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Definition
A Poisson bracket on a manifold M is a Lie bracket

{--}: C2(M) x C=(M) — C=(M)
satisfying the Leibniz identity:
{f,gh} = {f,g}h+ g{f. h}.

The pair (M, {-,-}) is called a Poisson manifold.
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{--}: C2(M) x C=(M) — C=(M)
satisfying the Leibniz identity:
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Definition
A Poisson map ¢ : (M, {-,-}1) = (M2, {, }2) is @ smooth map
such that pullback is a Lie algebra morphism:

{fog,godta={f,gt1oo, Vi ge CT(M).
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determines a hamiltonian vector field X}, by:
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On a Poisson manifold (M, {-, -}) a function h € C>°(M)
determines a hamiltonian vector field X}, by:

Xn(f) = {h,f}, Vfe C(M).

Basic Properties
» [is a first integral of X}, if and only if {h, I} = 0;

> his always a first integral of Xp;

» If /y and I, are first integrals of X}, then {/;, k} is also a first
integral of X,
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> Motion of a particle g(t) € R” in a potential V : R" — R:
. ov
migi(t) = —— & {

q,-:%

H — 9V
Pi = —5g

M = R2" with coordinates (X1, ..., X2n) = (G1,---,Qn, P1, - - -

n
ofy 0f,  Ofy Of
{fk}=> (12 - 12) :
. 1

Then Newton’s equations are equivalent to:

).(a:{h,Xa}, (321,...,n)

apn):



Elasticity (Euler’s Equation)

» Motion of a top in absence of gravity, moving around its center of
mass, with moments of inertia /1, kL and k:
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Elasticity (Euler’s Equation)

» Motion of a top in absence of gravity, moving around its center of
mass, with moments of inertia /1, kL and k:

h—1h

X1 = 11217 Xo X3
Xo = 131311; X3Xq,
Yy — N1

X3 = B X1 X2.

M = R3 with coordinates (X1, X2, X3):

{f,g}(x) = (VF(x) x Vg(x)) - x.
3

Then Euler’s equations are equivalent to:

Xa={h,xa}, (a=1,2,3)
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Population Dynamics (Lotka-Volterra equations)
» The dynamics of of n biological species (xi, ..., X,) interacting in
a closed ecosystem:

n
Xi = €jX;j + Z ajjXiXj,
j=1

Assume (a;) is skew-symmetric and there is a solution g = (g4, ..., gn)
n
gj = Z a;iqj.
j=1
M = R with coordinates (x1,...,Xp):
n
ofy 0fs
fi,L}(x) = QXX 7
{172}() Z ’!’laxl,axj
1<i<j<n

h(x) = Z (gilog x; — X;)

i=1

Then the Lotka-Volterra equations are equivalent to:
)'(,':{h,X,'}, (i:1,...,n)



Problems in Hamiltonian Dynamics

» How does the Poisson geometry constrain the dynamics?
> |s the system stable under perturbation?

» What are symmetries of a system? Reduction using
symmetries?

» What is a (completely) integrable system?

» How to build numerical integrators that take into account the
Poisson geometry?



Problems in Hamiltonian Dynamics

» How does the Poisson geometry constrain the dynamics?
> |s the system stable under perturbation?

» What are symmetries of a system? Reduction using
symmetries?

» What is a (completely) integrable system?

» How to build numerical integrators that take into account the
Poisson geometry?

Many open questions beyond the symplectic case.
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Poisson tensors

1:1 correspondence:

{Poisson brackets {-, .}} - ) bivector fields = € [(A2TM)
on a manifold M satisfying [r, 7] = 0

7T(df7 dg) = {f7 g}

In a local chart (U, x'):

) B " o
— iy 2 A2 i — £yl xi
Ty = Zw (X) 557/ 5,0 Where 7/ = {x, x'}.
i<j
™ T*M = TM, a — 7(a,-),
In this language:
» Hamiltonian vector field: X;, = =*(df) (“gradient of h")

> rank at x ¢ M: rank, 7 = dim(Im(z%)) (even integer).
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Some examples of Poisson manifolds

> b-symplectic structures: A symplectic form with a log-type
singularity along a divisor Z C M, determines a smooth Poisson
structure. In local coordinates:

1 n—1 ) o n-1 0
w:;dX/\dy—F;dqi/\dpi A ”—Xa ay+’28q, ap;

» Poisson-Lie groups: A Lie group G with a Poisson structure =
such that the multiplication is a Poisson map:

m:(Gx Gren)—(Gr), (g,h)— gh
These are semi-classical limits of quantum groups (examples
can be obtained from solutions of CYBE).

