Math 595 - Poisson Geometry Chapter 11 - Contravariant Connections

Rui Loja Fernandes

Department of Mathematics University of Illinois at Urbana-Champaign, USA

April 13, 2020

What is this chapter about:

We look at the notion of *contravariant connection* in Poisson Geometry.

What is this chapter about:

We look at the notion of *contravariant connection* in Poisson Geometry.

In this chapter we will study

- Contravariant connections on vector bundles
- Parallel transport along cotangent paths
- Flat contravariant connections
- Geodesics for contravariant connections

What is this chapter about:

We look at the notion of *contravariant connection* in Poisson Geometry.

In this chapter we will study

- Contravariant connections on vector bundles
- Parallel transport along cotangent paths
- Flat contravariant connections
- Geodesics for contravariant connections

We will apply these to prove:

• every Poisson manifold (M,π) admits a symplectic realization $\mu: (S,\omega) \to (M,\pi)$

1) Contravariant connections on vector bundles Notation:

- (M, π) : Poisson manifold (M, π)
- $E \rightarrow M$: vector bundle

Definition

A contravariant connection on E is a \mathbb{R} -bilinear operation:

$$\Omega^1(M) \times \Gamma(E) \to \Gamma(E), \quad (\alpha, s) \mapsto \nabla_{\alpha} s,$$

satisfying:

$$abla_{f\alpha} s = f
abla_{\alpha} s, \quad
abla_{\alpha} (fs) = f
abla_{\alpha} s + \mathscr{L}_{\pi^{\sharp} \alpha} (f) s.$$

1) Contravariant connections on vector bundles Notation:

- (M, π) : Poisson manifold (M, π)
- $E \rightarrow M$: vector bundle

```
Definition
```

A contravariant connection on E is a \mathbb{R} -bilinear operation:

$$\Omega^1(M) \times \Gamma(E) \to \Gamma(E), \quad (\alpha, s) \mapsto \nabla_{\alpha} s,$$

satisfying:

$$abla_{flpha} s = f
abla_{lpha} s, \quad
abla_{lpha} (fs) = f
abla_{lpha} s + \mathscr{L}_{\pi^{\sharp} lpha} (f) s.$$

Many of the usual constructions for ordinary connections extend to contravariant connections in a more or less straightforward way.

1) Contravariant connections on vector bundles Notation:

- (M, π) : Poisson manifold (M, π)
- $E \rightarrow M$: vector bundle

```
Definition
```

A contravariant connection on E is a \mathbb{R} -bilinear operation:

$$\Omega^1(M) \times \Gamma(E) \to \Gamma(E), \quad (\alpha, s) \mapsto \nabla_{\alpha} s,$$

satisfying:

$$abla_{flpha} s = f
abla_{lpha} s, \quad
abla_{lpha} (fs) = f
abla_{lpha} s + \mathscr{L}_{\pi^{\sharp} lpha} (f) s.$$

Many of the usual constructions for ordinary connections extend to contravariant connections in a more or less straightforward way.

Curvature of a contravariant connection $R_{\nabla} \in \mathfrak{X}^2(M; \operatorname{End}(E))$ is:

$${\mathcal R}_
abla(lpha,eta){oldsymbol{s}}:=
abla_lpha(
abla_eta{oldsymbol{s}})-
abla_eta(
abla_lpha{oldsymbol{s}})-
abla_{[lpha,eta]_\pi}{oldsymbol{s}}{oldsymbol{s}}.$$

1) $E \to M$ vector bundle with an ordinary (covariant) connection $\overline{\nabla}$. Then:

$$abla_{lpha} m{s} := ar{
abla}_{\pi^{\sharp}(lpha)} m{s}.$$

So contravariant connections always exist.

1) $E \to M$ vector bundle with an ordinary (covariant) connection $\overline{\nabla}$. Then:

$$abla_{lpha} s := ar
abla_{\pi^{\sharp}(lpha)} s.$$

So contravariant connections always exist.

2) Assume (M, π) is a regular so we have the bundle $E = v^*(\mathscr{F}_{\pi})$. Note that $v^*(\mathscr{F}_{\pi}) = \ker \pi^{\sharp}$, so the **contravariant Bott connection**:

$$abla_{lpha}eta:=[lpha,eta]_{\pi},\quad lpha\in\Omega^1(M),eta\in\Gamma(
u^*(\mathscr{F}_{\pi})),$$

By Jacobi, this is connection is flat: $R_{\nabla} = 0$.

