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What is this chapter about:

We initiate the study of global properties of a Poisson manifold.

This study needs to take into account three different aspects:
I the symplectic geometry of the leaves;
I the topology of the foliation;
I the transverse (Poisson) geometry of the leaves

In this chapter we will study
I Lie algebroids
I Poisson cohomology
I Applications of Poisson cohomology



What is this chapter about:

We initiate the study of global properties of a Poisson manifold.

This study needs to take into account three different aspects:
I the symplectic geometry of the leaves;
I the topology of the foliation;
I the transverse (Poisson) geometry of the leaves

In this chapter we will study
I Lie algebroids
I Poisson cohomology
I Applications of Poisson cohomology



What is this chapter about:

We initiate the study of global properties of a Poisson manifold.

This study needs to take into account three different aspects:
I the symplectic geometry of the leaves;
I the topology of the foliation;
I the transverse (Poisson) geometry of the leaves

In this chapter we will study
I Lie algebroids
I Poisson cohomology
I Applications of Poisson cohomology



1) Lie algebroids
The Lie bracket of vector fields on M satisfies the Leibniz type
identity:

[X , fY ] = f [X ,Y ] +LX (f )Y , ∀f ∈ C∞(M).

Given a Poisson manifold (M,π), the Lie bracket of 1-forms
Ω1(M) also satisfies also the Leibniz type identity:

[α, f β ]π = f [α,β ]π +Lπ]α (f )β .

Definition
A Lie algebroid over a M is a vector bundle A→M,
together with a Lie bracket [·, ·]A on the sections Γ(A),
and a bundle map ρA : A→ TM satisfying:

[α, f β ]A = f [α,β ]A +LρA(α)(f )β , ∀α,β ∈ Γ(A), f ∈C∞(M).
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Lie algebroid philosophy

Think (A, [·, ·]A,ρ) as reflecting a certain geometry present on
M, and for this geometry A plays the role of the correct
tangent bundle.

The anchor ρA : A→ TM, relates this new tangent bundle back
to the classical tangent bundle. It satisfies:

ρ([α,β ]A) = [ρ(α),ρ(β )], ∀α,β ∈ Γ(A)



Lie algebroid philosophy

Think (A, [·, ·]A,ρ) as reflecting a certain geometry present on
M, and for this geometry A plays the role of the correct
tangent bundle.

The anchor ρA : A→ TM, relates this new tangent bundle back
to the classical tangent bundle. It satisfies:

ρ([α,β ]A) = [ρ(α),ρ(β )], ∀α,β ∈ Γ(A)



Examples of Lie algebroids
(i) Tangent bundle of a manifold M:

A = TM, [·, ·]A = [·, ·], ρ = id;

(ii) Cotangent bundle of a Poisson manifold (M,π):

A = T ∗M, [·, ·]A = [ , ]π , ρ = π
];

(iii) Lie algebra g:

A = g→{∗}, [·, ·]A = [ , ]g, ρ = 0;

(iv) Dirac structure L on M:

A = L→M, [·, ·]A = Dorfman bracket, ρ = prTM |L;

(v) (see Lecture notes for more examples)
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2) Poisson cohomology - Poisson differential

Definition
Given Poisson manifold (M,π) the Poisson differential is the
linear map dπ : Xk (M)→ Xk+1(M) given by:

dπ ϑ(α0, . . . ,αk ) =
k

∑
i=0

(−1)iL
π](αi )

(ϑ(α0, . . . , α̌i , . . . ,αk ))+

+ ∑
0≤i<j≤k

(−1)i+j
ϑ([αi ,αj ]π ,α0, . . . , α̌i , . . . , α̌j , . . . ,αk )

The Poisson differential dπ : Xk (M)→ Xk+1(M) is also given by:

dπ ϑ = [π,ϑ ].