» Moduli spaces of flat connections: The moduli space M of
principal G-bundles with a flat connection over a surface ¥ with
boundary:

M = Hom(m(X), G)/G,

has a natural Poisson structure (symplectic if 9 = 0).



Symplectic Foliation
For any two hamiltonian functions hy and h:

[Xhy> Xn,] = X(hy hoy

Define an equivalence relation on M by declaring two points
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Symplectic Foliation
For any two hamiltonian functions hy and h:

[Xhy> Xn,] = X(hy hoy

Define an equivalence relation on M by declaring two points
equivalent if they can be joined by trajectories of hamiltonian
vector fields.

Theorem (Weinstein, 1983)

The equivalence classes form a singular foliation of
(M, {-,-}) by symplectic submanifolds.
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» symplectic manifolds: symplectic leaves of (M, w) = connected
components of M

» Duals of Lie algebras: symplectic leaves of g* = coadjoint
orbits:

su*(2)
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» Oriented 3-manifolds: leaves of (M?, 11, F) are contained in the
level sets of F : M® — R.

» Regular Poisson structures: Poisson structures whose rank is
constant are just symplectic foliations:
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Local Poisson Geometry
A point xo € M where = vanishes is called a singular point (so {xo}

is a 0-dim symplectic leave).

7

Definition
The isotropy Lie algebra of a singular point xg is:

Ox = T "M with [dyf,dx 9] = dx{f, g}

The dual space T,M with its linear Poisson structure is called
the linear approximation to (M, 7) at xo.

\

In local coordinates centered at xj:

(X, X} (x) = {x', ¥ (xo Za{x } (%) X+ 0(2).
=Y ¢ x+o(2
k

Linearization Problem: Can one choose coordinates around xg
where 7 is linear (no higher order terms)?
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Theorem (Conn, 1985)

Let xo be a singular point of (M, ). If g4, is a compact
semisimple Lie algebra then w can be linearized around Xy :
there are local coordinates (x', ..., x™) centered at x, where
the Poisson bracket is linear:

{x', ¥} =" ¢lxk.
k

.

Remarks:

» The original proof used a Nash-Moser fast convergence method,
requiring some hard analysis. A (more soft) geometric proof was
obtain in 2011 by M. Crainic & RLF.

» For other types of singularities one does not know a complete
set of invariants.
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Then L is stable: every nearby Poisson structure has a family
of nearby diffeomorphic leaves smoothly parametrized by
H(M,L).
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Theorem (M. Crainic & RLF (2010))

Let L be a compact symplectic leaf of (M, 7) and assume that
H2(M, L) = 0.

Then L is stable: every nearby Poisson structure has a family
of nearby diffeomorphic leaves smoothly parametrized by
H(M,L).

> H*(M, L) is the relative Poisson cohomology, the cohomology of
the complex of multivector fields along L:

XM, L) =T(A*TM), dy =[r,]: X*(M,L) = X**'(M, L).

(this is an elliptic complex).
» There is also a version for strong stability where “diffeomorphic”
is replaced by “symplectomorphic”.

» The proofs involve some ideas on deforming linear complexes to
non-linear complexes, that can be traced back to unpublished
work of R. Hamilton on deformations of foliations.
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Global Poisson geometry - Symplectic groupoid

A Poisson bracket makes (C*°(M), {-,-}) into a Lie algebra.

» Question: Is there a Lie group “integrating” (M, {-,-})?
Such a co-dim Lie group, if it exists, should play a fundamental role in
global Poisson geometry. Amazingly, the answer is even better:

» Answer: (M. Karasev; A. Weinstein) There is a group-like
object, a symplectic groupoid, associated with every
Poisson manifold (M, {-,-}).

But there are no free meals...

» Addenda: (M.Crainic & RLF) This object always exists as a
topological groupoid, is finite dimensional, but may fail to be
smooth. The precise obstructions to smoothness are known.
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Digression into basic topology

X —topological space; look at paths ~ : [0,1] — X

M(X)={011~:[0,1] = X}

> The space MNy(X) has a natural topology and the source, target,
multiplication and inverse are all continous maps: N{(X) = X'is
an example of a topological groupoid.

» If X = M is a manifold, the space (M) is a manifold and the
source, target, multiplication and inverse are all smooth maps:
then M{(M) = M is an example of a Lie groupoid.
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(M, 7) — Poisson manifold; look at cotangent paths:

"M "~ TM
7,

a//%j///
0.1~~~ ~M
(M) =
{

M

__cotangent paths
~ cotangent homotopies

>

» For any Poisson manifold (M, ), there is a topological groupoid
Y (M) = M “integrating” it.