1) $E \to M$ vector bundle with an ordinary (covariant) connection $\overline{\nabla}$. Then:

$$abla_{lpha} s := ar
abla_{\pi^{\sharp}(lpha)} s.$$

So contravariant connections always exist.

2) Assume (M, π) is a regular so we have the bundle $E = v^*(\mathscr{F}_{\pi})$. Note that $v^*(\mathscr{F}_{\pi}) = \ker \pi^{\sharp}$, so the **contravariant Bott connection**:

$$abla_{lpha}eta:=[lpha,eta]_{\pi},\quad lpha\in\Omega^1(M),eta\in\Gamma(
u^*(\mathscr{F}_{\pi})),$$

By Jacobi, this is connection is flat: $R_{\nabla} = 0$.

For any (*M*, π) the line bundle *L* = ∧^{top} *T***M* has a contravariant connection ∇:

$$\nabla_{\mathrm{d}f}\mu := \mathscr{L}_{X_f}\mu,$$

and then extends to any 1-form by requiring $C^{\infty}(M)$ -linearity. This is also a flat connection!

1) $E \to M$ vector bundle with an ordinary (covariant) connection $\overline{\nabla}$. Then:

$$abla_{lpha} s := ar
abla_{\pi^{\sharp}(lpha)} s.$$

So contravariant connections always exist.

2) Assume (M, π) is a regular so we have the bundle $E = v^*(\mathscr{F}_{\pi})$. Note that $v^*(\mathscr{F}_{\pi}) = \ker \pi^{\sharp}$, so the **contravariant Bott connection**:

$$abla_{lpha}eta:=[lpha,eta]_{\pi},\quad lpha\in\Omega^1(M),eta\in\Gamma(
u^*(\mathscr{F}_{\pi})),$$

By Jacobi, this is connection is flat: $R_{\nabla} = 0$.

For any (*M*, π) the line bundle *L* = ∧^{top} *T***M* has a contravariant connection ∇:

$$\nabla_{\mathrm{d}f}\mu := \mathscr{L}_{X_f}\mu,$$

and then extends to any 1-form by requiring $C^{\infty}(M)$ -linearity. This is also a flat connection!

• $L \rightarrow (M, \pi)$: trivial line bundle with flat contravariant connection ∇

• $L \rightarrow (M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$abla_{lpha}\mu=c_{\mu}(lpha)\mu,$$

for some C^{∞} -linear map $c_{\mu} : T^*M \to \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.

• $L \rightarrow (M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$abla_{lpha}\mu=c_{\mu}(lpha)\mu,$$

for some C^{∞} -linear map $c_{\mu}: T^*M \to \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.

(a) ∇ flat \Rightarrow d_{π} c_{μ}) = 0. (b) if $\mu' = \pm e^{g}\mu \Rightarrow c_{\mu'} = c_{\mu} - X_{g}$.

• $L \rightarrow (M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$abla_{lpha}\mu=c_{\mu}(lpha)\mu,$$

for some C^{∞} -linear map $c_{\mu} : T^*M \to \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.

(a) ∇ flat $\Rightarrow d_{\pi}c_{\mu}$) = 0. (b) if $\mu' = \pm e^{g}\mu \Rightarrow c_{\mu'} = c_{\mu} - X_{g}$. Conclusion: $c(L, \nabla) = [c_{\mu}] \in H^{1}_{\pi}(M)$.

• $L \rightarrow (M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$abla_{lpha}\mu=c_{\mu}(lpha)\mu,$$

for some C^{∞} -linear map $c_{\mu} : T^*M \to \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.

(a) ∇ flat $\Rightarrow d_{\pi}c_{\mu}$) = 0. (b) if $\mu' = \pm e^{g}\mu \Rightarrow c_{\mu'} = c_{\mu} - X_{g}$. Conclusion: $c(L, \nabla) = [c_{\mu}] \in H^{1}_{\pi}(M)$.

