$MATH 595 - L6ctu$ RG 25

If O is an orbit of $O \cong M$ then $G_p = G$ G $U(G)$ The linear local model For G around ^O is $G_0 \times V(0) = V(0)$ [incanization Than (Zuno & Weinstein) Let $G = M$ be a proper Groupein and fix Oc M. There $Exist$ open sets $6 < U c$ M, $0 c$ Vc $\nu(6)$ and a Groupoid isomorphism $G_{11} = (66 \times 016)$

The open eets U and V , in General, coull not be saturated $($ = voten or enBits). For That:

Conollary (Invariant Livearization Thm)

Let $G \rightrightarrows M$ be a s-proper Groupois and Fix $G \rightharpoonup M$. There exist open saturated NEIGHBORHOODS O ^C ^U ^C ^M ans $O\subset V\subset U(O)$ AND A GROUPOID ISOMORPHISM

$$
G \big|_{U} \simeq (G_{6} \ltimes \nu(0)) \big|_{V}
$$

Proof of Conollary:

Every s-proper Groupois is proper

Orbits of ^S proper Gnocpoids are stable Every NeiltBanitood or an orbit contains ^a saturated NEIGHBORHOOD Exercise

By consissaint various classes of Croopcros, we obtain several well known Theorems

. IF (M, F) is a Poliation cop compact leaves and Finite holonomy T ben $Hol(n,3)$ \Rightarrow M is an s-proper Georpois:

 I NV. Linanization $ThM =$ Reeb stability ThM · IF GRM = M is an action coorpois associates as an Action of a compact Lio Caccp, it is s-pacper Ana: I_{NU} . Linearization Thm \equiv Linearization or action

. IF MXM => M is subnersion caps of a proper submission $\phi \colon M \to N$, Then it is sproper and:

> I_{NU} Linanization Th $M \cong$ Ereshman Theorem proper submensions are locally trivial

 Co nollary. Let $\mathcal{G} \rightrightarrows M$ be a proper G'tale ceoupois. Every see M has a NEIGHBORHOOD U Such That. $G \mid_{\alpha} \cong G_{\alpha} \ltimes V_{\alpha}$

WOERE OE $V_{\infty} \subset T_{\infty} M$ is a $\int_{\mathcal{A}} -i \nu \sigma$ and neighbonhood

 $\frac{p_{000}F}{p}$ G etale => Discrete orbits => every ree M, bas NoighborHood \tilde{U} with $\tilde{U} \cap O_{\alpha} = \frac{1}{2} \alpha \beta$. Apply linearization Thm. to $\beta \mid_{\tilde{U}}$: There is smaller neighborhood relic \tilde{U} aus oe $V_n \subset T_n \Pi$: 91 σ (9×11) V_{\star}

Choosing a G_{α} inv metric, we see we can choose V_{α} to be G_{α} -incannet. **ZA**

Note: One can prove This conollary Directly (See Mocroigk-Macon)

 $Coachlagn$. Let $G = M$ do a proper Groupois. Every orbit ^c M has saturated NEIGHBORHOOD U such That

$$
\left(\begin{array}{c} \zeta \\ \end{array}\right) \begin{array}{c} \zeta \\ \end{array} \begin{array}{c} \zeta \\ \end{array}
$$

where $0 \in V_{\infty} \subset V_{\infty}(0)$ is G_{α} -invariant NEIGHBORHOOD.

Proof of Conollary

Fix $x \in G$ and choose $T \subset M$ a transverse submanifold to G Through a

$$
T_{\alpha}M = T_{\alpha}O \oplus T_{\alpha}T
$$

IF T is snall enough. Then T to every orbit it meats and $T \cap \Theta = \{x\}$ (since Θ is endeable). It Follows That:

 $G \circ \mathcal{G}$ $\Big|_{\tau} = \tau$ is a proper lie Groupois with orbit $\frac{1}{2} \times \frac{1}{2}$ Apply linearization Than to $G|_{\tau}$ around 42 : eventually after sh eiskris τ :

$$
\mathcal{G} \big|_{\tau} \simeq \left(\mathcal{G}_{\alpha} \ltimes T_{\alpha}(\tau) \right) \big|_{V_{\alpha}}
$$

As in previous conollang, eventually after sheinking T, we can ceita

$$
\mathcal{G} \big|_{\tau} \simeq \mathcal{G}_{\alpha} \ltimes V_{\alpha}
$$

Tor some G_{n} -invariant open OF $Y_{n} \in T_{n}(T)$

Fivally, closure that:

\n
$$
\begin{array}{ccc}\n6 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
\cdot & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
 & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} & \text{if } \frac{1}{\sqrt{4}} \\
$$

Sketch of Proof of Lincanization Thm

The main idea is to use a "Groupoid Metaic", i.e., a Riem. Metric ADAPTER to TRANSVERSE DATA.