> (M) = P(T*M)//Gis a symplectic quotient (A. Cattaneo &
G. Felder).
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Y (M) = M and My(M) = M differ substantially:

> M1(M) = M is always smooth while X(M) == M may fail to be
smooth;

» [11(M) has one orbit (if M connected) while orbits of X (M) are
the symplectic leaves of (M, 7);

» The homotopy groups

_ {loops in M based at x}

(M, x) homotopy

are discrete while the Poisson homotopy groups

_ {cotangent loops in M based at x}

(M, x) cotangent homotopy

are Lie groups (if smooth).



Theorem (Crainic & RLF, 2004)

Let (M, ) be a Poisson manifold and fix a symplectic leaf L.
There is a group morphism

Ox : ma(L, xX) — v (L)

controlling integrability: (M) is smooth if and only if the
groups Im(0x) are uniformly discrete.
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Theorem (Crainic & Marcut (2012))

Let (M, ) be a Poisson manifold. If ¥(M, x) is smooth and the
source map is proper, then a neighborhood of any symplectic
leaf L is Poisson diffeomorphic to the first order model of
around L.




Theorem (Crainic & Marcut (2012))

Let (M, ) be a Poisson manifold. If (M, x) is smooth and the
source map is proper, then a neighborhood of any symplectic
leaf L is Poisson diffeomorphic to the first order model of
around L.

» There is an explicit local model, which depends on some
choices.

> This result can be strengthen by replacing (M) by other
symplectic groupoids integrating (M, )

» This result can be generalized by replacing the symplectic leaf L
by more general Poisson submanifolds.

» Several proofs are available. The most geometric uses a new
notion of simplicial metric on the nerve of a groupoid, which has
many potential applications (del Hoyo and RLF (2016)).
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Deformation quantization

Definition
A star product is an associative product x5 on C>°(M)[[7]]
deforming the usual product:

fxng = Ba(f,g)h", where By(f,9) = fg.

n=0

» We assume that x; is natural, meaning that each By is a
bidifferential operator of order < k.

» A natural star product induces a Poisson structure on M:
1 1
{f,g} = Jim ~[f. gl = lim o (fxn g — g5 f)

» Given h € C>*(M) we have Shrédinger’s Equation:

df

dt [h f]*h
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Existence of deformation quantizations

Theorem (Kontsevich (2002))

Given a Poisson manifold (M, ) there exists a star product x;
inducing .

» This theorem is a consequence of a much more general result,
Kontsevich’s Formality Theorem, which asserts the existence of
a certain L..-isomorphism between two DGLA.

» Kontsevich gives an explicit formula for .

» Kontsevich’s Formality also gives a classification of all star
products *; inducing .
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Non-formal deformation quantization

Kontsevich’s Theorem gives existence of formal star products *p.
What about non-formal star products?

Conjecture (RLF, 2018)
If there exists a non-formal star product x;, inducing =, then
(M, ) must be integrable by a symplectic groupoid

Together with Alejandro Cabrera (UFRJ), we have the following
strategy to prove this conjecture:

Step 1 From a non-formal star product x5 construct a local symplectic
groupoid G = M integrating (M, r);

Step 2 Associativity of x; implies that G = M satisfies n-associativity
forall n e N, i.e., it is globally associative.

Step 3 Use result of RLF & Michiels (2018): if G = M is globally
associative then it extends to a global symplectic groupoid.

Note: This works in the formal case, producing a formal symplectic
groupoid (Karabegov, Cattaneo & Felder, Contreras)



Many other directions in Poisson geometry

» b-symplectic manifolds: Guillemin, Miranda & Pires; Gualtieri,
Pelayo & Ratiu; Marcut & Osorno-Torres ...

» Generalized complex geometry: Hitchin; Bursztyn, Calvacanti &
Gualtieri, Baley; . ..

» Poisson-Lie groups and Poisson homogeneous spaces:
Drinfeld; Semenov-Tian-Shansky; Lu & Evens; Yakimov;
Kosmann-Schwarzbach; Reshetikhin . ..

» Moduli spaces and twisted-Poisson structures: Alekseev &
Meinrenken; Boalch; Li-Bland & Severa; . ..

» Cluster algebras: Fomin & Zelevinsky; Gekhtman, Shapiro &
Vainshtein; . ..

» Poisson manifolds of compact type: Crainic, RLF,
Martinez-Torrres, Zung; . ..



. there is still a lot of very tasty Poisson to be fished!!!

http.//poissongeometry.org
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