• $L \rightarrow (M, \pi)$: any line bundle with flat contravariant connection ∇

• $L \rightarrow (M, \pi)$: trivial line bundle with flat contravariant connection ∇

For a nowhere vanishing section μ :

$$abla_{lpha}\mu=c_{\mu}(lpha)\mu,$$

for some C^{∞} -linear map $c_{\mu} : T^*M \to \mathbb{R}$, i.e., a vector field $c_{\mu} \in \mathfrak{X}(M)$.

- (a) ∇ flat $\Rightarrow d_{\pi}c_{\mu}) = 0.$ (b) if $\mu' = \pm e^{g}\mu \Rightarrow c_{\mu'} = c_{\mu} - X_{g}.$ Conclusion: $c(L, \nabla) = [c_{\mu}] \in H^{1}_{\pi}(M).$
 - $L \rightarrow (M, \pi)$: any line bundle with flat contravariant connection ∇
- (a) $L^2 = L \otimes L$ is trivial;
- (b) L^2 has the flat connection:

$$ilde{
abla}_{lpha}(\xi\otimes\xi'):=
abla_{lpha}\xi\otimes\xi'+\xi\otimes
abla_{lpha}\xi'.$$

Conclusion: $[c(L^2, \tilde{\nabla})] \in H^1_{\pi}(M)$.

Definition

For a flat line bundle (L, ∇) its **characteristic class** is:

$$c(L,
abla) = rac{1}{2}c(L^2,
abla) \in H^1_\pi(M).$$

Definition

For a flat line bundle (L, ∇) its **characteristic class** is:

$$c(L,
abla) = rac{1}{2}c(L^2,
abla) \in H^1_\pi(M).$$

Example (Modular class)

Recall that for any (M, π) , the line bundle $\wedge^{\text{top}} T^*M$ is canonically flat. So:

$$c(\wedge^{\operatorname{top}} T^*M, \nabla) \in H^1_{\pi}(M).$$

Definition

For a flat line bundle (L, ∇) its **characteristic class** is:

$$c(L,
abla) = rac{1}{2}c(L^2,
abla) \in H^1_\pi(M).$$

Example (Modular class)

Recall that for any (M, π) , the line bundle $\wedge^{\text{top}} T^*M$ is canonically flat. So:

$$c(\wedge^{\operatorname{top}} T^*M, \nabla) \in H^1_{\pi}(M).$$

If (M, π) is orientable:

$$c(\wedge^{\operatorname{top}} T^*M, \nabla) = \operatorname{mod}(M, \pi).$$

Definition

For a flat line bundle (L, ∇) its **characteristic class** is:

$$c(L,
abla) = rac{1}{2}c(L^2,
abla) \in H^1_\pi(M).$$

Example (Modular class)

Recall that for any (M, π) , the line bundle $\wedge^{\text{top}} T^*M$ is canonically flat. So:

$$c(\wedge^{\operatorname{top}} T^*M, \nabla) \in H^1_{\pi}(M).$$

If (M, π) is orientable:

$$\boldsymbol{c}(\wedge^{\operatorname{top}} T^*\boldsymbol{M},\nabla) = \operatorname{mod}(\boldsymbol{M},\pi).$$

Even for non-orientable (M, π) , we call $c(\wedge^{\text{top}} T^*M, \nabla)$ the **modular** class of (M, π) and denote it by $mod(M, \pi)$.

2) Parallel transport along cotangent paths

- $p: E \to (M, \pi)$ vector bundle with contravariant connection ∇ ,
- $a: I \rightarrow T^*M$ cotangent path with base path $\gamma_a: I \rightarrow M$.
- $c: I \rightarrow E$ path above $a: p(c(t)) = \gamma_a(t)$.

2) Parallel transport along cotangent paths

- $p: E \to (M, \pi)$ vector bundle with contravariant connection ∇ ,
- $a: I \rightarrow T^*M$ cotangent path with base path $\gamma_a: I \rightarrow M$.
- $c: I \rightarrow E$ path above $a: p(c(t)) = \gamma_a(t)$.

If $s_t \in \Gamma(E)$ is any time-dependent section with $s_t(\gamma_a(t)) = c(t)$, set:

$$(D_a c)(t) := \nabla_{a(t)} s_t + \left. \frac{\mathrm{d}}{\mathrm{d}t} s_t \right|_{\gamma_a(t)}$$

This is independent of choice of extension s_t .

