$$
\text { MaTH } 595 \text { - LGCTURG } 1
$$

Courase lnformation:

- No fonmal evaluation: papen is velcataey
- Office Hocrs: TR $11.30-12.30 \mathrm{Am}$ (or by Appointicat)

Covase Contonts:

1) Theony: - Lic Groupciss

- Lic Algobroids
- Actions nad Repeescatations
II) Applications:
- Moouli / Sinoular spaces (三 srooth stacks)
- Now commutatioe geemetry \& index theony
- Symplectie \& Prisson Gounctay
- (Highen) Gasor Theong

Picweens of Lie Groupuis Theony:

- A. Grothendiek: alocbraic gecmatay
$\left.\begin{array}{l}\text { - Ehreshanan: Difecrantime Gecmetay } \\ \text { - D. Epancer: Dmitial Diffenential Equaticus }\end{array}\right\}$ E.cartan
- A. Hacplieger: Topelocy ans Foliation Theory
- A. Connes, opinator algobras \& non-commutativg bocrotay
- A. Weinstein, Symploctie $\&$ Passon Gecmelay

0) Why Groupoios?

Classical view:
symnetry $=$ Theong of onoeps \& Thein acticus
Example: Symmetrits of $\Omega=\mathbb{R}^{m}$:
Eveliotan Grocp:

$$
\begin{aligned}
& E(n)=\left\{\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid \phi \text { preseaves distruce }\right\} \simeq O(n) \times \mathbb{R}^{n} \\
&\left.(\phi(n)=A x+b, w) A \in O(n) \text { be } \mathbb{R}^{n}\right)
\end{aligned}
$$

Derining action:

$$
E(n) G \mathbb{R}^{n} \quad \phi \cdot x:=\phi(n)
$$

Symmetny Grocp of Ω :

$$
G_{\Omega 2}=\{\phi \in E(n): \phi(\Omega)=\Omega 2\}
$$

Usual credo:
Ω is vany symmetric $\Rightarrow G_{\Omega 2}$ is lange

Exercise:

$$
\Omega=(\mathbb{R} \times \mathbb{Z}) 山(2 \mathbb{Z} \times \mathbb{R}) \subset \mathbb{R}^{2}
$$

$G_{\Omega}=\left\{T_{\text {ranslations }}\right.$ dy $\left.b \in \Lambda=2 \mathbb{u} \times \mathbb{U}\right\}$

B
$U\left\{\right.$ Reflections theough pointis in $\left.\frac{1}{2} \Lambda\right\} U$
$U\left\{\right.$ feFlecficus through vartical $\&$ hosizcutat linos Through $\left.\frac{1}{2} \Delta\right\}$

If $B=[0,2 \mathrm{~m}] \times[0, \mathrm{~m}]$ (rinite Rectrucio)

$$
\begin{aligned}
& \widetilde{\Omega}=\text { Finit }_{\theta} \text { tiling }=B \cap \Omega \\
& G_{\tilde{\Omega}}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}
\end{aligned}
$$

Conelusicu: Ω is veny oymmetire, but $\widetilde{\Omega}$ is not (inorpendint of numben of Tiles!) Classical Theony does not always capture symmetries of an object.

Groupoiss allow to fix This!
Transpormation Geoupois or actice Gnoupeis associates with $G_{s 2} G \mathbb{R}^{4}$

$$
G_{\Omega}:=\left\{(y, \phi, x): \phi \in G_{s 2}, x, y \in \mathbb{R}^{M}, y=\phi(x)\right\}
$$

Partially dofines multiplieatien:

$$
(z, \psi, y) \cdot(y, \psi, x):=(z, \psi \circ \phi, x)
$$

SaTisfying:
(1) Composition: If $g, h \in G, g \cdot h$ is defines only if $s(g)=t(h)$
where: 8: $G \rightarrow \mathbb{R}^{n},(y, \psi, x) \mapsto x \quad$ (source map)

$$
t: G \rightarrow \mathbb{R}^{n},(y, \phi, x) \mapsto g \text { (tanget map) }
$$

And Thon $s(g h)=s(h), t(g h)=t(g)$.
(2) Assciative: ($g h$) $k=g(h h) \quad$ (if sefin $\in D$, i.e., $s(g)=t(h)$) $\begin{aligned} s(h)=t(k)\end{aligned}$
(3) units: $1_{x}:=(x$, id, $x)$ nee lefT/Righ identities:

$$
1_{t(g)} \cdot g=g=g \cdot 1_{s(g)}
$$

(4) Inuurses: Each $g=(y, \phi, x)$ has an inverse

$$
\begin{aligned}
& g^{-1}=\left(x, \phi^{-1}, y\right): \\
& g g^{-1}=1_{t(y)}, \quad g^{-1} g=1_{s(g)}
\end{aligned}
$$

Thase are exactly the prepinties charactunizina a groupais.