It follows that:

d2
π ϑ = [π, [π,ϕ]] = 2[[π,π],ϕ] = 0.
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Poisson cohomology

Definition
The Poisson cohomology of (M,π) is the homology of the
complex (Xk (M),dπ ):

Hk
π (M) :=

ker(dπ : Xk (M)→ Xk+1(M))

Im(dπ : Xk−1(M)→ Xk (M))
.

From:

I dπ (ϑ1∧ϑ2) = dπ ϑ1∧ϑ2 + (−1)pϑ1∧dπ ϑ2,

I dπ [ϑ1,ϑ2] = [dπ ϑ1,ϑ2] + (−1)k [ϑ1,dπ ϑ2],

It follows that H•π (M) is:

I a graded commutative algebra;

I a graded Lie algebra (up to a degree shift p = k + 1);

and the two operations are related by the graded Leibniz identity.
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Poisson cohomology - properties

I H0
π (M) is a ring and each Hp

π (M) is a module over it.

I H1
π (M) is a Lie algebra and each Hk+1

π (M) is a
representation of it.

I Hk
π (M) is usually infinite dimensional, but sometimes is

finite dimensional as a module over H0
π (M).

Most important fact concerning Poisson cohomology:

Almost always impossible to compute!
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Poisson cohomology in low degrees - degree 0

dπ : X0(M) = C∞(M)→ X(M), f 7→ [π, f ] = Xf .

So degree zero Poisson cohomology is the space of Casimirs:

H0
π (M) = {f ∈ C∞(M) : {f ,g}= 0 ∀ g ∈ C∞(M)}.

I H0
π (M) is a ring⇔ product of Casimirs is a Casimir.

I It is often infinite dimensional!
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Poisson cohomology in low degrees - degree 1

dπ : X1(M) = X(M)→ X2(M), X 7→ [π,X ] =−LX π.

So degree one Poisson cohomology measures the difference
between Poisson vector fields and Hamiltonian ones:

H1
π (M) :=

Poisson vector fields
Hamiltonian vector fields

=
X(M,π)

XHam(M,π)

I H1
π (M) is Lie algebra⇔ Poisson vector fields is a Lie

algebra, whereHamiltonian vector fields sit as a Lie ideal.
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Example - modular class

Question: given (M,π) is there a volume forms µ ∈ Ωn(M) which
invariant under all Hamiltonian diffeomorphisms, i.e., that

LXf
µ = 0 ∀f ∈ C∞(M)?

Example
For symplectic manifold (M,ω) we can take the Liouville form:

µ := ω
m (2m = dim(M)).

A general Poisson manifold (M,π):

(i) need not be orientable;

(ii) if it is orientable, such invariant volume form does not always
exist.

The obstruction is given by a degree one Poisson cohomology class.
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Example - modular class
Assume (M,π) is orientable and choose volume form µ. If f ∈ C∞(M):

LXf
µ = Xµ (f ) µ,

for some function Xµ (f ) ∈ C∞(M).

Lemma
The map f 7→ Xµ (f ) is a derivation of C∞(M), so gives vector field Xµ :

1. Xµ is a Poisson vector field.

2. If µ ′ =±eg µ is some other volume form, the vector fields Xµ ′

and Xµ differ by a Hamiltonian vector field: Xµ ′ = Xµ −Xg .

Definition
The modular class of an orientable Poisson manifold (M,π) is

mod(M,π) := [Xµ ] ∈ H1
π (M).

When mod(M,π) = 0, one calls (M,π) unimodular.
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Example - modular class

Corollary
A Poisson manifold (M,π) has an invariant volume form if and
only if mod(M,π) = 0.

Example
For the linear Poisson structure on R2 given by:

{x ,y}= x ,

the modular vector field associated with the standard volume form
µ = dx ∧dy is:

Xµ =− ∂

∂y
.