2) Parallel transport along cotangent paths

- $p: E \to (M, \pi)$ vector bundle with contravariant connection ∇ ,
- $a: I \rightarrow T^*M$ cotangent path with base path $\gamma_a: I \rightarrow M$.
- $c: I \rightarrow E$ path above $a: p(c(t)) = \gamma_a(t)$.

If $s_t \in \Gamma(E)$ is any time-dependent section with $s_t(\gamma_a(t)) = c(t)$, set:

$$(D_a c)(t) := \nabla_{a(t)} s_t + \left. \frac{\mathrm{d}}{\mathrm{d}t} s_t \right|_{\gamma_a(t)}$$

This is independent of choice of extension s_t .

Definition

 $D_a c$ is called the **contravariant derivative** of *c* along the cotangent path *a*.

Properties of contravariant derivative *D*:

(i) Linearity: if $c_1, c_2 : I \to E$ are any two paths above *a* and $\lambda_1, \lambda_2 \in \mathbb{R}$:

$$D_a(\lambda_1c_1+\lambda_2c_2)=\lambda_1D_ac_1+\lambda_2D_ac_2;$$

(ii) Leibniz: if $c: I \rightarrow E$ is a path above *a* and $f \in C^{\infty}(M)$:

$$D_a(fc) = (f \circ \gamma_a(t)) D_a c + \pi^{\sharp}(a)(f) c.$$

Properties of contravariant derivative *D*:

(i) Linearity: if $c_1, c_2 : I \to E$ are any two paths above *a* and $\lambda_1, \lambda_2 \in \mathbb{R}$:

$$D_a(\lambda_1c_1+\lambda_2c_2)=\lambda_1D_ac_1+\lambda_2D_ac_2;$$

(ii) Leibniz: if $c: I \rightarrow E$ is a path above *a* and $f \in C^{\infty}(M)$:

$$D_a(fc) = (f \circ \gamma_a(t)) D_a c + \pi^{\sharp}(a)(f) c.$$

Proposition

If $\Phi : T([0,1] \times [0,1]) \rightarrow T^*M$ is a cotangent surface

$$\Phi(t,\varepsilon) = \Phi_t(t,\varepsilon) \, \mathrm{d}t + \Phi_\varepsilon(t,\varepsilon) \, \mathrm{d}\varepsilon.$$

and $c: I \times I \rightarrow E$ is a map above it, one has:

$$R_{\nabla}(\Phi_t, \Phi_{\varepsilon})c = D_{\Phi_t}D_{\Phi_{\varepsilon}}c - D_{\Phi_{\varepsilon}}D_{\Phi_t}c.$$

Parallel transport

Definition

Given (M, π) be a Poisson manifold and $E \to M$ a vector bundle with a contravariant connection. We say that $c: I \to E$ is a **parallel curve** along a cotangent path $a: I \to T^*M$ if *c* lies above *a* and:

$$D_a c = 0.$$

Parallel transport

Definition

Given (M, π) be a Poisson manifold and $E \to M$ a vector bundle with a contravariant connection. We say that $c: I \to E$ is a **parallel curve** along a cotangent path $a: I \to T^*M$ if *c* lies above *a* and:

$$D_a c = 0.$$

Proposition

Given (M, π) , vector bundle (E, ∇) , a cotangent path $a : [0,1] \to T^*M$ and a point $u_0 \in E_{\gamma_a(0)}$ there is a unique parallel curve $c_{u_0} : I \to E$ along a starting at u_0 . The end point of this curve $c_{u_0}(1)$ depends linearly on u_0 .

Parallel transport

Definition

Given (M, π) be a Poisson manifold and $E \to M$ a vector bundle with a contravariant connection. We say that $c: I \to E$ is a **parallel curve** along a cotangent path $a: I \to T^*M$ if *c* lies above *a* and:

$$D_a c = 0.$$

Proposition Given (M, π) , vector bundle (E, ∇) , a cotangent path $a : [0,1] \rightarrow T^*M$ and a point $u_0 \in E_{\gamma_a(0)}$ there is a unique parallel curve $c_{u_0} : I \rightarrow E$ along a starting at u_0 . The end point of this curve $c_{u_0}(1)$ depends linearly on u_0 .