DeF: A Groupois over A sot M is a set g together with mapsi

$$
\begin{aligned}
& \text { } \begin{array}{l}
s, t: G \rightarrow M \\
\cdot m:\{(g, h) \in G \times G: s(g)=t(h)\} \rightarrow G, \quad(g, h) \mapsto g h \\
\cdot \\
\cdot u: M \rightarrow G, \quad x \mapsto 1_{x} \\
\cdot i: G \rightarrow G, \quad g \mapsto g^{-1}
\end{array}, l
\end{aligned}
$$

satisfying (1) $-(4)$:
(1) If $z<\frac{g}{4} y \frac{h}{4}$ Then $z<\frac{g h}{4}$
(2) If $z \stackrel{g}{\longleftarrow} y \stackrel{h}{\longleftarrow} x \stackrel{k}{\longleftarrow}$ u Thew (gh)k=g(hk)
(3) $\exists x \frac{1 x}{2} x$ soch that $\forall y \stackrel{B}{4}, 1_{y} g=g=g 1_{x}$
(4) If $y<g$ ge Thene Exists $x \longleftarrow g^{-1} y$ soch that $g g^{-1}=1_{y} g^{-1} g=1_{x}$

Rmks:

- A groupcis is just a (small) categong where eveny arrow is invertible
- Isotrepy Grocp of $x \in \in M$:

$$
G_{x}=s^{-1}(x) \cap t^{-1}(x)=\left\{\begin{array}{c}
0 \\
x
\end{array}\right\}
$$

- Grbit of $x \in M$:

$$
O_{x}=\left\{y \in M \mid \exists g \in G: y \frac{\theta}{4} x\right\}
$$

- Gnouprìos can bo restaretes to sabdets:

$$
\left.\begin{array}{l}
\zeta=M \\
N \in M
\end{array}\right\}\left.\Rightarrow g l_{N} \Rightarrow N \quad G\right|_{N}=\{g \in G: s(g), t(g) \in N\}
$$

Exercise
A bisection or $G \Rightarrow M$ is a Map $b: M \rightarrow G$ soch That sob $=i d_{M}$ and tob: $M \rightarrow M$ is a bijeoticen (e.g. The identily $u: M \rightarrow \mathcal{G}$ is a bisectical.

Show that the set of bisecticus $\Gamma(G)$ has a natueal Group structure.

Symmetry Gnocpeis of Finte Tiling:

$$
\left.\left.\begin{array}{rl}
\Omega & \subset \mathbb{R}^{2} \\
G_{s 2} & =\text { symmating onocp }
\end{array}\right\} \Rightarrow \begin{array}{c}
\text { transformaticu orocpois } \\
G_{s 2} \Rightarrow \mathbb{R}^{2} \\
B
\end{array}\right)=[0,2 m] \times[0, m] \subset \mathbb{R}^{2}, \tilde{\Omega}=\Omega \cap B
$$

This captures symmotag of finite tiline:

- $x, y e B$ belong to same orbit iff Thy aro similary placed in thain tiliags
- $x \in B$ has tnicial iactrepy unless if $x \in \frac{1}{2} \Lambda \cap B$ For which isotropy Group is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Bank: Tho constraction of $\mathcal{G} \mathcal{I}$ usas the infinite lattice Ω. Guo can alse constauct a local syanmetay Groupois of $\widetilde{S_{2}}$ which doos nat use 5 :
$G_{\tilde{\Omega} \Omega}^{l o c}=\left\{\begin{aligned}(y, \psi, x) \in B \times E(2) \times B & \mid y=\phi(a) \text { and } x \text { has NEinBollnood } \\ U \subset R^{2} \text { such that: } & \phi(\cup \cap \widetilde{\Omega}) \subset \widetilde{\Omega} \\ & \phi(\cup \cap(B \backslash \widetilde{\Omega})) \subset B \backslash \widetilde{\Omega} \\ & \phi\left(\cup \cap\left(\mathbb{R}^{2} \backslash B\right)\right) \subset \mathbb{R}^{2} \backslash B\end{aligned}\right\}$
Exencise: Fiws onbits mas isclacpy ancups of $\mathcal{G}_{\widetilde{\Omega} 2}^{\text {loc }}$.
Why are The extra cenoitions necessany?
Sor More in: A. Weinstein," Groupoios: unifying intorual and extornal symmetey", Notices of AMS, $\operatorname{vol} 43$, N. 7 .

