MATH 595 - Lecture 2

I.1 Lie Geoupoiss: Definition & Examples

<u>DEF</u>: A <u>Lie Groupois</u> is a Broupois G = M where $G \notin$ M are manifolds, $S \notin t$ are submensions, and M, U, iare smooth

Notation : We have spaces of composable ARROWS:

 $G^{(0)} = M$, $G^{(1)} = G$, $G^{(2)} = G \times G = \{(g,h) : s_{1}g_{1} = t_{1}h_{1}\}$... $G^{(x)} = G \times \dots \times G = \{(g_{\pm} \dots g_{\mu}) : s_{1}g_{1} = t_{1}g_{1}h_{1}\}$

 $s \notin t$ are submersions => $G^{(K)}$ is a manifold In particular, it makes scuse to bay $M: G^{(2)} \rightarrow G$ is smooth.

<u>DEF</u>: A <u>morphism</u> from a Lie concepcies G = M to a Lie GASCIPONE FI = N is a pair of smooth maps $F: G \rightarrow SI$ and $f: M \rightarrow N$ which are compatible by The stocethe maps.

Compatability = (\Im, f) Functa • IP $\Im \xrightarrow{S} \mathfrak{de}$ in \Im Then $f(\mathfrak{d}) \xrightarrow{\mathcal{F}(\mathfrak{G})} f(\mathfrak{d})$ in \mathscr{H} • IF $(\mathfrak{g},\mathfrak{h}) \in \mathfrak{g}^{(2)}$ then $\Im(\mathfrak{g}\mathfrak{h}) = \Im(\mathfrak{g}) \Im(\mathfrak{h})$ • IF $\mathfrak{de} \mathfrak{M}$, Then $\Im(\mathfrak{1}\mathfrak{de}) = \mathfrak{1}\mathfrak{f}(\mathfrak{d})$ • IF $\Im \xrightarrow{S} \mathfrak{de}$ in \Im Then $\Im(\mathfrak{g}\mathfrak{d}) = \Im(\mathfrak{g}\mathfrak{d})^{-1}$

The Last property Follows From The others

Convention:

Manifolds ARE ASSUMED HAUSDORFF AND 2nd countable. We <u>do not</u> assume this For The space of ARROWS G. But we still assume that M and The fibers of some t ADE HAUSDORFF AND 2nd countable (see examples).

<u>RMM</u>: BECOUSE S'(A) AND E'(3) A ELOSED, CABEDDED, HAUSDEAFF AND 2nd CONNTABLE, FOR MOST preposes ONE CAN WORK with G AS IF it WAS HAUSDOEFF AND 2nd econtable.

Exercise: Show That For a lie Groupois
$$G \rightrightarrows M$$
:
· $M : G^{(2)} \rightarrow G$ is a submension
· $i: G \rightarrow G$ is a Diffeo
· $u: M \hookrightarrow G$ is an EMBEDDIAG, which is cloud if
G is Hausborff

Proposition

Let G = M be a Lie groupois. (i) $\vec{s}'(\alpha) n \vec{t}'(y)$ are closed enserved submanifolds of G(ii) The isotropy Groups G_{α} and Lie groups (iii) $t : \vec{s}'(\alpha) \rightarrow O_{\alpha}$ is a principal G_{α} -bundle (iv) The orbits O_{α} are innerses submanifolds in M

Explanation about (iii);

Examples: 1) <u>Lie Groups</u> = Lie Grouppios over M=1x3 the One orbit/one isotropy Groop 2) <u>Bunoles of Lie Groups</u> = Lie Groupeine with s=t the Gabits = pts of the Isotropy groups = Fibers of t=s Very special case : <u>IDentity Groupoin</u> id

RMN. A bunale of GROUPS NEED Not BE LOCALLY TRIVIAL NGITHER AS A bunale Non as a Group bunale:

Μ

$$G = \mathbb{R} \times \mathbb{R}^{2} \qquad (t, x_{1}, b_{1}) * (t, x_{2}, b_{2}) := (x_{1} + x_{2}, y_{1} + e^{tx_{1}}y_{2})$$

$$\int P^{x_{1}} \qquad \int t = 0, \quad G_{0} \quad \text{is abelian}$$

$$M = \mathbb{R} \qquad \qquad \int t \neq 0, \quad G_{1} \quad \text{is non-abelian}$$

$$R^{2}(t_{1} \approx) \qquad \Lambda = \frac{1}{t} (t, \frac{m}{t}) : me \mathbb{Z}, t \neq o \int U_{1}^{1}(0, o) \int c R^{2}$$

$$\downarrow P^{e_{1}} \qquad \qquad \sim \qquad G = \frac{R^{2}}{\Lambda} \qquad \qquad \int t = o : \quad G_{0} = R$$

$$t_{1}^{1} \approx \qquad \qquad f = R \qquad \qquad \int t = o : \quad G_{0} = R$$

$$t_{1}^{1} \approx \qquad \qquad f = R \qquad \qquad \int t = o : \quad G_{0} = R$$