 \Rightarrow parallel transport along the cotangent path *a* for (E, ∇) :

$$au_a: E_{\gamma_a(0)} \rightarrow E_{\gamma_a(1)}, \quad u_0 \mapsto c_{u_0}(1).$$

Parallel transport - properties

- (i) If \bar{a} is the reverse cotangent path: $\tau_{\bar{a}} \circ \tau_a = id$;
- (ii) τ_a is a linear isomorphism between the fibers;

Parallel transport - properties

(i) If \bar{a} is the reverse cotangent path: $\tau_{\bar{a}} \circ \tau_a = id$;

(ii) τ_a is a linear isomorphism between the fibers;

Example (Linear Poisson structure $M = \mathfrak{g}^*$) Contravariant connection on $E = T^*\mathfrak{g}^*$:

• On constant 1-forms:
$$\nabla_{v} w := [v, w]_{g}$$

extend to any forms, by imposing the properties of a connection.

Parallel transport - properties

(i) If \bar{a} is the reverse cotangent path: $\tau_{\bar{a}} \circ \tau_a = id$;

(ii) τ_a is a linear isomorphism between the fibers;

Example (Linear Poisson structure $M = \mathfrak{g}^*$) Contravariant connection on $E = T^*\mathfrak{g}^*$:

- On constant 1-forms: $\nabla_{v} w := [v, w]_{g}$,
- extend to any forms, by imposing the properties of a connection.

Since π^{lin} vanishes at the origin, any $v \in T_0^*\mathfrak{g}^* \simeq \mathfrak{g}$ defines the constant cotangent path $a_v(t) = v$:

$$\tau_{a_{\mathcal{V}}} = \mathsf{Ad}_{\exp(\mathcal{V})} : \mathfrak{g} \to \mathfrak{g}.$$

3) Flat contravariant connections

When ∇ is a flat contravariant connection on $E \rightarrow (M, \pi)$:

► cotangent homotopic paths $a_0, a_1 : I \to T^*M$ induce the same parallel transport: $\tau_{a_0} = \tau_{a_1}$;

3) Flat contravariant connections

When ∇ is a flat contravariant connection on $E \rightarrow (M, \pi)$:

cotangent homotopic paths a₀, a₁ : I → T*M induce the same parallel transport: τ_{a₀} = τ_{a₁};

For flat line bundles:

Proposition

If (L, ∇) is a flat line bundle and $a : [0,1] \rightarrow T^*M$ is a cotangent path, for any section μ of $L \rightarrow M$ which does not vanish along γ_a :

$$au_{a}(\mu_{\gamma_{a}(0)}) = \exp\left(-\int_{a} c(L, \nabla)\right) \ \mu_{\gamma_{a}(1)}.$$

Linear Poisson holomomy

Definition

Given a cotangent path $a : [0,1] \to T^*M$ on (M,π) lying in a symplectic leaf *S*, the parallel transport map for the contravariant Bott connection

$$\operatorname{Hol}_{a} := \tau_{a} : v_{\gamma_{a}(0)}^{*}(S) \to v_{\gamma_{a}(1)}^{*}(S),$$

is called the linear Poisson holonomy of a.

Linear Poisson holomomy

Definition

Given a cotangent path $a : [0,1] \to T^*M$ on (M,π) lying in a symplectic leaf *S*, the parallel transport map for the contravariant Bott connection

$$\operatorname{Hol}_a := \tau_a : v^*_{\gamma_a(0)}(S) \to v^*_{\gamma_a(1)}(S),$$

is called the linear Poisson holonomy of a.

One can relate linear Poisson holonomy to the modular class:

Theorem Let (M, π) be a Poisson manifold. For a cotangent path $a: [0,1] \rightarrow T^*M$ whose base path is a loop:

$$\det(\operatorname{Hol}_a) = \exp(-\int_a \operatorname{mod}(M, \pi)).$$

4) Geodesics for contravariant connections

Contravariant connections on $E = T^*M$ play a special role.

Definition

Let (M, π) be a Poisson manifold. A **contravariant connection on** (M, π) is a contravariant connection ∇ on the bundle T^*M . Its **torsion** is the T^*M -valued bivector field:

$$T_{\nabla}(\alpha,\beta) :=
abla_{lpha}eta -
abla_{eta}lpha - [lpha,eta]_{\pi}$$

4) Geodesics for contravariant connections

Contravariant connections on $E = T^*M$ play a special role.