- Symugtrg Groupois of A Family \& Moocli spaces

Family wol 3 trianoles:

$$
\mathcal{F}=\{\Lambda \Delta \wedge
$$

Symmetrics of $\mathcal{F}=$ similarity transfermaticas betacen trianoles (Translations, sealings, Rotaticus, Reflections)

This is a Gnoupoid: $G \Rightarrow M$

$$
\text { - } M=O \text { bjects }=3 \text { triangles }=\left\{\begin{array}{ccc}
0 & 0 & 0 \\
T_{1} & T_{2} & T_{3}
\end{array}\right\}
$$

- $g=$ Arrows $=$ similarity trambpormaliows

There are 14 arrows:

c,
(2 elements)

- $G_{T_{2}}=s^{-1}\left(T_{2}\right) \cap t^{-1}\left(T_{2}\right) \simeq D_{2} \quad(2 \in \operatorname{lcmanfs})$
- $G_{T_{3}} \simeq s^{-1}\left(T_{3}\right) \cap t^{-1}\left(T_{3}\right) \simeq D_{3} \quad(6$ elements $)$
- $S^{-1}\left(T_{1}\right) \cap t^{-1}\left(T_{2}\right)=\left\{\begin{array}{ll}a_{1} \rightarrow a_{2}, & a_{1} \rightarrow b_{2} \\ b_{1} \rightarrow b_{2}, & b_{1} \rightarrow a_{2} \\ c_{1} \rightarrow c_{2} & c_{1} \rightarrow c_{2}\end{array}\right\} \quad(2$ ticments)

$$
\text { . } t^{-1}\left(T_{1}\right) \cap s^{-1}\left(T_{2}\right)=\left\{\begin{array}{ll}
a_{2} \rightarrow a_{1}, & a_{2} \rightarrow b_{1} \\
b_{2} \rightarrow b_{1}, & b_{2} \rightarrow a_{1} \\
c_{2} \rightarrow c_{1} & c_{2} \rightarrow c_{1}
\end{array}\right\} \quad(2 \text { tlencnis })
$$

- No arrows between a red and a blue triangles

Another family:

\simeq

Action Groupcia

$$
D_{3} G_{7}\{0,1,2,3\}
$$

See More in: K. Bghrend, "Introduction To Algebraic stacks", in Lond in Math. Society Lecture Notes Series vol. 411

Remark:

- We can replace triangles and similarities by other objects and Their isomorphisms; egg.. Riemannian metrics on a manifold and isometries between them.
- Instead of Finite (or discrete) families, one can consider "continuous" a "smooth" Families of objects. Their symmetry Groupoids are relernat to descerbe The moduli space of all such deformations.

Singular Spaces:

- G GM smooth action of a lie Group on a manifold
- FreE: $g \cdot x=\infty$, for sine $x \Rightarrow g=e$
- proper: $G \times M \xrightarrow{\Phi} M \times M,(g, x) \mapsto(g \cdot x, x)$ is A proper MAP (i.e, K compact $\Rightarrow \bar{\Phi}^{\prime}(K)$ couplet)

$$
\left(\Leftrightarrow\left\{\begin{array}{l}
x_{m} \rightarrow \infty \\
g_{m} a_{n} \rightarrow y
\end{array} \Rightarrow \exists g_{n_{k}} \rightarrow g\right)\right.
$$

Free + proper action $\Rightarrow M / G$ has unigor smooth sincetue s.t. $\pi: M \rightarrow M / G$ is submersion

Example:

$$
\begin{array}{rl}
G=\mathbb{Z}^{k} & G \quad M=\mathbb{R}^{k}, \quad\left(m_{1} \ldots M_{k}\right) \cdot\left(x^{\prime}, \ldots, x^{k}\right):=\left(x^{\prime}+m_{1}, ., x^{k}+\mu_{k}\right) \\
& \leadsto \Pi^{n}=\mathbb{R}^{k} / \mathbb{Z}^{k}
\end{array}
$$

What ir action is not free or pacpar? M / G is a "singular space"

Example:

$$
\text { SO(2) } G \mathbb{R}^{2}
$$

$$
\mathbb{R}^{2} / S_{\text {SO (2) }}=0=[0,+\infty[
$$

If wo remove origin, action is frog 4 proper:

$$
\begin{aligned}
& \left(\mathbb{R}^{2}-\{0\}\right) / S O(2)
\end{aligned}=\mathbb{R}, ~=\mathbb{R}^{3} / S_{O(3)}=[0,+\infty[
$$

Should these two singular spaces be considenes tho same?
No! The sincelan point $\{0\}$ is of drffencat type The sincelar space should contain inpenmatio about This hidden symmetry.

We will see this can de expresses in crocpcis languace: The action onolpuids $S O(2) G \mathbb{R}^{2}$ are not Morita equivalent.

