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We initiate the study of global properties of a Poisson manifold.

This study needs to take into account three different aspects:
> the symplectic geometry of the leaves;
> the topology of the foliation;
> the transverse (Poisson) geometry of the leaves

In this chapter we will study
> Lie algebroids
» Poisson cohomology
» Applications of Poisson cohomology
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1) Lie algebroids

The Lie bracket of vector fields on M satisfies the Leibniz type
identity:
(X, fY] =X, Y]+ 2x(f)Y, Ve C”(M).

Given a Poisson manifold (M, ), the Lie bracket of 1-forms
Q'(M) also satisfies also the Leibniz type identity:

[Ol, fﬁ]ﬂ = f[a7ﬁ]ﬂ' +$ﬂ:ja(f)ﬁ'

Definition

A Lie algebroid over a M is a vector bundle A — M,
together with a Lie bracket [-,-] 4 on the sections '(A),
and a bundle map p4 : A — TM satisfying:

[aafﬁ]A: f[aaB]A+$pA(a)(f)B7 VO!,B € r(A)va Cw(M)
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Lie algebroid philosophy

Think (A,[-,-]a,p) as reflecting a certain geometry present on
M, and for this geometry A plays the role of the correct
tangent bundle.

The anchor p4 : A— TM, relates this new tangent bundle back
to the classical tangent bundle. It satisfies:

p([o, Bla) = [p(e),p(B)], Va,B €T (A)
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Examples of Lie algebroids
(i) Tangent bundle of a manifold M:

A: TM? ['7']A:[‘7’]7 pzld'
(i) Cotangent bundle of a Poisson manifold (M, ):

A:T*Ma [.7']A:[7]7757 p:ﬂ’.ﬁ'

(iii) Lie algebra g:

A:g%{*}? ['7']A:[7 ]97 p=0;

(iv) Dirac structure I on M:

A=L— M, [ ]a=Dorfman bracket, p=proylL;

(v) (see Lecture notes for more examples)
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Given Poisson manifold (M, ) the Poisson differential is the
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Definition
Given Poisson manifold (M, ) the Poisson differential is the
linear map d : XX(M) — xK+1(M) given by:

k .
dﬂﬁ(ao, .. .,Otk) = Z(—1)I$ﬂn(ai)(19(a0, .. .,o“z,-,...,ock))+
i=0
+ Y (-0)"(a, olx, 00, ..., Gy G, k)
0<i<j<k

The Poisson differential d, : XX(M) — x¥*1(M) is also given by:
Y =[m, 9.
It follows that:

= [r,[7, 9]l = 2[[7, 7], 0] = 0
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Definition
The Poisson cohomology of (M, ) is the homology of the
complex (XK(M),dy):

_ ker(dg : XK(M) — XK1 (M)
T Im(dg : XKT(M) — XK(M))

Hy (M)
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Definition
The Poisson cohomology of (M, ) is the homology of the
complex (XK(M),dy):

_ ker(dg : XK(M) — XK1 (M)
T Im(dg : XKT(M) — XK(M))

Hy (M)

\.

From:
> dr (01 A D) =da Oy A2 +(—1)PD1 Adaa,
> dr[B, 9] = [dr D1, V2] + (—1)K[01,dzD2],
It follows that Hy (M) is:
» a graded commutative algebra;
> a graded Lie algebra (up to a degree shift p=k+1);

and the two operations are related by the graded Leibniz identity.
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Poisson cohomology - properties

> HO(M) is a ring and each HF (M) is a module over it.

> Hl(M)is a Lie algebra and each HX*'(M) is a
representation of it.

> HX(M) is usually infinite dimensional, but sometimes is
finite dimensional as a module over H(M).

Most important fact concerning Poisson cohomology:

Almost always impossible to compute!
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Poisson cohomology in low degrees - degree 0

dr: X0(M) = C™(M) — X(M), f[r,fl=X;.

So degree zero Poisson cohomology is the space of Casimirs:

HO(M) = {fe C™(M): {f,g} =0V gec C*(M)}.

> HO(M) is a ring < product of Casimirs is a Casimir.
> It is often infinite dimensional!
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Poisson cohomology in low degrees - degree 1

dr: X1 (M) = X(M) = X3(M), X [1,X] = —Zxr.

So degree one Poisson cohomology measures the difference
between Poisson vector fields and Hamiltonian ones:

Poisson vector fields X(M,r)

HY(M) = —
(M) Hamiltonian vector fields ~ Xpam(M, 1)

> H}(M) is Lie algebra < Poisson vector fields is a Lie
algebra, whereHamiltonian vector fields sit as a Lie ideal.
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Example - modular class

Question: given (M, x) is there a volume forms u € Q"(M) which
invariant under all Hamiltonian diffeomorphisms, i.e., that

S =0 vfeC™(M)?

Example
For symplectic manifold (M, w) we can take the Liouville form:

p:=0" (2m=dim(M)).

A general Poisson manifold (M, r):
(i) need not be orientable;

(i) if it is orientable, such invariant volume form does not always
exist.

The obstruction is given by a degree one Poisson cohomology class.
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Example - modular class
Assume (M, rr) is orientable and choose volume form p. If f € C*(M):

Ly, = Xu(f) 1,
for some function X, (f) € C*(M).

Lemma
The map f— X, (f) is a derivation of C*(M), so gives vector field X, :

1. Xy is a Poisson vector field.

2. If u’ =+e9u is some other volume form, the vector fields X,
and X, differ by a Hamiltonian vector field: X, = X, — Xg.

Definition
The modular class of an orientable Poisson manifold (M, ) is

mod(M, ) := [X,] € HL(M).

When mod(M, n) = 0, one calls (M, ) unimodular.




Example - modular class

Corollary
A Poisson manifold (M, m) has an invariant volume form if and
only if mod(M, ) = 0.

Example
For the linear Poisson structure on R? given by:

xyr=x

the modular vector field associated with the standard volume form
u=dxAdyis:

d
Xy = “y
This vector field is not Hamiltonian (it does not vanish along x = 0)

Conclusion:
mod(R?, ) # 0,
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Poisson cohomology in low degrees - degree 2
dr - X2(M) = X3(M), ¥ — [r, 9],
so the second Poisson cohomology space is:

{9 ex3(M):[r,9] =0}
He(M) = {(Sxm: Xex(M)}

Example

The Poisson bivector itself induces a cohomology class called the
fundamental class of the Poisson manifold:

[7] € HZ(M),

One says that (M, ) is an exact Poisson manifold when [r] = 0.
(this rarely happens, but happens, e.g., for linear Poisson structures)



Example - deformation of Poisson structures

Definition
A deformation of a Poisson structure = on M is a family of
Poisson structures (m;);c; C X2(M) such that o = .




Example - deformation of Poisson structures

Definition
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Example - deformation of Poisson structures

Definition
A deformation of a Poisson structure = on M is a family of
Poisson structures (m;);c; C X2(M) such that o = .

The variation at t = 0 is the bivector field

d

U= —
dt

Tt
t=0

Differentiating [n;, 7;] = 0 at t = 0, one finds that it satisfies:

0= L1 [mm] = 2r, 0] = 2d,0.
dtlioo

Conclusion: elements © € X2(M) with d,® = 0 are “infinitesimal
deformations” of x.
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Example - deformation of Poisson structures

Definition
Two deformations (7)<, and (n;)tel of = are equivalent if
there exists a smooth family (¢;);c; of diffeomorphisms:

do=1d  m=¢;(m). (1)

.

Differentiating (1), one finds that the variations ¥ and ¢ satisfy

. d
¥ -9 =Sxm, with Xy = I O1(X).
t=0

Proposition
For any deformation (rt);c; of (M, x), its variation at t =0
defines a cohomology class

[9] € H (M)

which depends only of the equivalence class of (7t)sc.
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Example - deformation of Poisson structures

infinitesimal deformations of «

200 —
Hz(M) = equivalence

Example
For any (M, ) Poisson manifold, we have the deformation:

n = elm.
Associated cohomology class is the fundamental class:

m =[5y | TeHm)

This class vanishes if and only if Zxz = &. If we can choose X to be
complete, then:
m = e'w = (¢k). 7.



Poisson cohomology versus Lie algebroid cohomology

The formula for d, only depends on [-,-], and z%, so extends to
any Lie algebroid (A,[-,-]4,p):
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k
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Examples and properties of Lie algebroid cohomology

» A=(TM,[-,-],p): de Rham differential and the de Rham
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» A= g: Chevalley-Eilenberg differential and Lie algebra
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Examples and properties of Lie algebroid cohomology

» A=(TM,[-,-],p): de Rham differential and the de Rham
cohomology;

> A= (T*M,,[-,-]z,#"): the Poisson differential and Poisson
cohomology;

» A= g: Chevalley-Eilenberg differential and Lie algebra
cohomology.

Functoriality: A Lie algebroid morphism ¢ : A — B induces a
pull-back map in cohomology:

®* : H*(B) — H*(A).

— can relate Poisson cohomology with known cohomologies
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More applications - see Lectuire Notes

e Examples of computations of Poisson cohomology:
» Linear Poisson structures;
» Regular Poisson structures;

» Log-symplectic Poisson structures.

e Application to Linearization Problem

But remember: Poisson cohomology rarely can be computed!
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