Flow of A section de P(A)

Proposition

Let $\alpha \in \Gamma_{cpl}(A)$. There exists A unique 1-parameter group OF Automorphisms $\phi^{t}_{\alpha} \in Aut(A)$ covering the Flow of p(a):

$$\begin{array}{ccc} A & \xrightarrow{\varphi_{a}} & A \\ \downarrow & & \downarrow \\ M & \xrightarrow{} & M \\ & \varphi_{e^{(a)}}^{\pm} \end{array} \end{array}$$

which are uniquely characterized by:

$$\varphi_{\alpha}^{\circ} = id$$
, $\frac{d}{dt} (\varphi_{\alpha}^{\dagger})^{*}(\beta) = [\alpha, \beta]$, $\forall \beta \in \mathcal{P}(A)$
 $t \ge 0$

DEFN DNO CALLS \$\$\$ The (INPINITESIMAL) Flow OF A SECTION & GPIA) (It CAN Also be DEPINED FOR NON- complete sections in some Domain D=D (a))

<u>Rmn.</u> When A = TM, This diagram decense: $TM \stackrel{d\phi_{x}^{\pm}}{\longrightarrow} TM$ $f \stackrel{i}{\longrightarrow} M$ $\pi \stackrel{i}{\longrightarrow} M$

AND The equations DEPINE the Flow The veela field d= X & P(A) = & (M) by clefining its differential

$$\frac{P_{noor.}}{Let} \quad D_{\alpha} : \Gamma(A) \to \Gamma(A) \quad b_{\theta} \quad \text{the map} \\ D_{\alpha}(\beta) := [\alpha, \beta]$$

By Leibniz, This is a Derivation of The V.b. A→N with symbol Xo=p(a):

$$D_{a}(fp) = [a, fp] = f[a, p] + p(a)(f) p = fD(a) + p(a)(f) p$$

The Result follows From A GENERAL RESult About DENTURTIEUS OF A vector bumble $E \rightarrow \Pi$: For Any $D \in Der(E)$ whose symbol X_D is complete There is a 1-parameter group ϕ_D^{\pm} or vector bumble Actencephisms:

To construct ϕ_{D}^{\dagger} we define a vecta field $\tilde{X}_{D} \in \mathcal{L}(E^{\ast})$. Note that $C^{\circ}(E^{\ast})$ is genmenated by These two types of Fouriers: - evaluation on a section $B \in [IE)$: $ev_{B} : E^{\ast} \rightarrow R$, $E_{\infty} \mapsto \langle \mathcal{P}(\alpha), \mathfrak{I}_{\infty} \rangle$ - pellbacks or $f \in C^{\circ}(M)$: $\pi^{\ast}f : E^{\ast} \rightarrow R$, where $\pi : E^{\ast} \rightarrow M$

So we can define $\widetilde{X}_{D} \in \mathscr{L}(E^{*})$ by setting: $\widetilde{X}_{D}(ev_{p}) := ev_{D(p)}$, $\widetilde{X}_{D}(f \circ \pi) := X_{D}(f) \circ \pi$ Then $\pi_{*}(\widetilde{X}_{D}) = X_{D}$ and The Flow of \widetilde{X}_{D} Gives is parameter Group: $E^{*} \xrightarrow{\phi^{\pm}_{X_{D}}} E^{*}$ will $\phi^{*}_{\widetilde{X}_{D}} = id$ $\downarrow \qquad \downarrow$ $\pi_{\phi^{\pm}_{X}} \stackrel{h}{\longrightarrow} \stackrel{h}{\longrightarrow} \frac{d}{dt}(\phi^{\pm}_{\widetilde{X}_{D}})^{*}F|_{=} \stackrel{f}{\xrightarrow{}}_{D}(F)$, $\forall FeC(E^{*})$ Exercise .

Assume A = A(G) For some G = M. Show that, $\phi_{\alpha}^{\dagger} = (\Psi \exp(t_{\alpha}))_{\ast}$ where $\Psi_{b}: G \rightarrow G$ is conjugation by be B(G): $\Psi_{b}(g):= b(t_{0}g_{0})^{1} \cdot g \cdot b(s_{0}g_{0})$

Actions AND Representations or Lie GAOLPOIDS

GROUPOIOS ACT ALONG MAPE:

Der A (lert) action or G = M on a map $\mu: S \rightarrow M$ is A map $A: G_{x\mu}S \rightarrow S$, $(g, p) \mapsto g \cdot p$, satisfying: $\cdot \mu(g \cdot p) = t(g)$ $\cdot 1_{\mu(p)} \cdot P = P$ $\cdot g(h \cdot p) = (gh) \cdot p$ Whe call μ the moment map

