Math 595 - Poisson Geometry
 Chapter 11 - Contravariant Connections

Rui Loja Fernandes

Department of Mathematics
University of Illinois at Urbana-Champaign, USA
April 13, 2020

What is this chapter about:

We look at the notion of contravariant connection in Poisson Geometry.

What is this chapter about:

We look at the notion of contravariant connection in Poisson Geometry.

In this chapter we will study

- Contravariant connections on vector bundles
- Parallel transport along cotangent paths
- Flat contravariant connections
- Geodesics for contravariant connections

What is this chapter about:

We look at the notion of contravariant connection in Poisson Geometry.

In this chapter we will study

- Contravariant connections on vector bundles
- Parallel transport along cotangent paths
- Flat contravariant connections
- Geodesics for contravariant connections

We will apply these to prove:

- every Poisson manifold (M, π) admits a symplectic realization $\mu:(S, \omega) \rightarrow(M, \pi)$

1) Contravariant connections on vector bundles Notation:

- (M, π) : Poisson manifold (M, π)
- $E \rightarrow M$: vector bundle

Definition

A contravariant connection on E is a \mathbb{R}-bilinear operation:

$$
\Omega^{1}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(\alpha, s) \mapsto \nabla_{\alpha} s,
$$

satisfying:

$$
\nabla_{f \alpha} s=f \nabla_{\alpha} s, \quad \nabla_{\alpha}(f s)=f \nabla_{\alpha} s+\mathscr{L}_{\pi^{\sharp} \alpha}(f) s .
$$

1) Contravariant connections on vector bundles

 Notation:- (M, π) : Poisson manifold (M, π)
- $E \rightarrow M$: vector bundle

Definition

A contravariant connection on E is a \mathbb{R}-bilinear operation:

$$
\Omega^{1}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(\alpha, s) \mapsto \nabla_{\alpha} s,
$$

satisfying:

$$
\nabla_{f \alpha} s=f \nabla_{\alpha} s, \quad \nabla_{\alpha}(f s)=f \nabla_{\alpha} s+\mathscr{L}_{\pi^{\sharp} \alpha}(f) s .
$$

Many of the usual constructions for ordinary connections extend to contravariant connections in a more or less straightforward way.

1) Contravariant connections on vector bundles Notation:

- (M, π) : Poisson manifold (M, π)
- $E \rightarrow M$: vector bundle

Definition

A contravariant connection on E is a \mathbb{R}-bilinear operation:

$$
\Omega^{1}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(\alpha, s) \mapsto \nabla_{\alpha} s,
$$

satisfying:

$$
\nabla_{f \alpha} s=f \nabla_{\alpha} s, \quad \nabla_{\alpha}(f s)=f \nabla_{\alpha} s+\mathscr{L}_{\pi^{\sharp} \alpha}(f) s .
$$

Many of the usual constructions for ordinary connections extend to contravariant connections in a more or less straightforward way.
Curvature of a contravariant connection $R_{\nabla} \in \mathfrak{X}^{2}(M ; \operatorname{End}(E))$ is:

$$
R_{\nabla}(\alpha, \beta) s:=\nabla_{\alpha}\left(\nabla_{\beta} s\right)-\nabla_{\beta}\left(\nabla_{\alpha} s\right)-\nabla_{[\alpha, \beta] \pi} s .
$$

Examples

1) $E \rightarrow M$ vector bundle with an ordinary (covariant) connection $\bar{\nabla}$. Then:

$$
\nabla_{\alpha} S:=\bar{\nabla}_{\pi^{\sharp}(\alpha)} S
$$

So contravariant connections always exist.

Examples

1) $E \rightarrow M$ vector bundle with an ordinary (covariant) connection $\bar{\nabla}$. Then:

$$
\nabla_{\alpha} S:=\bar{\nabla}_{\pi^{\sharp}(\alpha)} S
$$

So contravariant connections always exist.
2) Assume (M, π) is a regular so we have the bundle $E=v^{*}\left(\mathscr{F}_{\pi}\right)$. Note that $v^{*}\left(\mathscr{F}_{\pi}\right)=\operatorname{ker} \pi^{\sharp}$, so the contravariant Bott connection:

$$
\nabla_{\alpha} \beta:=[\alpha, \beta]_{\pi}, \quad \alpha \in \Omega^{1}(M), \beta \in \Gamma\left(v^{*}\left(\mathscr{F}_{\pi}\right)\right),
$$

By Jacobi, this is connection is flat: $R_{\nabla}=0$.