ONE GEDIT / isotropy Geoups ARE ALL TRIVIAL

5) <u>Equivalence Relations</u>. Any equivalence RCMXM DEPENES A SubGROUPOID OF The PAIR GROUPOID: R per 11 per

This is a lie proception if RCMXM is an immension submanifeld And prompty restrict to submensions. We say that R is smooth

• For any lie Groupois g = M one has a lie Groupois norphiem, called The <u>Auchor</u> or g: $\underline{\Phi}: g \xrightarrow{(t_i^3)} M \times M$ The image of $\underline{\Phi}$ is the equivalence relation Groupois Associated w) debit equivalence relation (Not lie, in General)

<u>Exoncise</u>: Show That a lie encupeie G = M is isomorphic To an equivalence relation choopois iff its isothopy Gnoups ARE ALL taivial. $\frac{DoF}{E}: A \quad \underline{\text{Lie subchoupcis}} \quad \text{or} \quad \mathcal{G} \rightrightarrows M \quad \text{rs a } \quad \underline{\text{Lie coupois}} \quad \mathcal{H} \rightrightarrows M \quad \text{rs a } \quad \underline{\text{Lie coupois}} \quad \mathcal{H} \rightrightarrows M \quad \underline{\text{rs a } } \quad \underline{\text{Lie coupois}} \quad \underline{\text{rs a } } \quad \underline{$

which is an injective innersion. If N = M are call the Lie SubGroupoid wide.

· AN Equivalence Relation is The SAME Think As A coise lie subgroopois of MxM.

· An isothopy group Gx co G is a Lio subcarpoid which re Not wide.

6) Action Groupoiss. Any Lie Group Action $G \times M \rightarrow M$, $(g, z) \mapsto g \infty$ $G \times M$ $f \downarrow f = (h, y) \cdot (g, z) = (hg, z)$ M $g \approx z$ $if y = g \infty$

Orbits = orbits or Acticw

lectropy = ischapy groups of Action

7) Flow of a vector Field. For
$$x \in \mathcal{X}(M)$$
 take Flow:
 ϕ_X^t with Donain $D(x) \subset \mathbb{R} \times M$ (open set)
 $(t, x) \mapsto \phi_X^t(x)$
 $D(x)$ (t, x)
 ψ_X^t $(t, x) \mapsto \phi_X^t(x)$
 $M \quad \phi_X^t(x) \quad x \quad (s, y) \cdot (t, x) = (s + t, x)$
 $M \quad \phi_X^t(x) \quad x \quad if \quad y = \phi_X^t(x)$

• Oracits = arbits or vector Field
• Isotropy Group or
$$\infty \pm \begin{cases} R & if \ \infty \ is \ \theta = 0 \\ Z & if \ \infty \ lies in periods e orbit \\ [15] otherwise
$$\frac{R_{MK}}{K} : X \text{ is complete (SD(X) = } R_{X}M \Rightarrow Plow derives R-action on M as Flow derives R-action on M as Flow derives Addim Cope
8) Honotopy Groupois. Fu any manifold M
$$\frac{\pi_{i}(M)}{M} = \begin{cases} r_{i}(2) & r_{i}(2$$$$$$

Conclusion:

$$\widetilde{M} \times \widetilde{M}$$

 $\widetilde{M} \times \widetilde{M}$
 \widetilde{M}
 \widetilde{M}

GRBits = connectors components of M/Isolocpy at $\alpha = \pi_1(M, \alpha)$

9) GAOBE GROUPOID. PDG PRIVICIPAL G-bundle (PxP)/G (quotient or pain Groopeis PxP=P by) H DiAGONAL Action or 6: (p.9)g=(p8.98)

One orbit / isotropy groups & G

<u>BENARK</u>: Killen M is connected, II.(M) is an Example OF A Gauge Groupois (Associates with $\widetilde{M} \mathfrak{S}\pi_{n}(\mathfrak{n},\mathfrak{a}_{0})$) DEF. A GROUPERS is CALLED TRANSitive if it has only one orbit.

- · Gause Georpois of P-M is transitiue
- $G \rightrightarrows M$ transitive => $t: \tilde{s}'(\alpha_{\circ}) \rightarrow M$ is paincipal $G_{\tau_{\circ}}$ -bunale

is a lie grocpois isomorphism.

