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What is this chapter about:

We look at the notion of contravariant connection in Poisson
Geometry.

In this chapter we will study
» Contravariant connections on vector bundles
» Parallel transport along cotangent paths
» Flat contravariant connections
» Geodesics for contravariant connections
We will apply these to prove:

e every Poisson manifold (M, ) admits a symplectic realization
p: (S o) = (M)



1) Contravariant connections on vector bundles
Notation:

e (M,r): Poisson manifold (M, )
e E — M: vector bundle

Definition
A contravariant connection on E is a R-bilinear operation:

Q' (M) xT(E) = T(E), (a,8)+ Vgs,
satisfying:
Vias=1Va8, Vy(fs)=1Ves+. 2, (F)s.
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Notation:

e (M,r): Poisson manifold (M, )
e E — M: vector bundle

Definition
A contravariant connection on E is a R-bilinear operation:

Q' (M) xT(E) = T(E), (a,8)+ Vgs,
satisfying:
Vias=1Va8, Vy(fs)=1Ves+. 2, (F)s.

Many of the usual constructions for ordinary connections extend to
contravariant connections in a more or less straightforward way.

Curvature of a contravariant connection Ry € X2(M;End(E)) is:
Ry(a,B)s:=Va(VS) = Vg(VaS) = Viap),S
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Aplication: characteristic class of flat line bundles

e L — (M, r): trivial line bundle with flat contravariant connection V

For a nowhere vanishing section u:

Valt = cu(a)p,
for some C*-linear map ¢, : T*M — R, i.e., a vector field ¢, € X(M).
(a) Vflat = drc,)=0.
(b) if u' =+eIu= ¢y =cy— Xy.
Conclusion: ¢(L,V) = [cu] € H1(M).

e [ — (M, r): any line bundle with flat contravariant connection V

(a) L?=L®Lis trivial;
(b) L2 has the flat connection:

6oc(é ®EN) =Vl @& +E@VLE

Conclusion: [c(L2,V)] € HL(M).
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Definition
For a flat line bundle (L, V) its characteristic class is:

c(L,V) = %C(LZ,V) e HY(M).

Example (Modular class)
Recall that for any (M, rr), the line bundle AP T*M is canonically flat.

So:
c(APPT*M,V) e HL(M).

If (M, ) is orientable:
c(APT*M,V) = mod(M, ).

Even for non-orientable (M, ), we call ¢c(A*? T*M,V) the modular
class of (M, ) and denote it by mod(M, x).
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e p: E— (M,r) vector bundle with contravariant connection V,
e a:l— T*M cotangent path with base path y;: I — M.
e c: | — E path above a: p(c(t)) = ya(1).
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2) Parallel transport along cotangent paths

e p: E— (M,r) vector bundle with contravariant connection V,
e a:l— T*M cotangent path with base path y;: I — M.
e c: | — E path above a: p(c(t)) = ya(1).

If s; € ['(E) is any time-dependent section with s¢(ya(t)) = c(t), set:

d
(Dac)(t) := Vi)St+ — St

dt
Ya(t)

This is independent of choice of extension s;.

Definition
Djc is called the contravariant derivative of ¢ along the
cotangent path a.




Properties of contravariant derivative D:

(i) Linearity: if ¢1,co : I — E are any two paths above a and
11 ,12 eR:

Da()q Cq +A,202) =AM Dac1 +AoDs0o;
(i) Leibniz:if ¢: I — E is a path above aand f € C*(M):

Da(fc) = (fora(t)) Dac+ 7 (a)(F) c.



Properties of contravariant derivative D:

(i) Linearity: if ¢1,co : I — E are any two paths above a and
11 ,2,2 eR:

Da()q Cq +2,202) =AM Dac1 +AoDs0o;
(i) Leibniz:if ¢: I — E is a path above aand f € C*(M):

Da(fc) = (fora(t)) Dac+ 7 (a)(F) c.

Proposition
Ifo: T([0,1] x[0,1]) = T*M is a cotangent surface

Ot €) = Dy(t, €) dt + Pe(t,€) de.
andc:Ix|— E isamap above it, one has:

Ry (®t,®¢)c = Do, Do, ¢ — Do, Do, cC.
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Given (M, r) be a Poisson manifold and E — M a vector
bundle with a contravariant connection. We say thatc: I — E
is a parallel curve along a cotangent path a: I — T*M if ¢ lies
above a and:

D,c=0.




Parallel transport

Definition
Given (M, r) be a Poisson manifold and E — M a vector
bundle with a contravariant connection. We say thatc: I — E
is a parallel curve along a cotangent path a: I — T*M if ¢ lies
above a and:

D,c=0.

Proposition

Given (M, r), vector bundle (E,V), a cotangent path

a:[0,1] — T*M and a point ug € E,, o) there is a unique
parallel curve cy, : | — E along a starting at uy. The end point
of this curve cy,(1) depends linearly on ug.




Parallel transport

Definition
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bundle with a contravariant connection. We say thatc: I — E
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Given (M, r), vector bundle (E,V), a cotangent path

a:[0,1] — T*M and a point ug € E,, o) there is a unique
parallel curve cy, : | — E along a starting at uy. The end point
of this curve cy,(1) depends linearly on ug.