This vector field is not Hamiltonian (it does not vanish along x = 0)
Conclusion:

mod(R2,π) 6= 0,



Poisson cohomology in low degrees - degree 2

dπ : X2(M)→ X3(M), ϑ 7→ [π,ϑ ],

so the second Poisson cohomology space is:

H2
π (M) :=

{ϑ ∈ X2(M) : [π,ϑ ] = 0}
{LX π : X ∈ X(M)}

.

Example
The Poisson bivector itself induces a cohomology class called the
fundamental class of the Poisson manifold:

[π] ∈ H2
π (M),

One says that (M,π) is an exact Poisson manifold when [π] = 0.
(this rarely happens, but happens, e.g., for linear Poisson structures)
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Example - deformation of Poisson structures

Definition
A deformation of a Poisson structure π on M is a family of
Poisson structures (πt )t∈I ⊂ X2(M) such that π0 = π.

The variation at t = 0 is the bivector field

ϑ :=
d
dt

∣∣∣∣
t=0

πt ,

Differentiating [πt ,πt ] = 0 at t = 0, one finds that it satisfies:

0 =
d
dt

∣∣∣∣
t=0

[πt ,πt ] = 2[π,ϑ ] = 2dπ ϑ .

Conclusion: elements ϑ ∈ X2(M) with dπ ϑ = 0 are “infinitesimal
deformations” of π.
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Example - deformation of Poisson structures

Definition
Two deformations (πt )t∈I and (π

′
t )t∈I of π are equivalent if

there exists a smooth family (φt )t∈I of diffeomorphisms:

φ0 = Id π
′
t = φ

∗
t (πt ). (1)

Differentiating (1), one finds that the variations ϑ ′ and ϑ satisfy

ϑ
′−ϑ = LX π, with Xx =

d
dt

∣∣∣∣
t=0

φt (x).

Proposition
For any deformation (πt )t∈I of (M,π), its variation at t = 0
defines a cohomology class

[ϑ ] ∈ H2
π (M)

which depends only of the equivalence class of (πt )t∈I .
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Example - deformation of Poisson structures

H2
π (M) =

infinitesimal deformations of π

equivalence

Example
For any (M,π) Poisson manifold, we have the deformation:

πt := et
π.

Associated cohomology class is the fundamental class:

[π] = [
dπt

dt

∣∣∣∣
t=0

] ∈ H2
π (M).

This class vanishes if and only if LX π = π. If we can choose X to be
complete, then:

πt = et
π = (ϕ

t
X )∗π.
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Poisson cohomology versus Lie algebroid cohomology

The formula for dπ only depends on [·, ·]π and π], so extends to
any Lie algebroid (A, [·, ·]A,ρ):
I A-forms: Ωk (A) = Γ(∧kA∗);
I A-differential: dA : Ωk (A)→ Ωk+1(A)

dAω(s0, . . . ,sk ) =
k

∑
i=0

(−1)iLρ(si )(ω(s0, . . . , ši , . . . ,sk ))+

+ ∑
0≤i<j≤k

(−1)i+j
ω([si ,sj ]A,s0, . . . , ši , . . . , šj , . . . ,sk )

I Lie algebroid cohomology:

Hk (A) =
ImdA

ker dA
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Examples and properties of Lie algebroid cohomology

I A = (TM, [·, ·],ρ): de Rham differential and the de Rham
cohomology;

I A = (T ∗M, , [·, ·]π ,π]): the Poisson differential and Poisson
cohomology;

I A = g: Chevalley-Eilenberg differential and Lie algebra
cohomology.

Functoriality: A Lie algebroid morphism Φ : A→ B induces a
pull-back map in cohomology:

Φ∗ : H•(B)→ H•(A).

=⇒ can relate Poisson cohomology with known cohomologies
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More applications - see Lectuire Notes

• Examples of computations of Poisson cohomology:

I Linear Poisson structures;

I Regular Poisson structures;

I Log-symplectic Poisson structures.

• Application to Linearization Problem

But remember: Poisson cohomology rarely can be computed!
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