MATH 595 - LECTURE 1

Course INFORMATION :

- · No FORMAL EVALUATION : paper is udentacy
- · Office Hours: TR 11.30-12.30 Am (or by Appointment)

Course Contonts: 1) Theony: · Lie Groupeiss · Lie Algobroids

· Actions AND Representations

I) Applications :

- · Moouli / Singular spaces (= snooth stacks)
- · Now commutative Geenetay & more Theory
- · Symplectie & Poisson Goingtay
- · (Highen) GAUGE Throng

Picheene of Lie GROUPURS THEORY :

· A. Geothenoiek : Alberaic Bernetry

- · C. Ehreshnown : Differential Germotay
- & E. Constan · D. Spencer : Pantial Differential Equations
- · A. HAEPlieger : Topology and Poliatica Theory
- · A. Connes, Opinaton alcobras & NON-commutative Goonstay
- · A. Weinstein, Symplectic & Passon Gernetry

CLASSICAL VIEW :

Example: Symmetries of SCRM:

EvelidEAN Group:

 $E(m) = \{ \phi : \mathbb{R}^{M} \to \mathbb{R}^{M} \mid \phi \text{ preserve Distance } \} \simeq O(m) \times \mathbb{R}^{N}$

$$(\phi(m) = A + b, w) A \in O(m) be \mathbb{R}^{m})$$

Depining Action :

$$E(m) G R^{M} \phi \cdot \alpha := \phi(m)$$

symmetry encop of D :

$$G_{\Omega} = \{ \phi \in E(n) : \phi(\Omega) = \Omega \}$$

Usual crebo :

Exercise :

Ω = (R × Z) L (2 Z × R) C R²
G₂ = {Tannelations dy b c Λ = 2 Z × Z } U B
U & Reflections Theoryh pointie in
$$\frac{1}{2}$$
 Λ } U
U & FeFlections Theoryh use theoryh use theoryh $\frac{1}{2}$ Λ }

IF
$$B = [0, 2m] \times [0, m]$$
 (finite Rectaulde)
 $\widehat{\Omega} = Finite + ilive = B \cap \Omega$
 $G_{\widehat{\Omega}} = \mathbb{Z}_2 \times \mathbb{Z}_2$

Conclusion: Q is very symmetric, but $\widetilde{\Omega}$ is not (independent of NUMBER OF TILES!) CLASSICAL Theory DOES NOT Always capture symmetries of AN object.

Groupoise Allow to Fix This !

TRANSFORMAtions Geoupois or Action Groupuis Associates with $G_{z}GR^{4}$ · $G_{z} = \{(y, \phi, \infty) : \phi \in G_{z}, x, y \in R^{M}, y = \phi(\infty) \}$

PARtially DoFines Multiplication =

$$(2, \psi, y) \cdot (y, \phi, \infty) := (2, \psi \cdot \phi, \infty)$$

SATISFyiNG :

(1) Composition: IF g, heg, gin is defined only if
$$S(g_1 = t(h))$$

where: $B: G \rightarrow \mathbb{R}^n$, $(g, \phi, x) \mapsto x$ (source map)
 $t: G \rightarrow \mathbb{R}^m$, $(g, \phi, x) \mapsto g$ (target map)
AND Then $S(g_h) = S(h)$, $t(g_h) = t(g)$.

(3) units:
$$1_{\infty} := (\infty, id, \infty)$$
 are left/Righ contities:
 $1_{t(y)}$; $g = g = g \cdot 1_{s(g)}$

(4) INDURSES: Each
$$g = (9, \phi, \infty)$$
 has AN INDERSE
 $\tilde{g}' = (x, \phi', \delta)$:
 $g \bar{g}' = \frac{1}{t_{(5)}}, \quad \tilde{g}' g = \frac{1}{s_{(5)}}$

Those are exactly the preperties characterising a croupois.