Definition Let (M, π) be a Poisson manifold. A **contravariant connection on** (M, π) is a contravariant connection ∇ on the bundle T^*M . Its **torsion** is the T^*M -valued bivector field:

$$\mathcal{T}_{\nabla}(\alpha,\beta) := \nabla_{\alpha}\beta - \nabla_{\beta}\alpha - [\alpha,\beta]_{\pi}$$

Example (Linear Poisson structure $M = g^*$)

Contravariant connection on $E = T^*\mathfrak{g}^*$:

- On constant 1-forms: $\nabla_{v} w := \frac{1}{2} [v, w]_{g}$,
- extend to any forms, by imposing the properties of a connection.

4) Geodesics for contravariant connections

Contravariant connections on $E = T^*M$ play a special role.

Definition Let (M, π) be a Poisson manifold. A **contravariant connection on** (M, π) is a contravariant connection ∇ on the bundle T^*M . Its **torsion** is the T^*M -valued bivector field:

$$\mathcal{T}_{\nabla}(\alpha,\beta) := \nabla_{\alpha}\beta - \nabla_{\beta}\alpha - [\alpha,\beta]_{\pi}$$

Example (Linear Poisson structure $M = g^*$)

Contravariant connection on $E = T^*\mathfrak{g}^*$:

- On constant 1-forms: $\nabla_{v} w := \frac{1}{2} [v, w]_{g}$,
- extend to any forms, by imposing the properties of a connection.

This connection is torsionless and, in general, non-flat:

$$T = 0, \quad R(v, w)z = \frac{1}{4}[v, [w, z]].$$

Torsion and connections

Geometric interpretation of torsion:

Proposition

Given a contravariant connection ∇ and a cotangent surface $\Phi: T([0,1] \times [0,1]) \rightarrow T^*M$,

$$\Phi(t,\varepsilon) = \Phi_t(t,\varepsilon) \, \mathrm{d}t + \Phi_\varepsilon(t,\varepsilon) \, \mathrm{d}\varepsilon.$$

we have:

$$T(\Phi_t, \Phi_{\varepsilon}) = D_{\Phi_t} \Phi_{\varepsilon} - D_{\Phi_{\varepsilon}} \Phi_t.$$

Torsion and connections

Geometric interpretation of torsion:

Proposition Given a contravariant connection ∇ and a cotangent surface $\Phi: T([0,1] \times [0,1]) \rightarrow T^*M$,

$$\Phi(t,\varepsilon) = \Phi_t(t,\varepsilon) \, \mathrm{d}t + \Phi_\varepsilon(t,\varepsilon) \, \mathrm{d}\varepsilon.$$

we have:

$$T(\Phi_t, \Phi_{\varepsilon}) = D_{\Phi_t} \Phi_{\varepsilon} - D_{\Phi_{\varepsilon}} \Phi_t.$$

Local coordinate expressions: In a local chart (U, x^i) for (M, π) :

$$\nabla_{\mathrm{d}x^{i}}\mathrm{d}x^{j}=\sum_{k}\Gamma_{k}^{ij}\mathrm{d}x^{k}.$$

The $\Gamma_k^{ij} \in C^{\infty}(U)$ are called the **Christoffel symbols**.

Torsion and connections

Geometric interpretation of torsion:

Proposition

Given a contravariant connection ∇ and a cotangent surface $\Phi : T([0,1] \times [0,1]) \rightarrow T^*M$,

$$\Phi(t,\varepsilon) = \Phi_t(t,\varepsilon) \, \mathrm{d}t + \Phi_\varepsilon(t,\varepsilon) \, \mathrm{d}\varepsilon.$$

we have:

$$T(\Phi_t, \Phi_{\varepsilon}) = D_{\Phi_t} \Phi_{\varepsilon} - D_{\Phi_{\varepsilon}} \Phi_t.$$

Local coordinate expressions: In a local chart (U, x^i) for (M, π) :

$$\nabla_{\mathrm{d}x^{i}}\mathrm{d}x^{j}=\sum_{k}\Gamma_{k}^{ij}\mathrm{d}x^{k}.$$

