))

Given a Poisson manifold (M, π) there exists a star product \star_{\hbar} inducing π .

- This theorem is a consequence of a much more general result, Kontsevich's Formality Theorem, which asserts the existence of a certain L_∞-isomorphism between two DGLA.
- Kontsevich gives an explicit formula for \star_{\hbar} .

Theorem (Kontsevich (2002))

Given a Poisson manifold (M, π) there exists a star product \star_{\hbar} inducing π .

- This theorem is a consequence of a much more general result, Kontsevich's Formality Theorem, which asserts the existence of a certain L_∞-isomorphism between two DGLA.
- Kontsevich gives an explicit formula for *_ħ.
- Kontsevich's Formality also gives a *classification* of all star products *_ħ inducing π.

Non-formal deformation quantization

Kontsevich's Theorem gives existence of *formal* star products \star_{\hbar} . What about *non-formal* star products?

Non-formal deformation quantization

Kontsevich's Theorem gives existence of *formal* star products \star_{\hbar} . What about *non-formal* star products?

Conjecture (RLF, 2018)

If there exists a non-formal star product \star_{\hbar} inducing π , then (M, π) must be integrable by a symplectic groupoid

Non-formal deformation quantization

Kontsevich's Theorem gives existence of *formal* star products \star_{\hbar} . What about *non-formal* star products?

Conjecture (RLF, 2018)

If there exists a non-formal star product \star_{\hbar} inducing π , then (M, π) must be integrable by a symplectic groupoid

Together with Alejandro Cabrera (UFRJ), we have the following strategy to prove this conjecture:

- Step 1 From a non-formal star product \star_{\hbar} construct a *local* symplectic groupoid $G \rightrightarrows M$ integrating (M, π) ;
- Step 2 Associativity of \star_{\hbar} implies that $G \Rightarrow M$ satisfies *n*-associativity for all $n \in \mathbb{N}$, i.e., it is *globally associative*.
- Step 3 Use result of RLF & Michiels (2018): if $G \Rightarrow M$ is globally associative then it extends to a global symplectic groupoid.

Note: This works in the formal case, producing a *formal symplectic groupoid* (Karabegov, Cattaneo & Felder, Contreras)

Many other directions in Poisson geometry

- b-symplectic manifolds: Guillemin, Miranda & Pires; Gualtieri, Pelayo & Ratiu; Marcut & Osorno-Torres ...
- Generalized complex geometry: Hitchin; Bursztyn, Calvacanti & Gualtieri, Baley; ...
- Poisson-Lie groups and Poisson homogeneous spaces: Drinfeld; Semenov-Tian-Shansky; Lu & Evens; Yakimov; Kosmann-Schwarzbach; Reshetikhin ...
- Moduli spaces and twisted-Poisson structures: Alekseev & Meinrenken; Boalch; Li-Bland & Severa; ...
- Cluster algebras: Fomin & Zelevinsky; Gekhtman, Shapiro & Vainshtein; ...
- Poisson manifolds of compact type: Crainic, RLF, Martinez-Torrres, Zung; ...

... there is still a lot of very tasty Poisson to be fished!!!

http://poissongeometry.org