Notice that: . When G = has is a Group, This Recovers The usual notion or A G-action

· Each isotropy GROUP Go Acts ON Fiber M'(2). Bot Note That juil(2) may not be submanifolds (OFTEN They Art). Pon AN Action OF G = M on µ: S - M We have Action Gaorpoin: G x S = S where G x S = G x S S (B, P) = P (B, P) (h, q) = (gh, q) if P = g.q (B, P) (h, q) = (gh, q) if P = g.q (B, P) (h, q) = (gh, q) if P = g.q Oabits := Orbits of G x S = S = Recclarly innersed Submanifelds of S
Isotopy Goodps := (G x S) P = closed subcaceps of Gµ(P) Space of Orbits := G (Not Smooth NANIFOLD, in General) Der. An Right Action of G = M on µ: P - M is called principal if There exists a subjective submeasion T : P - B st.

(i) Action is Fiberasise : TT(pg) = TT(p)

(ii) P×G→P×P, (p,g)→(p,pg) is a Diffeonon phism. B Bue calls π: P→B a privipal G-bunale.

(IN This case, the onbit space of 2 B is smooth)

<u>BMR</u>. For actions we allow S to be NON-HAUSBORFF but we assume that For every onbit O or G = M the presimates $\overline{\mu}^{1}(O)$ is Hausborff spaces. In particular, the Fibers $\overline{\mu}^{1}(n)$ are also Hausborff spaces. For now one can assome That S is HAUSBORFF.

Examples

1. Given a Lie oncep action GxM-M:

- G = 1x3 G M: M - 1x3 AND ACTION is principal iFF it is principal in The USUAL SENSE.

• $G \ltimes M \rightrightarrows M G \mu \colon P \rightarrow M$ IFF $G G P And \mu \colon P \rightarrow M$ is a G-equivariant map.

2. Eveny Lie anoupois acts on itself (on left & Right) by LEFT/Right translations:

Both these Actions are principal

3. Given a 6-principal brack $\pi: P \rightarrow M$ the Gauss GROUPORD $G = (P \times P)/G \Rightarrow M$ acts on $\pi: P \rightarrow M$

$$\begin{array}{ccc} P_{1}, P_{2} & P_{1} & P_{2} & P_{2}$$

This action is paincipal.

4. Given a vector boundle $\mu : E \rightarrow M$ The Groupeid GL(E)=M Acts on $\mu : E \rightarrow \Pi$ GL(E) G E $\psi \cdot e = \psi(e)$ if ψ π χ

This Action is Not principal (why?).

We will come BACK to G-principal bundle. The last action is "linean".

DEEN. A <u>Representation</u> of a Lie Groupoin G = M is a G-Action on a vector bundle µ: E - M which is linear:

$$d g \in G$$
, $E_{s(g)} \rightarrow E_{t(g)}$, $e \rightarrow g \cdot e$, is linear map.

· For each ace M, we obtain a Rep of G, on Ere.

· Clearly, A Rop of G=n on E-M is The same thing As A Lig Groupoid Herphism Counting idn:

We say that the Representation is Paithful if $\underline{\Phi}$ is $\underline{A:A}$. • Given two Reps of $\underline{G} \rightrightarrows \underline{N}$: • Direct son $\underline{E_1} \oplus \underline{E_2} \rightarrow \underline{N}$ i $\underline{g} \cdot (e_1 + e_2) = \underline{g} e_1 + \underline{g} e_2$ • Tensor predect $\underline{E_1} \oplus \underline{E_2} \rightarrow \underline{N}$: $\underline{g} \cdot (e_1 \otimes e_2) = (\underline{g} e_1) \otimes \underline{f} g e_2$ • Trivial Rep : $\underline{R_n} \rightarrow \underline{M}$: $\underline{g} \cdot (\underline{\infty}, \underline{\lambda}) = (\underline{y}, \underline{\lambda})$ if $\frac{\underline{\vartheta}}{\underline{w}} \cdot \underline{g}$ $\sim o(\operatorname{Rep}(\underline{G}), \underline{\oplus}, \underline{\otimes})$ is a seni-Ring $\underline{E \times \operatorname{Amples}}$

A Rep of pair Groupeis M×M = M on μ: E→M anounte
 to a trivialization of μ: E→M.

A REP OF II. (M) ON M: E - M ANOUNTS to give A //-transport map <=> Flat connection on V

2. A REP OF Action GROUPERD GRH=M ON M: E-M IS The SAME THING AS A G-Equivariant V.D.: REP (GRM)=Voct (M)

4. Let (M, F) be a Foliateo Manifolio. We obtain a linear Action by linearizing holonomy transformations:

