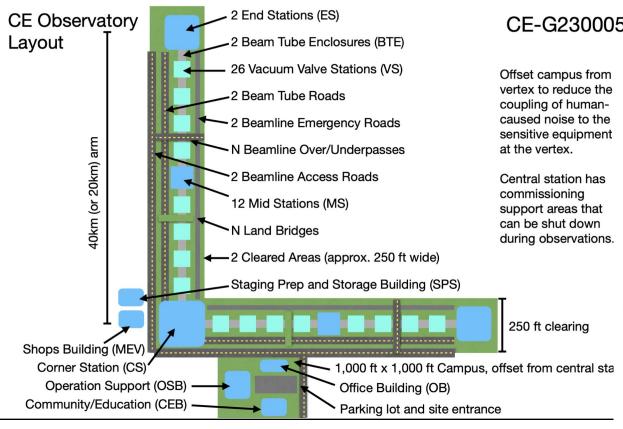
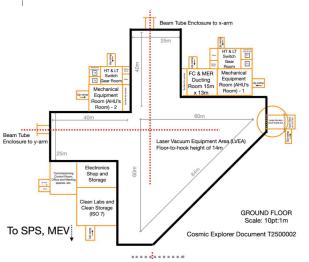


It was awesome!!! Thank you!!!


CE Symposium Parallel Sessions, Beckman Institute, Room 1005					
Round-table discussion on STM (instrument side): Barsotti	Connecting CE with hot topics in science and technology: McCuller	Real-time control: Ballmer (chair), Nitz, Rollins			
Coffee Break	Coffee Break	Coffee Break			
Round-table on CE instrument open questions and future-proofing	Modeling challenges and Al opportunities in the XG detector	Cosmic Explorer Working Groups			

Science Traceability Matrix

Agency Mission	Science goal	Science objective	Key Observations	Key Performance Parameters	Observatory System Requirements		Network	
					Subsystem	Property	Value	Configuration


Goal is to pick a "mature" science goal, and do the exercise of filling a full row of the STM

The CE Facility Components

CE-G2300054

Role of A# as CE technology pathfinder

		A [♯] R&D	CE R&D	Δ
Core Optics	Substrates (§4.1.1)	production and polishing of fused silica optics $45~\mathrm{cm}~\varnothing$, $100~\mathrm{kg}$	further scaling, toroidal mirrors for corner, polishing of strong lens in ITMs	0
	Coatings (§4.1.2)	amorphous coatings: materials better than A+ coatings and scaling	amorphous coatings: further scaling required	•
		crystalline coatings: birefringence tests and scaling	crystalline coatings for future upgrades: further size scaling required	•
Vibration Control	Suspensions (§4.2.1)	improved controllability, high stress fibers, test mass actuation, full scale prototype		
	Active Vibration Isolation (§4.2.2)	improved sensors and global control strategies	scaling up of A^{\sharp} design	
Lasers & Input	Lasers (§4.3.1)	high power laser, beam quality	integration of A^{\sharp} design	
	Input Optics (§4.3.2)	mitigation of laser noise couplings (intensity, frequency, beam jitter)	mitigation of laser noise couplings with double mode-cleaners	0
lantum	Readout (§4.4.1)	optimization of Balanced Homodyne	adaptation of A^{\sharp} design	
Readout & Quantum	Squeezing (§4.4.2)	loss, mode mismatch and phase noise reduction, robustness	adaptation of A^{\sharp} design, reduction of SEC loss, study of HOM in band	0

		A [♯] R&D	CE R&D	Δ
Sensing & Control	Length & Angle (§4.5.1)	control noise reduction, optimal hierarchical control	adaptation of A [#] design, lock acquisition for 40 km arms	0
	Mode (§4.5.2)	improved sensors and actuators, evaluation of BS thermal lensing	adaptation of A^{\sharp} design elements, study of low AOI on BS	0
	Parametric Instab. (§4.5.3)	improved modeling and dampers	adaptation of A [#] design	
	Vacuum system (§5.2)	maintenance of existing infrastructure	large scale sector test of new system	•
face	Newtonian Noise (§5.1.2)	modeling and demonstration of subtraction techniques	adaptation of A [#] design, facility design optimization	0
Facility & Interface	Stray Light (§5.3)	incremental improvements, material research	beam tube baffling strategy, analysis of corner layouts, detection strategy	•
Faci	Environment (§5.1.1)	incremental improvements	building isolation, beam tube isolation, HVAC redesign	•
	Electronics (§4.5.4)	advanced prototypes	exploration of modern low-noise electronics designs	0
Computing & Data	Digital I/O (§4.6.1)	incremental improvements	architecture re-design with modern technology	0
	Calibration (§4.6.2)	incremental improvements	fast and accurate low latency calibration techniques	
	Data Analysis, Transfer and Storage (§4.6.3)	incremental improvements	integrated architecture for low-latency analysis of ~ 1000 daily events	0

Connecting CE to hot topics in science and technology

- "Quantum" connection
 - Squeezing..then what?
 - Lee's vision: switch readout topology depending on astrophysical sources

- Al: What are the *right* problems to solve with Al?
 - Mark LHC perspective
 - Nikhil AI for control and operations
- ⇒ Lisa's take away-message: we need to do more of this

neXt-Generation Collaborative Design (XGCD)

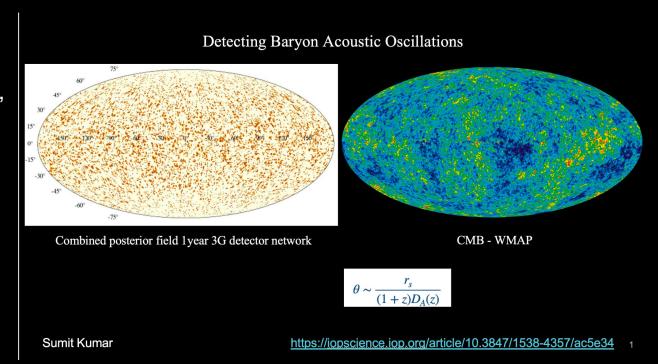
- ET-CE technical discussion on topics of common interest
- Several topics discussed so far: Optical Design, Straylight mitigation discussed, Lasers and Laser Noise couplings, Seismic Isolation and Sensors, Suspension design, ...
- Next topic to be decided soon talk to Lisa Barsotti ⇒ DECIDED!!
- Jamie et al on control architecture (stay tuned for when)

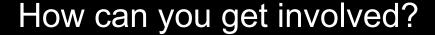
NeXt Generation Collaborative Design

https://indico.gssi.it/e/xgcd

■ Monday Apr 22, 2024, 11:00 AM → 12:40 PM US/Eastern

Description The goal of this series of online meetings is to provide a forum for regular discussions between the teams that work on common design aspects of next-generation gravitational-wave detectors Einstein Telescope and Cosmic Explorer.


The plan is to have a meeting each 2-3 months and start with topics that are more urgent, i.e., that have a strong impact on the detector infrastructure including optical layout, stray-light noise, Newtonian noise, ...


Dave Ottaway (from 2G+XG panel)

How much would a 10 km A# detector in Australia improve the XG network? What new exciting science would it enable?

Main outcomes from discussion

- Why not a CE20?
 Design is almost "free", very compelling argument
- Need a robust science case for a third XG detector, to be framed carefully

Join the CE Consortium!
 https://cosmicexplorer.org/consortium.html

Participate in the CE Science Calls (~monthly)
 https://cosmicexplorer.org/sciencecalls.html

Join the CE Project... the next round of proposals is in the works!