Examples

1) $E \rightarrow M$ vector bundle with an ordinary (covariant) connection $\bar{\nabla}$. Then:

$$
\nabla_{\alpha} S:=\bar{\nabla}_{\pi^{\sharp}(\alpha)} S
$$

So contravariant connections always exist.
2) Assume (M, π) is a regular so we have the bundle $E=v^{*}\left(\mathscr{F}_{\pi}\right)$. Note that $v^{*}\left(\mathscr{F}_{\pi}\right)=\operatorname{ker} \pi^{\sharp}$, so the contravariant Bott connection:

$$
\nabla_{\alpha} \beta:=[\alpha, \beta]_{\pi}, \quad \alpha \in \Omega^{1}(M), \beta \in \Gamma\left(v^{*}\left(\mathscr{F}_{\pi}\right)\right),
$$

By Jacobi, this is connection is flat: $R_{\nabla}=0$.
3) For any (M, π) the line bundle $L=\wedge^{\text {top }} T^{*} M$ has a contravariant connection ∇ :

$$
\nabla_{\mathrm{d} f} \mu:=\mathscr{L}_{X_{f}} \mu
$$

and then extends to any 1 -form by requiring $C^{\infty}(M)$-linearity. This is also a flat connection!

Examples

1) $E \rightarrow M$ vector bundle with an ordinary (covariant) connection $\bar{\nabla}$. Then:

$$
\nabla_{\alpha} S:=\bar{\nabla}_{\pi^{\sharp}(\alpha)} S
$$

So contravariant connections always exist.
2) Assume (M, π) is a regular so we have the bundle $E=v^{*}\left(\mathscr{F}_{\pi}\right)$. Note that $v^{*}\left(\mathscr{F}_{\pi}\right)=\operatorname{ker} \pi^{\sharp}$, so the contravariant Bott connection:

$$
\nabla_{\alpha} \beta:=[\alpha, \beta]_{\pi}, \quad \alpha \in \Omega^{1}(M), \beta \in \Gamma\left(v^{*}\left(\mathscr{F}_{\pi}\right)\right),
$$

By Jacobi, this is connection is flat: $R_{\nabla}=0$.
3) For any (M, π) the line bundle $L=\wedge^{\text {top }} T^{*} M$ has a contravariant connection ∇ :

$$
\nabla_{\mathrm{d} f} \mu:=\mathscr{L}_{X_{f}} \mu
$$

and then extends to any 1 -form by requiring $C^{\infty}(M)$-linearity. This is also a flat connection!

Aplication: characteristic class of flat line bundles

- $L \rightarrow(M, \pi)$: trivial line bundle with flat contravariant connection ∇

Aplication: characteristic class of flat line bundles

- $L \rightarrow(M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$
\nabla_{\alpha} \mu=c_{\mu}(\alpha) \mu
$$

for some C^{∞}-linear map $c_{\mu}: T^{*} M \rightarrow \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.

Aplication: characteristic class of flat line bundles

- $L \rightarrow(M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$
\nabla_{\alpha} \mu=c_{\mu}(\alpha) \mu
$$

for some C^{∞}-linear map $c_{\mu}: T^{*} M \rightarrow \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.
(a) ∇ flat $\left.\Rightarrow \mathrm{d}_{\pi} c_{\mu}\right)=0$.
(b) if $\mu^{\prime}= \pm e^{g} \mu \Rightarrow c_{\mu^{\prime}}=c_{\mu}-X_{g}$.

Aplication: characteristic class of flat line bundles

- $L \rightarrow(M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$
\nabla_{\alpha} \mu=c_{\mu}(\alpha) \mu
$$

for some C^{∞}-linear map $c_{\mu}: T^{*} M \rightarrow \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.
(a) ∇ flat $\left.\Rightarrow \mathrm{d}_{\pi} c_{\mu}\right)=0$.
(b) if $\mu^{\prime}= \pm e^{g} \mu \Rightarrow c_{\mu^{\prime}}=c_{\mu}-X_{g}$.

Conclusion: $c(L, \nabla)=\left[c_{\mu}\right] \in H_{\pi}^{1}(M)$.

Aplication: characteristic class of flat line bundles

- $L \rightarrow(M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$
\nabla_{\alpha} \mu=c_{\mu}(\alpha) \mu
$$

for some C^{∞}-linear map $c_{\mu}: T^{*} M \rightarrow \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.
(a) ∇ flat $\left.\Rightarrow \mathrm{d}_{\pi} c_{\mu}\right)=0$.
(b) if $\mu^{\prime}= \pm e^{g} \mu \Rightarrow c_{\mu^{\prime}}=c_{\mu}-X_{g}$.

Conclusion: $c(L, \nabla)=\left[c_{\mu}\right] \in H_{\pi}^{1}(M)$.

- $L \rightarrow(M, \pi)$: any line bundle with flat contravariant connection ∇

Aplication: characteristic class of flat line bundles

- $L \rightarrow(M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$
\nabla_{\alpha} \mu=c_{\mu}(\alpha) \mu
$$

for some C^{∞}-linear map $c_{\mu}: T^{*} M \rightarrow \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.
(a) ∇ flat $\left.\Rightarrow \mathrm{d}_{\pi} c_{\mu}\right)=0$.
(b) if $\mu^{\prime}= \pm e^{g} \mu \Rightarrow c_{\mu^{\prime}}=c_{\mu}-X_{g}$.

Conclusion: $c(L, \nabla)=\left[c_{\mu}\right] \in H_{\pi}^{1}(M)$.

- $L \rightarrow(M, \pi)$: any line bundle with flat contravariant connection ∇
(a) $L^{2}=L \otimes L$ is trivial;
(b) L^{2} has the flat connection:

$$
\tilde{\nabla}_{\alpha}\left(\xi \otimes \xi^{\prime}\right):=\nabla_{\alpha} \xi \otimes \xi^{\prime}+\xi \otimes \nabla_{\alpha} \xi^{\prime}
$$

Conclusion: $\left[c\left(L^{2}, \tilde{\nabla}\right)\right] \in H_{\pi}^{1}(M)$.

Aplication: characteristic class of flat line bundles

Definition

For a flat line bundle (L, ∇) its characteristic class is:

$$
c(L, \nabla)=\frac{1}{2} c\left(L^{2}, \nabla\right) \in H_{\pi}^{1}(M) .
$$

Aplication: characteristic class of flat line bundles

Definition

For a flat line bundle (L, ∇) its characteristic class is:

$$
c(L, \nabla)=\frac{1}{2} c\left(L^{2}, \nabla\right) \in H_{\pi}^{1}(M) .
$$

Example (Modular class)

Recall that for any (M, π), the line bundle $\wedge^{\text {top }} T^{*} M$ is canonically flat. So:

$$
c\left(\wedge^{\mathrm{top}} T^{*} M, \nabla\right) \in H_{\pi}^{1}(M)
$$

Aplication: characteristic class of flat line bundles

Definition

For a flat line bundle (L, ∇) its characteristic class is:

$$
c(L, \nabla)=\frac{1}{2} c\left(L^{2}, \nabla\right) \in H_{\pi}^{1}(M) .
$$

Example (Modular class)

Recall that for any (M, π), the line bundle $\wedge^{\text {top }} T^{*} M$ is canonically flat. So:

$$
c\left(\wedge^{\mathrm{top}} T^{*} M, \nabla\right) \in H_{\pi}^{1}(M)
$$

If (M, π) is orientable:

$$
c\left(\wedge^{\mathrm{top}} T^{*} M, \nabla\right)=\bmod (M, \pi)
$$

Aplication: characteristic class of flat line bundles

Definition

For a flat line bundle (L, ∇) its characteristic class is:

$$
c(L, \nabla)=\frac{1}{2} c\left(L^{2}, \nabla\right) \in H_{\pi}^{1}(M) .
$$

Example (Modular class)

Recall that for any (M, π), the line bundle $\wedge^{\text {top }} T^{*} M$ is canonically flat. So:

$$
c\left(\wedge^{\mathrm{top}} T^{*} M, \nabla\right) \in H_{\pi}^{1}(M)
$$

If (M, π) is orientable:

$$
c\left(\wedge^{\mathrm{top}} T^{*} M, \nabla\right)=\bmod (M, \pi)
$$

Even for non-orientable (M, π), we call $c\left(\wedge^{\text {top }} T^{*} M, \nabla\right)$ the modular class of (M, π) and denote it by $\bmod (M, \pi)$.

2) Parallel transport along cotangent paths

- $p: E \rightarrow(M, \pi)$ vector bundle with contravariant connection ∇,
- a: $I \rightarrow T^{*} M$ cotangent path with base path $\gamma_{a}: I \rightarrow M$.
- $c: I \rightarrow E$ path above $a: p(c(t))=\gamma_{a}(t)$.

2) Parallel transport along cotangent paths

- $p: E \rightarrow(M, \pi)$ vector bundle with contravariant connection ∇,
- a: $I \rightarrow T^{*} M$ cotangent path with base path $\gamma_{a}: I \rightarrow M$.
- $c: I \rightarrow E$ path above $a: p(c(t))=\gamma_{a}(t)$.

If $s_{t} \in \Gamma(E)$ is any time-dependent section with $s_{t}\left(\gamma_{a}(t)\right)=c(t)$, set:

$$
\left(D_{a} c\right)(t):=\nabla_{a(t)} s_{t}+\left.\frac{\mathrm{d}}{\mathrm{~d} t} s_{t}\right|_{\gamma_{a}(t)}
$$

This is independent of choice of extension s_{t}.

2) Parallel transport along cotangent paths

- $p: E \rightarrow(M, \pi)$ vector bundle with contravariant connection ∇,
- a: $I \rightarrow T^{*} M$ cotangent path with base path $\gamma_{a}: I \rightarrow M$.
- $c: I \rightarrow E$ path above $a: p(c(t))=\gamma_{a}(t)$.

If $s_{t} \in \Gamma(E)$ is any time-dependent section with $s_{t}\left(\gamma_{a}(t)\right)=c(t)$, set:

$$
\left(D_{a} c\right)(t):=\nabla_{a(t)} s_{t}+\left.\frac{\mathrm{d}}{\mathrm{~d} t} s_{t}\right|_{\gamma_{a}(t)}
$$

This is independent of choice of extension s_{t}.

Definition

$D_{a} c$ is called the contravariant derivative of c along the cotangent path a.

Properties of contravariant derivative D :
(i) Linearity: if $c_{1}, c_{2}: I \rightarrow E$ are any two paths above a and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$:

$$
D_{a}\left(\lambda_{1} c_{1}+\lambda_{2} c_{2}\right)=\lambda_{1} D_{a} c_{1}+\lambda_{2} D_{a} c_{2}
$$

(ii) Leibniz: if $c: I \rightarrow E$ is a path above a and $f \in C^{\infty}(M)$:

$$
D_{a}(f c)=\left(f \circ \gamma_{a}(t)\right) D_{a} c+\pi^{\sharp}(a)(f) c .
$$

Properties of contravariant derivative D :
(i) Linearity: if $c_{1}, c_{2}: I \rightarrow E$ are any two paths above a and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$:

$$
D_{a}\left(\lambda_{1} c_{1}+\lambda_{2} c_{2}\right)=\lambda_{1} D_{a} c_{1}+\lambda_{2} D_{a} c_{2}
$$

(ii) Leibniz: if $c: I \rightarrow E$ is a path above a and $f \in C^{\infty}(M)$:

$$
D_{a}(f c)=\left(f \circ \gamma_{a}(t)\right) D_{a} c+\pi^{\sharp}(a)(f) c .
$$