\.

= parallel transport along the cotangent path a for (E,V):

Ta: Eyy0) = Epa(1),  Uo > Cup(1)-
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Parallel transport - properties

() If ais the reverse cotangent path: 730 75 =id;

(i) 74 is a linear isomorphism between the fibers;

Example (Linear Poisson structure M = g*)
Contravariant connection on E = T*g*:

» On constant 1-forms: V,w := [v,w]g,

> extend to any forms, by imposing the properties of a connection.

Since #'"" vanishes at the origin, any v € T;g* ~ g defines the
constant cotangent path a,(t) = v:

Ta, = Adexp(v) g—9.
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» cotangent homotopic paths ag,a; : | = T*M induce the same
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3) Flat contravariant connections

When V is a flat contravariant connection on E — (M, x):

» cotangent homotopic paths ag,a; : | = T*M induce the same
parallel transport: 75, = 75,;

For flat line bundles:

Proposition
If(L,V) is a flat line bundle and a: [0,1] — T*M is a cotangent
path, for any section u of L — M which does not vanish along

Ya:
Ta(NYa(O)) = exp (—/aC(L,V)> Hya(1)-




Linear Poisson holomomy

Definition

Given a cotangent path a: [0,1] — T*M on (M, r) lying in a
symplectic leaf S, the parallel transport map for the
contravariant Bott connection

HOla =T V;a(o)(s) — V;a(1)(8),

is called the linear Poisson holonomy of a.




Linear Poisson holomomy

Definition

Given a cotangent path a: [0,1] — T*M on (M, ) lying in a
symplectic leaf S, the parallel transport map for the
contravariant Bott connection

HOla =T V;a(o)(s) — V;a(1)(8),

is called the linear Poisson holonomy of a.

\.

One can relate linear Poisson holonomy to the modular class:

Theorem
Let (M,n) be a Poisson manifold. For a cotangent path

a:[0,1] — T*M whose base path is a loop:

det(Holy) = exp(—/amod(M7 T)).




4) Geodesics for contravariant connections

Contravariant connections on E = T*M play a special role.

Definition

Let (M, r) be a Poisson manifold. A contravariant connection on
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4) Geodesics for contravariant connections

Contravariant connections on E = T*M play a special role.

Definition

Let (M, r) be a Poisson manifold. A contravariant connection on
(M, r) is a contravariant connection V on the bundle T*M. Its torsion
is the T*M-valued bivector field:

Tv(a,B):=Vap —Vga—[a,B]x.

Example (Linear Poisson structure M = g* )
Contravariant connection on E = T*g*:

> On constant 1-forms: V,w := J[v,w]g,

» extend to any forms, by imposing the properties of a connection.

This connection is torsionless and, in general, non-flat:

T=0, R(v,w)z= %[V, [w,Z]].
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Proposition
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Geometric interpretation of torsion:
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Proposition
Given a contravariant connection V and a cotangent surface
®: T([0,1]x[0,1]) = T*M

O(t,e) = dy(t,€) di+ Pe(t,€) de.

we have:
T(cbt,q)g) - D(th)g — D¢s¢t

Local coordinate expressions: In a local chart (U, x') for (M, r):
Vaeidx! =Y Thdxk.
k

The FZ € C=(U) are called the Christoffel symbols.
Torsion in local coordinates:

ol
axk’

T(dx',dx)) ZT”dx Th=rl 1l -
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Geodesics

Definition
Let V is a contravariant connection on (M, ). A cotangent
path a: | — T*M is called a geodesic if it is parallel along
itself:

D,a=0.

In local coordinates: a(t) = ¥ a;(t)dx’ with base path ya(t) = (vi(1)) is
a geodesic iff:

=- Y I"f (ra(t)) ai(t) aj(t),

1<ij<n

Yak(t) = Z nik(?’a(t))ai(t)-

1<i<n
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Geodesic spray and Geodesic flow

Geodesics are the integral curves of X € X(T*M), given in local
coordinates (x', p;) by:

. 0 .. 0
X= Y ”Ik(X)PiW* Y FZ(X)PinTpk-

1<i,k<n 1<ij,k<n

X is called the geodesic spray and qb)f( the geodesic flow of V.

Proposition

Given a contravariant connection V on (M, r), there is a
unique torsion free contravariant connection V with the same
geodesics as V.




5) Existence of symplectic realizations

Theorem

Let X be the geodesic spray of a contravariant connection on
(M, r). There is an open neighborhood U C T*M of the
zero-section on which the 2-form

1
w;:_/o (0x")* Gean dt

is symplectic and pr|y : (U, 0~ ") — (M, x) is a symplectic
realization.




5) Existence of symplectic realizations

Theorem

Let X be the geodesic spray of a contravariant connection on
(M, r). There is an open neighborhood U C T*M of the
zero-section on which the 2-form

1
w;:_/o (0x")* Gean dt

is symplectic and pr|y : (U, 0~ ") — (M, x) is a symplectic
realization.

When (M, ) = (R", ) and we let X be the geodesic spray of the
contravariant connection V defined by:

deidxj = 0,

we recover the result we saw before.
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