Der: A Geolopois over a set M is a set G together
with maps:

$$s,t: G \rightarrow M$$

 $m: d(g,x) \in G \times G: \leq (g) = t(h) J \rightarrow G, (g,h) \mapsto gh$
 $u: M \rightarrow G, \infty \mapsto d_{\infty}$
 $i: G \rightarrow G, g \mapsto d_{\infty}$
(1) IF $2 \stackrel{O}{\longrightarrow} g \stackrel{h}{\longrightarrow} \infty$ Then $2 \stackrel{Oh}{\longrightarrow} \infty$
(2) IF $2 \stackrel{O}{\longrightarrow} g \stackrel{h}{\longrightarrow} \infty \stackrel{K}{\longleftarrow} u$ Then $(gh) K = g(hK)$
(3) $\exists x \stackrel{d_{\infty}}{\longrightarrow} \infty$ such that $\forall y \stackrel{O}{\longrightarrow} \infty, d_y g = g = g d_{\infty}$
(4) IF $y \stackrel{O}{\longrightarrow} \infty$ Theore exercises $x \stackrel{O}{\longrightarrow} y$ such that $g \stackrel{O}{\boxtimes} = d_y \stackrel{G}{=} d_y \stackrel{G}{=} d_y$

Rmks:

- · A Geoupois is just a (small) categoing where every Aprow is inucatible
- Isotropy Group of Dec M: $G_{\infty} = S'(n) \cap t'(n) = \begin{cases} g \\ g \\ g \end{cases}$

· Gnouprios can be restaucted to subsets:

$$g = M$$

 $N = M$
 $g = M$
 $g = M$
 $g = M$
 $g = \frac{1}{N}g = \frac{1}{2}g = \frac{1}$

Exercise

A bisection of $G \Rightarrow M$ is a map $b: M \rightarrow G$ such That $sob = id_{M}$ and $tob: M \rightarrow M$ is a bigeoticn (e.g., The identity $U: M \rightarrow G$ is a bisection).

Show that the set of disections F(G) has a natural GROUP structure.

Symmetry Groupois of Finite tiling:
•
$$\Omega \subset \mathbb{R}^2$$

• $G_{\Omega} = Symmetry Group \int = 5$ transformation Groupois
• $G_{\Omega} = Symmetry Group \int G_{\Omega} = \mathbb{R}^2$
• $B = [0, 2m] \times [0, m] \subset \mathbb{R}^2$, $\widetilde{\Omega} = \Omega \cap B$
=> $G_{\widetilde{\Omega}} := G_{\Omega} |_{\widetilde{B}} = B$

This captures symmetry of Finite tiline:

- . æ, y e B belens te same orbit iff Thoy ADO sinilary placed in Thom tilings
- · æ e B has thivial isothopy unless if æ e ½ An B for which isothopy Group is Z2×Z2.

RMK: The construction of GE uses the infinite lattice Q. Gue and also construct a local symmetry procepois of SE ashink Does not use SQ:

$$G_{\tilde{\omega}}^{loc} = \begin{cases} (b, \phi, \pi) \in B \times E(2) \times B \mid b = \phi(-) \text{ mod } 0c \text{ has NoinBolhood} \\ \cup c R^2 \text{ such that } : \phi(\cup n \tilde{\alpha}) c \tilde{\alpha} \\ \phi(\cup n(B \setminus \tilde{\alpha})) c B \setminus \tilde{\alpha} \\ \phi(\cup n(R^2 \setminus B)) c R^2 \setminus B \end{cases}$$

Exercise: Find orbits rule ischapy Groups of G. . Why are The Extra conditions Nocessary?

Son More in: A. Weinstein, "Groupoids: Unifying intorual and extornal symmetry", Notices of AMS, Vol 43, N.7.

