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What is this chapter about:

We look at the notion of contravariant connection in Poisson
Geometry.

In this chapter we will study

I Contravariant connections on vector bundles

I Parallel transport along cotangent paths

I Flat contravariant connections

I Geodesics for contravariant connections

We will apply these to prove:

• every Poisson manifold (M,π) admits a symplectic realization
µ : (S,ω)→ (M,π)
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1) Contravariant connections on vector bundles
Notation:

• (M,π): Poisson manifold (M,π)

• E →M: vector bundle

Definition
A contravariant connection on E is a R-bilinear operation:

Ω1(M)×Γ(E)→ Γ(E), (α,s) 7→ ∇αs,

satisfying:

∇f αs = f ∇αs, ∇α (fs) = f ∇αs +L
π]α (f )s.

Many of the usual constructions for ordinary connections extend to
contravariant connections in a more or less straightforward way.

Curvature of a contravariant connection R∇ ∈ X2(M;End(E)) is:

R∇(α,β )s := ∇α (∇β s)−∇β (∇αs)−∇[α,β ]π s.
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Examples
1) E →M vector bundle with an ordinary (covariant) connection ∇̄.

Then:
∇αs := ∇̄

π](α)s.

So contravariant connections always exist.

2) Assume (M,π) is a regular so we have the bundle E = ν∗(Fπ ).
Note that ν∗(Fπ ) = ker π], so the contravariant Bott connection:

∇α β := [α,β ]π , α ∈ Ω1(M),β ∈ Γ(ν
∗(Fπ )),

By Jacobi, this is connection is flat: R∇ = 0.

3) For any (M,π) the line bundle L = ∧topT ∗M has a contravariant
connection ∇:

∇df µ := LXf
µ,

and then extends to any 1-form by requiring C∞(M)-linearity.
This is also a flat connection!
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Aplication: characteristic class of flat line bundles
• L→ (M,π): trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section µ:

∇α µ = cµ (α)µ,

for some C∞-linear map cµ : T ∗M → R, i.e., a vector field cµ ∈ X(M).

(a) ∇ flat⇒ dπcµ ) = 0.

(b) if µ ′ =±eg µ⇒ cµ ′ = cµ −Xg .

Conclusion: c(L,∇) = [cµ ] ∈ H1
π (M).

• L→ (M,π): any line bundle with flat contravariant connection ∇

(a) L2 = L⊗L is trivial;

(b) L2 has the flat connection:

∇̃α (ξ ⊗ξ
′) := ∇α ξ ⊗ξ

′+ ξ ⊗∇α ξ
′.

Conclusion: [c(L2, ∇̃)] ∈ H1
π (M).
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Aplication: characteristic class of flat line bundles

Definition
For a flat line bundle (L,∇) its characteristic class is:

c(L,∇) =
1
2

c(L2,∇) ∈ H1
π (M).

Example (Modular class)
Recall that for any (M,π), the line bundle ∧topT ∗M is canonically flat.
So:

c(∧topT ∗M,∇) ∈ H1
π (M).

If (M,π) is orientable:

c(∧topT ∗M,∇) = mod(M,π).

Even for non-orientable (M,π), we call c(∧topT ∗M,∇) the modular
class of (M,π) and denote it by mod(M,π).
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2) Parallel transport along cotangent paths

• p : E → (M,π) vector bundle with contravariant connection ∇,

• a : I→ T ∗M cotangent path with base path γa : I→M.

• c : I→ E path above a: p(c(t)) = γa(t).

If st ∈ Γ(E) is any time-dependent section with st (γa(t)) = c(t), set:

(Dac)(t) := ∇a(t)st +
d
dt

st

∣∣∣∣
γa(t)

.

This is independent of choice of extension st .

Definition
Dac is called the contravariant derivative of c along the
cotangent path a.
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Properties of contravariant derivative D:

(i) Linearity: if c1,c2 : I→ E are any two paths above a and
λ1,λ2 ∈ R:

Da(λ1c1 + λ2c2) = λ1Dac1 + λ2Dac2;

(ii) Leibniz: if c : I→ E is a path above a and f ∈ C∞(M):

Da(fc) = (f ◦ γa(t))Dac + π
](a)(f )c.

Proposition
If Φ : T ([0,1]× [0,1])→ T ∗M is a cotangent surface

Φ(t ,ε) = Φt (t ,ε) dt + Φε (t ,ε) dε.

and c : I× I→ E is a map above it, one has:

R∇(Φt ,Φε )c = DΦt DΦε
c−DΦε

DΦt c.
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Parallel transport

Definition
Given (M,π) be a Poisson manifold and E →M a vector
bundle with a contravariant connection. We say that c : I→ E
is a parallel curve along a cotangent path a : I→ T ∗M if c lies
above a and:

Dac = 0.

Proposition
Given (M,π), vector bundle (E ,∇), a cotangent path
a : [0,1]→ T ∗M and a point u0 ∈ Eγa(0) there is a unique
parallel curve cu0 : I→ E along a starting at u0. The end point
of this curve cu0(1) depends linearly on u0.