Recall That given subneasion $\phi : M \rightarrow N$ of Riem neface Man M, ono calls of a Riennowian Subnonsion if For any p.p. c M ω ith ϕ cp₁) = ϕ cp₂) = q Tho linear isonorphism:

$$
(\text{Ker } d_{p,\phi})^{\perp} \xrightarrow{\underline{d_{p,\phi}}} T_{\phi} N \xrightarrow{\underline{d_{p,\phi}}} (\text{Ker } d_{p_{\phi}} \phi)^{\perp}
$$

is an isonetry. Then $\phi(m)$ inherits a unique Rien metric η_n s.t.

$$
(d\phi): (Ker\ d\phi)^{\perp} \longrightarrow T_pN
$$

is no isometry for All pe M. We write $M_{\rm M}$ = $\phi_* \omega_{\rm M}$. For a Ricmannian SchmERSicn:

- (i) Geodesic 1 to a Fiber => 1 to every fiber
- Cii Fibers are equidistant

 $\overline{Def}: A$ 2-metric on a Groupoid $G \rightrightarrows M$ is a Richann Metric $y^{(2)}$ on tho composable ARROOL:

$$
G^{(2)} = G_{s^k} g
$$

For which:

(i) The 3 maps:
$$
\begin{array}{ccc} & & & \text{if } & \text
$$

Riem. Submersions.

(ii) The natural action $S_3 G g_0^{(2)}$ is by isomothies

$$
G^{(2)} \simeq \begin{cases} \begin{array}{c} \frac{8}{5} \\ \frac{8}{5} \end{array} & \begin{array}{c} \frac{1}{5} \\ \frac{1}{5} \end{array} \end{cases} \begin{array}{c} \begin{array}{c} \frac{1}{5} \\ \frac{1}{5} \end{array} & \begin{array}{c} \frac{1}{5} \\ \frac{1}{5} \end{array} \end{array}
$$

For such a 2-metric $\eta^{(2)}$, and obtains

 (i) The metrics induced on G by pe., m , pe. coincide. We Denote it by M".

 π (ii) The metric $y^{(t)}$ makes s & t Rien submensions And is invariant under inversion $i: \mathcal{G} \rightarrow \mathcal{G}$.

 C_i iii) The metric imbocco by s of t an M coincide. We Dewote it by you

$$
\left(\underbrace{\int_{0}^{(1)} \eta^{(1)}}_{\mathcal{S}_{3}}\right) \xrightarrow{\frac{p\alpha_{2}}{p\alpha_{1}}} \left(\underbrace{\int_{0}^{1} \eta^{(1)}}_{\mathcal{S}}\right) \xrightarrow{\frac{1}{s}} \left(M, \eta^{(s)}\right)
$$

Now Fix orbit O Then we have the exponential maps of The Metaccs, alich becouse of Properties Above Give connotative DIAGRAMI

$$
U(\xi_{6}^{(i)}) \approx V(\xi_{6})^{(2i)} \xrightarrow{evp^{(i)}} \xi^{(i)}
$$
\n
$$
U(\xi_{6}) \xrightarrow{evp^{(i)}} \xi
$$
\n(3.06668 only on NoIGHB oAH oobs)
\n
$$
U(\xi_{6}) \xrightarrow{evp^{(i)}} \xi
$$
\n(3.06668 only on NoIGHB oAH oobs)
\n
$$
U(\xi_{7}) \xrightarrow{evp^{(i)}} M
$$

By Restaicting to Donaius of Infectivity, we chtain Geopois iscr with $G|_{U}$, Fon $G \subset U$ exp^{qin}(V), $O \subset V \subset U(G)$. So this $Shows$:

 $\frac{Thm}{If}$ a Groupoid $G = M$ admits a 2-notice, then it CAN do lincanized AROUND AN orbit.

The lincarization of proper Geocpoiss Now Follows From: Thm

Every proper Groupoid admits ^a ² metric

The proof is by AUERAGING, USING The FACTS:

Proper Groupciss admit invariant volume forms Densities

Ia

. Proper Gooepeise Annet invariant partitions of ovity.

HistoricaL Remarks:

- linearization or proper coocpoiss was conjectured by A. Wonstein (2002) He also showes it was enough to peopo the case when $6 = \frac{1}{3}$ as $-$ N.T. Zuno (2006) cave a proof of The case 6 = $3e$ (bet proof has a Gap) using analytic methods (iterative schame on Banach Space) $-$ M. Crainte \notin I. Stavehinca (2013) Gavo a complete proof vsing vanishing of Deformation echomolocy Far proper onoopoiss.

- Boocpois metros were intresecos by del Hoyo & RLF (2018) AND GAVE The goomstree proof sketched above.

Effective Gaocpeios us Pseupo Groups

For a nanifolo M let $Dir_{loc}(n) = \{ \phi: U \rightarrow V \mid U, V \in \mathbb{R} \text{ or } \phi \text{ is the same set } \}$

 Rm . Those are Oiffoos That are locally defined, not snooth maps That are local diffeos

 $\overline{\text{Der}}$: A pseudo Groep on a manifold M is a collection $\overline{\Psi}$ c $\text{Diff}_{loc}^{f}(n)$ s atisfy i u6:

(i)
$$
\phi, \phi \in \overline{\Phi}
$$
, $\operatorname{Im} \phi \in \operatorname{Dom}(\phi) \Rightarrow \phi \circ \phi \in \overline{\Phi}$
\n(ii) $id_m \in \overline{\Phi}$
\n(iii) $\phi \in \overline{\Phi} \Rightarrow \phi^{\dagger} \in \overline{\Phi}$
\n(iii) $\phi \in \overline{\Phi}$, $U \in \operatorname{Den}(\phi)$ open \Rightarrow $\phi |_{U} \in \overline{\Phi}$
\n(iv) $\phi \in \overline{\Phi}$, $U \in \operatorname{Den}(\phi)$ open \Rightarrow $\phi |_{U} \in \overline{\Phi}$
\n(v) ϕ a Diff_{loc}(n), $\oint U; J_{ict} is open couca of Dom(\phi)$
\nTwo $\phi |_{U_{i}} \in \Phi \Rightarrow \phi \in \overline{\Phi}$

 Rm k. If a subset $P \subset Dr_{loc}(H)$ satisfies $(iS \cdot (iii)$, one obtains A pseudo Gooup Generates by P by imposing Civ) & CV).

Cartan introduced pseudo Groups as 20 dim generalizations of Lie Groups. We will see That They are Essentially equivalent to Effective Étale Groupciss

 $Exandles:$

1) DIFF_{loc} (M) is a pseudo-Goocp

2) Given a Riennowinu mawi^{ral}o (M, M), the set of all local isometries is pseudo-Group. Similarly for any Gometric structure (symplectic stacctue, cplx str., etc.)

³ Given AN Effective G'tale croopois G ^E ^M The set

$$
\mathbb{E}(\mathcal{G}) := \left\{ t \circ b \mid b : 0 \to \mathcal{G} \text{ local bisechion } \mathcal{G} \right\}
$$

is ^a pseudoGroup Note That we need the Effective condition to be Able to "Glue" bisections: if ϕ_i =tob; : $U_i \rightarrow V_i$ and $U, \wedge U_2 \neq \phi$ Then $b_i = b_2$ on $U_i \cap U_2$, by effectiveness.

Hence,

$$
b(r) = \begin{cases} b_1(p), & p \in U_1 \\ b_2(p), & p \in U_2 \end{cases}
$$

is a snooth bisection, and ϕ = to b $\in \Psi(\S)$ satisfies $\phi|_{U} = \phi$.

4) If
$$
G = M
$$
 is any Caorpoia

$$
P := \left\{ t \circ b \mid b : 0 \to 0 \text{ local bisechow } 3 \right\}
$$

 s Alistics $(iv - (iv)$ bet not (v) . It Generates a pseudoGroup c s bich will be Denoted by $\mathbb{E}(\zeta)$.

Given a pseudoGroup $\Psi \subset D$ iff_{loc} (n) we can associate to it the Groupois of Germs or $\overline{\Psi}$:

$$
\Gamma(\underline{\overline{\Psi}}) = \left\{ \begin{array}{ccc} \text{gen}_{p}(\phi) : & \phi \in \underline{\overline{\Psi}} , & p \in \text{Dom}(\phi) \end{array} \right\}
$$

With The shear topology This is an GFFECTIVE s'tale Groupoid (perhaps not 2nd countable). Ono checks easily:

 \cdot For any pseudoGroup $\overline{\Psi}$: $\overline{\Psi}$ ($P(\overline{\Phi}) = \overline{\Psi}$

. F any e'tale Gaps $G : \Gamma(\mathbb{E}(\mathcal{G})) = ETF(\mathcal{G})$ In particular

Proposition.

There is ^a ¹ ¹ correspondence between Effective E'TALE GROCPOIDS (Not NESS 2nd countable) AND pseudo GROUPS:

$$
\mathcal{S} \longmapsto \overline{\Psi}(\mathcal{S})
$$

whose in other is:

$$
\overline{\varphi} \longmapsto (\overline{\varphi}) \, \overline{\varphi}
$$

Given manifolos $M \notin N$ And pseudogroups $\overline{\Psi} \subset DrF_{loc}(M)$ $\overline{\Phi}$ c Diff_{loe} (N) an equivalence From $\overline{\Phi}$ to $\overline{\Phi}$ is a collection $E = \int h : U \rightarrow V$ | UCM, VCN apca, h DIFFEO $\frac{1}{2}$ S AtisFying: i) U Don(h) = M, U Lnh = N
here hee ii) $\psi \in \mathcal{F}$, $\phi \in \mathcal{F}$, $h_{\perp}, h_{\perp} \in \mathcal{E} \Rightarrow \begin{cases} h_1 \circ \psi \circ h_2 \in \mathcal{F} \\ 1 \circ h_1 & \text{if } h_2 \in \mathcal{F} \end{cases}$ h_iopoh₂ E Y C iii) E is maxinal anono collections satisfying (i) $\notin C$ ii)

Proposition

Two Effective etale Groupoids are Monta Equivalent IFF The corresponding pseudoGroups are equivalent.

Proof: Exercise.

 $\boldsymbol{\mathbb{Z}}$