Proposition

If $\Phi: T([0,1] \times[0,1]) \rightarrow T^{*} M$ is a cotangent surface

$$
\Phi(t, \varepsilon)=\Phi_{t}(t, \varepsilon) \mathrm{d} t+\Phi_{\varepsilon}(t, \varepsilon) \mathrm{d} \varepsilon
$$

and $c: I \times I \rightarrow E$ is a map above it, one has:

$$
R_{\nabla}\left(\Phi_{t}, \Phi_{\varepsilon}\right) c=D_{\Phi_{t}} D_{\Phi_{\varepsilon}} c-D_{\Phi_{\varepsilon}} D_{\Phi_{t}} c .
$$

Parallel transport

Definition

Given (M, π) be a Poisson manifold and $E \rightarrow M$ a vector bundle with a contravariant connection. We say that $c: I \rightarrow E$ is a parallel curve along a cotangent path $a: I \rightarrow T^{*} M$ if c lies above a and:

$$
D_{\mathrm{a}} c=0 .
$$

Parallel transport

Definition

Given (M, π) be a Poisson manifold and $E \rightarrow M$ a vector bundle with a contravariant connection. We say that $c: I \rightarrow E$ is a parallel curve along a cotangent path $a: I \rightarrow T^{*} M$ if c lies above a and:

$$
D_{\mathrm{a}} c=0 .
$$

Proposition

Given (M, π), vector bundle (E, ∇), a cotangent path $a:[0,1] \rightarrow T^{*} M$ and a point $u_{0} \in E_{\gamma_{a}(0)}$ there is a unique parallel curve $c_{u_{0}}: I \rightarrow E$ along a starting at u_{0}. The end point of this curve $c_{u_{0}}(1)$ depends linearly on u_{0}.

Parallel transport

Definition

Given (M, π) be a Poisson manifold and $E \rightarrow M$ a vector bundle with a contravariant connection. We say that $c: I \rightarrow E$ is a parallel curve along a cotangent path $a: I \rightarrow T^{*} M$ if c lies above a and:

$$
D_{a} c=0 .
$$

Proposition

Given (M, π), vector bundle (E, ∇), a cotangent path $a:[0,1] \rightarrow T^{*} M$ and a point $u_{0} \in E_{\gamma_{a}(0)}$ there is a unique parallel curve $c_{u_{0}}: I \rightarrow E$ along a starting at u_{0}. The end point of this curve $c_{u_{0}}(1)$ depends linearly on u_{0}.
\Rightarrow parallel transport along the cotangent path a for (E, ∇) :

$$
\tau_{a}: E_{\gamma_{a}(0)} \rightarrow E_{\gamma_{a}(1)}, \quad u_{0} \mapsto c_{u_{0}}(1)
$$

Parallel transport - properties

(i) If \bar{a} is the reverse cotangent path: $\tau_{\bar{a}} \circ \tau_{a}=\mathrm{id}$;
(ii) τ_{a} is a linear isomorphism between the fibers;

Parallel transport - properties

(i) If \bar{a} is the reverse cotangent path: $\tau_{\bar{a}} \circ \tau_{a}=\mathrm{id}$;
(ii) τ_{a} is a linear isomorphism between the fibers;

Example (Linear Poisson structure $M=\mathfrak{g}^{*}$)
Contravariant connection on $E=T^{*} \mathfrak{g}^{*}$:

- On constant 1-forms: $\nabla_{\downarrow} w:=[v, w]_{\mathfrak{g}}$,
- extend to any forms, by imposing the properties of a connection.

Parallel transport - properties

(i) If \bar{a} is the reverse cotangent path: $\tau_{\bar{a}} \circ \tau_{a}=\mathrm{id}$;
(ii) τ_{a} is a linear isomorphism between the fibers;

Example (Linear Poisson structure $M=\mathfrak{g}^{*}$)
Contravariant connection on $E=T^{*} \mathfrak{g}^{*}$:

- On constant 1-forms: $\nabla_{v} w:=[v, w]_{\mathfrak{g}}$,
- extend to any forms, by imposing the properties of a connection.

Since $\pi^{\text {lin }}$ vanishes at the origin, any $v \in T_{0}^{*} \mathfrak{g}^{*} \simeq \mathfrak{g}$ defines the constant cotangent path $a_{v}(t)=v$:

$$
\tau_{a_{v}}=\operatorname{Ad}_{\exp (v)}: \mathfrak{g} \rightarrow \mathfrak{g}
$$

3) Flat contravariant connections

When ∇ is a flat contravariant connection on $E \rightarrow(M, \pi)$:

- cotangent homotopic paths $a_{0}, a_{1}: I \rightarrow T^{*} M$ induce the same parallel transport: $\tau_{\mathrm{a}_{0}}=\tau_{\mathrm{a}_{1}}$;

3) Flat contravariant connections

When ∇ is a flat contravariant connection on $E \rightarrow(M, \pi)$:

- cotangent homotopic paths $a_{0}, a_{1}: I \rightarrow T^{*} M$ induce the same parallel transport: $\tau_{\mathrm{a}_{0}}=\tau_{\mathrm{a}_{1}}$;

For flat line bundles:

Proposition

If (L, ∇) is a flat line bundle and $a:[0,1] \rightarrow T^{*} M$ is a cotangent path, for any section μ of $L \rightarrow M$ which does not vanish along γ_{a} :

$$
\tau_{a}\left(\mu_{\gamma_{a}(0)}\right)=\exp \left(-\int_{a} c(L, \nabla)\right) \mu_{\gamma_{a}(1)} .
$$

Linear Poisson holomomy

Definition

Given a cotangent path $a:[0,1] \rightarrow T^{*} M$ on (M, π) lying in a symplectic leaf S, the parallel transport map for the contravariant Bott connection

$$
\mathrm{Hol}_{a}:=\tau_{a}: v_{\gamma_{a}(0)}^{*}(S) \rightarrow v_{\gamma_{a}(1)}^{*}(S),
$$

is called the linear Poisson holonomy of a.

Linear Poisson holomomy

Definition

Given a cotangent path $a:[0,1] \rightarrow T^{*} M$ on (M, π) lying in a symplectic leaf S, the parallel transport map for the contravariant Bott connection

$$
\mathrm{Hol}_{a}:=\tau_{a}: v_{\gamma_{a}(0)}^{*}(S) \rightarrow v_{\gamma_{a}(1)}^{*}(S),
$$

is called the linear Poisson holonomy of a.
One can relate linear Poisson holonomy to the modular class:

Theorem

Let (M, π) be a Poisson manifold. For a cotangent path a: $[0,1] \rightarrow T^{*} M$ whose base path is a loop:

$$
\operatorname{det}\left(\mathrm{Hol}_{a}\right)=\exp \left(-\int_{a} \bmod (M, \pi)\right) .
$$

4) Geodesics for contravariant connections

Contravariant connections on $E=T^{*} M$ play a special role.

Definition

Let (M, π) be a Poisson manifold. A contravariant connection on
(M, π) is a contravariant connection ∇ on the bundle $T^{*} M$. Its torsion is the $T^{*} M$-valued bivector field:

$$
T_{\nabla}(\alpha, \beta):=\nabla_{\alpha} \beta-\nabla_{\beta} \alpha-[\alpha, \beta]_{\pi} .
$$

4) Geodesics for contravariant connections

Contravariant connections on $E=T^{*} M$ play a special role.

Definition

Let (M, π) be a Poisson manifold. A contravariant connection on
(M, π) is a contravariant connection ∇ on the bundle $T^{*} M$. Its torsion is the $T^{*} M$-valued bivector field:

$$
T_{\nabla}(\alpha, \beta):=\nabla_{\alpha} \beta-\nabla_{\beta} \alpha-[\alpha, \beta]_{\pi} .
$$

Example (Linear Poisson structure $M=\mathfrak{g}^{*}$)

Contravariant connection on $E=T^{*} \mathfrak{g}^{*}$:

- On constant 1 -forms: $\nabla_{v} w:=\frac{1}{2}[v, w]_{\mathfrak{g}}$,
- extend to any forms, by imposing the properties of a connection.

4) Geodesics for contravariant connections

Contravariant connections on $E=T^{*} M$ play a special role.

Definition

Let (M, π) be a Poisson manifold. A contravariant connection on
(M, π) is a contravariant connection ∇ on the bundle $T^{*} M$. Its torsion is the $T^{*} M$-valued bivector field:

$$
T_{\nabla}(\alpha, \beta):=\nabla_{\alpha} \beta-\nabla_{\beta} \alpha-[\alpha, \beta]_{\pi} .
$$

Example (Linear Poisson structure $M=\mathfrak{g}^{*}$)

Contravariant connection on $E=T^{*} \mathfrak{g}^{*}$:

- On constant 1 -forms: $\nabla_{v} w:=\frac{1}{2}[v, w]_{\mathfrak{g}}$,
- extend to any forms, by imposing the properties of a connection.

This connection is torsionless and, in general, non-flat:

$$
T=0, \quad R(v, w) z=\frac{1}{4}[v,[w, z]] .
$$

Torsion and connections

Geometric interpretation of torsion:

Proposition

Given a contravariant connection ∇ and a cotangent surface $\Phi: T([0,1] \times[0,1]) \rightarrow T^{*} M$,

$$
\Phi(t, \varepsilon)=\Phi_{t}(t, \varepsilon) \mathrm{d} t+\Phi_{\varepsilon}(t, \varepsilon) \mathrm{d} \varepsilon .
$$

we have:

$$
T\left(\Phi_{t}, \Phi_{\varepsilon}\right)=D_{\Phi_{t}} \Phi_{\varepsilon}-D_{\Phi_{\varepsilon}} \Phi_{t} .
$$

Torsion and connections

Geometric interpretation of torsion:

Proposition

Given a contravariant connection ∇ and a cotangent surface $\Phi: T([0,1] \times[0,1]) \rightarrow T^{*} M$,

$$
\Phi(t, \varepsilon)=\Phi_{t}(t, \varepsilon) \mathrm{d} t+\Phi_{\varepsilon}(t, \varepsilon) \mathrm{d} \varepsilon .
$$

we have:

$$
T\left(\Phi_{t}, \Phi_{\varepsilon}\right)=D_{\Phi_{t}} \Phi_{\varepsilon}-D_{\Phi_{\varepsilon}} \Phi_{t} .
$$

Local coordinate expressions: In a local chart (U, x^{i}) for (M, π) :

$$
\nabla_{\mathrm{d} x^{\prime}} \mathrm{d} x^{j}=\sum_{k} \Gamma_{k}^{i j} \mathrm{~d} x^{k} .
$$

The $\Gamma_{k}^{i j} \in C^{\infty}(U)$ are called the Christoffel symbols.

Torsion and connections

Geometric interpretation of torsion:

Proposition

Given a contravariant connection ∇ and a cotangent surface $\Phi: T([0,1] \times[0,1]) \rightarrow T^{*} M$,

$$
\Phi(t, \varepsilon)=\Phi_{t}(t, \varepsilon) \mathrm{d} t+\Phi_{\varepsilon}(t, \varepsilon) \mathrm{d} \varepsilon
$$

we have:

$$
T\left(\Phi_{t}, \Phi_{\varepsilon}\right)=D_{\Phi_{t}} \Phi_{\varepsilon}-D_{\Phi_{\varepsilon}} \Phi_{t} .
$$

Local coordinate expressions: In a local chart (U, x^{i}) for (M, π) :

$$
\nabla_{\mathrm{d} x^{\prime}} \mathrm{d} x^{j}=\sum_{k} \Gamma_{k}^{i j} \mathrm{~d} x^{k} .
$$

The $\Gamma_{k}^{i j} \in C^{\infty}(U)$ are called the Christoffel symbols.
Torsion in local coordinates:

$$
T\left(\mathrm{~d} x^{i}, \mathrm{~d} x^{j}\right)=\sum_{k} T_{k}^{i j} \mathrm{~d} x^{k}, \quad T_{k}^{i j}=\Gamma_{k}^{i j}-\Gamma_{k}^{j i}-\frac{\partial \pi^{i j}}{\partial x^{k}} .
$$

Geodesics

Definition

Let ∇ is a contravariant connection on (M, π). A cotangent path $a: I \rightarrow T^{*} M$ is called a geodesic if it is parallel along itself:

$$
D_{\mathrm{a}} a=0 .
$$

Geodesics

Definition

Let ∇ is a contravariant connection on (M, π). A cotangent path $a: I \rightarrow T^{*} M$ is called a geodesic if it is parallel along itself:

$$
D_{a} a=0 .
$$

In local coordinates: $a(t)=\sum_{i} a_{i}(t) \mathrm{d} x^{i}$ with base path $\gamma_{a}(t)=\left(\gamma_{a}^{i}(t)\right)$ is a geodesic iff:

$$
\left\{\begin{array}{l}
\dot{a}_{k}(t)=-\sum_{1 \leq i, j \leq n} \Gamma_{k}^{i j}\left(\gamma_{a}(t)\right) a_{i}(t) a_{j}(t), \\
\dot{\gamma}_{a}^{k}(t)=\sum_{1 \leq i \leq n} \pi^{i k}\left(\gamma_{a}(t)\right) a_{i}(t) .
\end{array} \quad(k=1, \ldots n)\right.
$$

Geodesic spray and Geodesic flow

Geodesics are the integral curves of $X \in \mathfrak{X}\left(T^{*} M\right)$, given in local coordinates $\left(x^{i}, p_{i}\right)$ by:

$$
X=\sum_{1 \leq i, k \leq n} \pi^{i k}(x) p_{i} \frac{\partial}{\partial x^{k}}-\sum_{1 \leq i, j, k \leq n} \Gamma_{k}^{i j}(x) p_{i} p_{j} \frac{\partial}{\partial p_{k}}
$$

Geodesic spray and Geodesic flow

Geodesics are the integral curves of $X \in \mathfrak{X}\left(T^{*} M\right)$, given in local coordinates $\left(x^{i}, p_{i}\right)$ by:

$$
X=\sum_{1 \leq i, k \leq n} \pi^{i k}(x) p_{i} \frac{\partial}{\partial x^{k}}-\sum_{1 \leq i, j, k \leq n} \Gamma_{k}^{i j}(x) p_{i} p_{j} \frac{\partial}{\partial p_{k}} .
$$

X is called the geodesic spray and ϕ_{X}^{t} the geodesic flow of ∇.

Geodesic spray and Geodesic flow

Geodesics are the integral curves of $X \in \mathfrak{X}\left(T^{*} M\right)$, given in local coordinates $\left(x^{i}, p_{i}\right)$ by:

$$
X=\sum_{1 \leq i, k \leq n} \pi^{i k}(x) p_{i} \frac{\partial}{\partial x^{k}}-\sum_{1 \leq i, j, k \leq n} \Gamma_{k}^{i j}(x) p_{i} p_{j} \frac{\partial}{\partial p_{k}} .
$$

X is called the geodesic spray and ϕ_{X}^{t} the geodesic flow of ∇.

Proposition

Given a contravariant connection ∇ on (M, π), there is a unique torsion free contravariant connection $\tilde{\nabla}$ with the same geodesics as ∇.

5) Existence of symplectic realizations

Theorem
Let X be the geodesic spray of a contravariant connection on (M, π). There is an open neighborhood $U \subset T^{*} M$ of the zero-section on which the 2-form

$$
\omega:=-\int_{0}^{1}\left(\phi_{X}^{-t}\right)^{*} \omega_{\mathrm{can}} \mathrm{~d} t
$$

is symplectic and pr| $\mid U:\left(U, \omega^{-1}\right) \rightarrow(M, \pi)$ is a symplectic realization.

5) Existence of symplectic realizations

Theorem

Let X be the geodesic spray of a contravariant connection on (M, π). There is an open neighborhood $U \subset T^{*} M$ of the zero-section on which the 2 -form

$$
\omega:=-\int_{0}^{1}\left(\phi_{X}^{-t}\right)^{*} \omega_{\operatorname{can}} \mathrm{d} t
$$

is symplectic and $\left.\mathrm{pr}\right|_{U}:\left(U, \omega^{-1}\right) \rightarrow(M, \pi)$ is a symplectic realization.

When $(M, \pi)=\left(\mathbb{R}^{n}, \pi\right)$ and we let X be the geodesic spray of the contravariant connection ∇ defined by:

$$
\nabla_{\mathrm{d} x^{i}} \mathrm{~d} x^{j}=0
$$

we recover the result we saw before.