The $\Gamma_k^{ij} \in C^{\infty}(U)$ are called the **Christoffel symbols**. Torsion in local coordinates:

$$T(\mathrm{d} x^i,\mathrm{d} x^j) = \sum_k T^{ij}_k \mathrm{d} x^k, \quad T^{ij}_k = \Gamma^{ij}_k - \Gamma^{ji}_k - \frac{\partial \pi^{ij}}{\partial x^k}.$$

Geodesics

Definition

Let ∇ is a contravariant connection on (M, π) . A cotangent path $a : I \to T^*M$ is called a **geodesic** if it is parallel along itself:

$$D_a a = 0.$$

Geodesics

Definition Let ∇ is a contravariant connection on (M, π) . A cotangent path $a: I \rightarrow T^*M$ is called a **geodesic** if it is parallel along itself:

$$D_a a = 0.$$

In local coordinates: $a(t) = \sum_i a_i(t) dx^i$ with base path $\gamma_a(t) = (\gamma_a^i(t))$ is a geodesic iff:

$$\begin{cases} \dot{a}_{k}(t) = -\sum_{1 \leq i,j \leq n} \Gamma_{k}^{ij}(\gamma_{a}(t)) a_{i}(t) a_{j}(t), \\ \dot{\gamma}_{a}^{k}(t) = \sum_{1 \leq i \leq n} \pi^{ik}(\gamma_{a}(t)) a_{i}(t). \end{cases} (k = 1, \dots n)$$

Geodesic spray and Geodesic flow

Geodesics are the integral curves of $X \in \mathfrak{X}(T^*M)$, given in local coordinates (x^i, p_i) by:

$$X = \sum_{1 \le i,k \le n} \pi^{ik}(x) p_i \frac{\partial}{\partial x^k} - \sum_{1 \le i,j,k \le n} \Gamma_k^{ij}(x) p_i p_j \frac{\partial}{\partial p_k}.$$

Geodesic spray and Geodesic flow

Geodesics are the integral curves of $X \in \mathfrak{X}(T^*M)$, given in local coordinates (x^i, p_i) by:

$$X = \sum_{1 \le i,k \le n} \pi^{ik}(x) p_i \frac{\partial}{\partial x^k} - \sum_{1 \le i,j,k \le n} \Gamma^{ij}_k(x) p_i p_j \frac{\partial}{\partial p_k}.$$

X is called the **geodesic spray** and ϕ_X^t the **geodesic flow** of ∇ .

Geodesic spray and Geodesic flow

Geodesics are the integral curves of $X \in \mathfrak{X}(T^*M)$, given in local coordinates (x^i, p_i) by:

$$X = \sum_{1 \le i,k \le n} \pi^{ik}(x) p_i \frac{\partial}{\partial x^k} - \sum_{1 \le i,j,k \le n} \Gamma_k^{ij}(x) p_i p_j \frac{\partial}{\partial p_k}.$$

X is called the **geodesic spray** and ϕ_X^t the **geodesic flow** of ∇ .

Proposition Given a contravariant connection ∇ on (M, π) , there is a unique torsion free contravariant connection $\tilde{\nabla}$ with the same geodesics as ∇ .

5) Existence of symplectic realizations

Theorem

Let X be the geodesic spray of a contravariant connection on (M,π) . There is an open neighborhood $U \subset T^*M$ of the zero-section on which the 2-form

$$\omega := -\int_0^1 (\phi_X^{-t})^* \omega_{\operatorname{can}} \, \mathrm{d}t$$

is symplectic and $\operatorname{pr}|_U : (U, \omega^{-1}) \to (M, \pi)$ is a symplectic realization.

5) Existence of symplectic realizations

Theorem

Let X be the geodesic spray of a contravariant connection on (M,π) . There is an open neighborhood $U \subset T^*M$ of the zero-section on which the 2-form

$$\omega := -\int_0^1 (\phi_X^{-t})^* \omega_{\operatorname{can}} \, \mathrm{d}t$$

is symplectic and $\operatorname{pr}|_U : (U, \omega^{-1}) \to (M, \pi)$ is a symplectic realization.

When $(M, \pi) = (\mathbb{R}^n, \pi)$ and we let *X* be the geodesic spray of the contravariant connection ∇ defined by:

$$\nabla_{\mathrm{d}x^{i}}\mathrm{d}x^{j}=\mathbf{0},$$

we recover the result we saw before.