· Synneting Geoupois OF A FAMily & Mobili Spaces

Family as 3 taranoles:

₹ = { \ \ \ \ \ \ \ \ \ }

Synnethies or & = similarity transformaticus between this woles (Translations, sealings, Rotaticus, Reflections) This is a Groupoid: G = M• M = O by eachs = 3 thin welles = $\begin{cases} 0 & 0 & 0 \\ T_1 & T_2 & T_3 \end{cases}$ • G = A REGIOR = Similarity transformationsThere are 14 areows: $\int_{C_2} b_1 & \int_{C_2} b_2 & \int_{C_3} b_3 & \int_{C_3} b_3$

 $\begin{array}{l} & \mathcal{G}_{T_{1}} = \vec{s}(T_{1}) \ n \ \vec{t}'(T_{1}) \ \simeq \ D_{2} \qquad (2 \ elements) \\ & \mathcal{G}_{T_{2}} = \vec{s}(T_{2}) \ n \ \vec{t}'(T_{2}) \ \simeq \ D_{2} \qquad (2 \ elements) \\ & \mathcal{G}_{T_{3}} \ \simeq \ \vec{s}(T_{3}) \ n \ \vec{t}'(T_{3}) \ \simeq \ D_{3} \qquad (6 \ elements) \\ \end{array}$

•
$$\vec{t}'(T_1) \cap \vec{t}'(T_2) = \begin{cases} a_1 \rightarrow a_2 & a_1 \rightarrow b_2 \\ b_1 \rightarrow b_2 & b_1 \rightarrow a_2 \\ c_1 \rightarrow c_2 & c_1 \rightarrow c_2 \end{cases}$$
 (2 elements)
• $\vec{t}'(T_1) \cap \vec{s}'(T_2) = \begin{cases} a_2 \rightarrow a_1 & a_2 \rightarrow b_1 \\ b_2 \rightarrow b_1 & b_2 \rightarrow a_1 \\ c_3 \rightarrow c_1 & c_2 \rightarrow c_1 \end{cases}$ (2 elements)

. No ARROWS between A RED AND A blue triANGLES

Another FAMily;

SEE MORE IN: K. BEHREND, "INTRODUCTION TO ALGOBRAGE STACKS", IN LONDON HATH. Society Lecture Notes Socies Vol. 411

Renaak:

· Kle can replace trianoles and similarities by other objects and Their isonoaphisms; e.g., Riemannian notaice on a manifold and isometnies between them.

· Instead of Finite (un discuste) Families, one can consider "continuous" on "smooth" Families of objects. Their symmetry Bloopoids are relevant to Descende The Moduli space of ALL such Deformations.

SINCULAR Spaces:

· G G M smooth Action of A lie Group on A MANIFold · <u>FREE</u>: g·x = œ, For senr æ => g=e · <u>proper</u>: G×M ∰ M×M, (g,æ) → (g·x,æ) is A proper MAP (i.e, K compact => ∰ (K) compact)

$$\left(\angle \Rightarrow \begin{cases} \alpha_{m} \rightarrow \alpha \\ g_{n} \alpha_{m} \rightarrow y \end{cases} \Rightarrow \exists g_{m_{k}} \rightarrow g \end{cases} \right)$$

Free + proper action => M/G has unique smooth should be s.t. $\pi: \pi \to \pi/G$ is submeasured.

$$\frac{\mathsf{Example:}}{\mathsf{G} = \mathbb{Z}^{\mathsf{K}} \mathsf{G} \mathsf{R} = \mathsf{R}^{\mathsf{K}} (\mathsf{m}_{\mathsf{a}..,\mathsf{m}_{\mathsf{K}}}) \cdot (\mathbb{Z}^{\mathsf{L}}, \mathfrak{R}^{\mathsf{K}}) = (\mathfrak{R}^{\mathsf{L}} + \mathfrak{n}_{\mathsf{L}}, \mathfrak{R}^{\mathsf{K}} + \mathfrak{n}_{\mathsf{K}})$$

$$\sim T^{\mathsf{n}} = \mathsf{R}^{\mathsf{N}} / \mathfrak{Z}^{\mathsf{K}}$$

What if action is not free or proper? M/G is A "singilar space"

· SO(3) G R³ => R³/SO(3) = [0,+~[Should these two singular spaces be considered the same?

No! The sincelan point So 3 is or Different type The sincelar space should contain informatio about This hippen symmetry.

We will see This can be expressed in cholopoids languages: The Action cholopoids SO(2) G R² Are Not Monita equivalent. SO(3) G R³