⇒ parallel transport along the cotangent path a for (E ,∇):

τa : Eγa(0)→ Eγa(1), u0 7→ cu0(1).
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Parallel transport - properties

(i) If ā is the reverse cotangent path: τā ◦ τa =id;

(ii) τa is a linear isomorphism between the fibers;

Example (Linear Poisson structure M = g∗)
Contravariant connection on E = T ∗g∗:

I On constant 1-forms: ∇v w := [v ,w ]g,

I extend to any forms, by imposing the properties of a connection.

Since π lin vanishes at the origin, any v ∈ T ∗0g
∗ ' g defines the

constant cotangent path av (t) = v :

τav = Adexp(v) : g→ g.
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3) Flat contravariant connections

When ∇ is a flat contravariant connection on E → (M,π):

I cotangent homotopic paths a0,a1 : I→ T ∗M induce the same
parallel transport: τa0 = τa1 ;

For flat line bundles:

Proposition
If (L,∇) is a flat line bundle and a : [0,1]→ T ∗M is a cotangent
path, for any section µ of L→M which does not vanish along
γa:

τa(µγa(0)) = exp

(
−
∫

a
c(L,∇)

)
µγa(1).
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Linear Poisson holomomy

Definition
Given a cotangent path a : [0,1]→ T ∗M on (M,π) lying in a
symplectic leaf S, the parallel transport map for the
contravariant Bott connection

Hola := τa : ν
∗
γa(0)(S)→ ν

∗
γa(1)(S),

is called the linear Poisson holonomy of a.

One can relate linear Poisson holonomy to the modular class:

Theorem
Let (M,π) be a Poisson manifold. For a cotangent path
a : [0,1]→ T ∗M whose base path is a loop:

det(Hola) = exp(−
∫

a
mod(M,π)).
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4) Geodesics for contravariant connections
Contravariant connections on E = T ∗M play a special role.

Definition
Let (M,π) be a Poisson manifold. A contravariant connection on
(M,π) is a contravariant connection ∇ on the bundle T ∗M. Its torsion
is the T ∗M-valued bivector field:

T∇(α,β ) := ∇α β −∇β α− [α,β ]π .

Example (Linear Poisson structure M = g∗ )
Contravariant connection on E = T ∗g∗:

I On constant 1-forms: ∇v w := 1
2 [v ,w ]g,

I extend to any forms, by imposing the properties of a connection.

This connection is torsionless and, in general, non-flat:

T = 0, R(v ,w)z =
1
4
[v , [w ,z]].
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Torsion and connections
Geometric interpretation of torsion:

Proposition
Given a contravariant connection ∇ and a cotangent surface
Φ : T ([0,1]× [0,1])→ T ∗M,

Φ(t ,ε) = Φt (t ,ε) dt + Φε (t ,ε) dε.

we have:
T (Φt ,Φε ) = DΦt Φε −DΦε

Φt .

Local coordinate expressions: In a local chart (U,x i ) for (M,π):

∇dx i dx j = ∑
k

Γij
k dxk .

The Γij
k ∈ C∞(U) are called the Christoffel symbols.

Torsion in local coordinates:

T (dx i ,dx j ) = ∑
k

T ij
k dxk , T ij

k = Γij
k −Γji

k −
∂π ij

∂xk .
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Geodesics

Definition
Let ∇ is a contravariant connection on (M,π). A cotangent
path a : I→ T ∗M is called a geodesic if it is parallel along
itself:

Daa = 0.

In local coordinates: a(t) = ∑i ai (t)dx i with base path γa(t) = (γ i
a(t)) is

a geodesic iff:
ȧk (t) =− ∑

1≤i ,j≤n
Γij

k (γa(t))ai (t)aj (t),

(k = 1, . . .n)

γ̇a
k (t) = ∑

1≤i≤n
π

ik (γa(t))ai (t).
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Geodesic spray and Geodesic flow

Geodesics are the integral curves of X ∈ X(T ∗M), given in local
coordinates (x i ,pi ) by:

X = ∑
1≤i ,k≤n

π
ik (x)pi

∂

∂xk − ∑
1≤i ,j ,k≤n

Γij
k (x)pi pj

∂

∂pk
.

X is called the geodesic spray and φ t
X the geodesic flow of ∇.

Proposition
Given a contravariant connection ∇ on (M,π), there is a
unique torsion free contravariant connection ∇̃ with the same
geodesics as ∇.
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5) Existence of symplectic realizations

Theorem
Let X be the geodesic spray of a contravariant connection on
(M,π). There is an open neighborhood U ⊂ T ∗M of the
zero-section on which the 2-form

ω :=−
∫ 1

0
(φ
−t
X )∗ωcan dt

is symplectic and pr |U : (U,ω−1)→ (M,π) is a symplectic
realization.

When (M,π) = (Rn,π) and we let X be the geodesic spray of the
contravariant connection ∇ defined by:

∇dx i dx j = 0,

we recover the result we saw before.
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