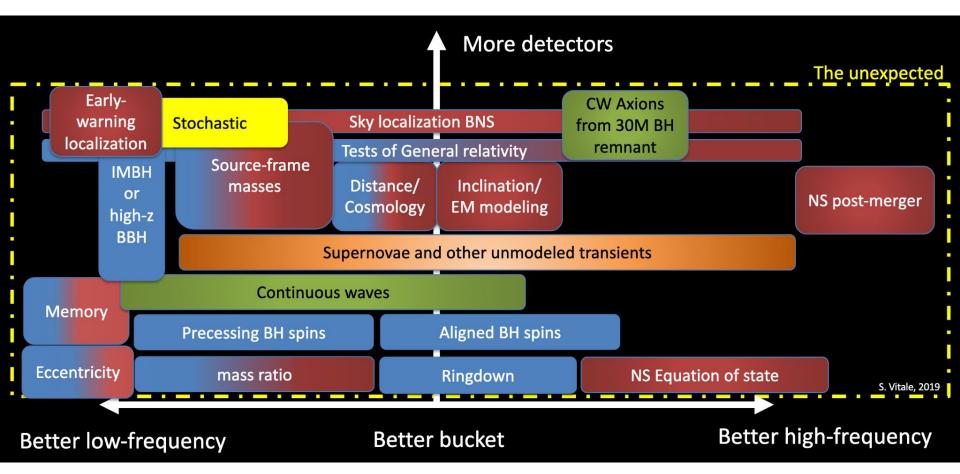
What we would like to achieve with the CE Science Traceability Matrix (STM) - instrument view -

CE Symposium Parallel Session (Monday, June 30th, 2025 2.30-3.30pm)

X SCIENCE TRACEABILITY MATRIX

Science Goal	Salanas Objectiva	Kay Observations	Management Descriptions and	Mirror and Instrument Requirements		
	Science Objective	Key Observations	Measurement Requirements	Instrument	Property	Value
See the Dawn of Black Holes	Observe progenitors of	Detection of black holes in z=10 galaxies down	Surveys with flux limits (0.5–2 keV):	Mirror+ HDXI	Angular Resolution (HPD)	<1 arcseconds across the field
	supermassive black holes at their seed stage at	to a mass limit of M _{BH} =10,000 M _{Com} over a volume with 10 ⁴ –10 ⁷ potential host galaxies. §1.1.3, Appendix A.3	• 1.6×10 ⁻¹⁹ erg/s/cm² over 1 deg²		Grasp @ 1 keV	~2 m² × 300 arcminutes²
	z=10		• 7×10 ⁻²⁰ erg/s/cm ² over 400 arcminutes ²		Imager pixel size	0.33 arcseconds
	Determine the state of diffuse baryons in galactic halos to guide the galaxy formation models	Direct imaging observations of 15 low-z galaxies with M _{tot} ~3×10 ^{t2} M _{sem} . §2.1.4, Appendix A.5		Mirror+ HDXI	Effective Area @1 keV	2 m²
			Reach 10% accuracy for derived thermodynamic parameters		Field of View	10 arcminute radius
			of hot gas at 0.5 r ₂₀₀		Spectral Resolution @1 keV	60 eV (FWHM)
					Particle Background @0.5-2 keV	< 0.0005 cnt/s/arcmin²/keV
		Characterization of hot halos beyond the virial radius in ~30 galaxies with mass 10 ^{11.5} —10 ^{22.5} M _m at z=0-1. §2.1.5, Appendix A.5 Observe 80 bright AGN sight lines to reach the sensitivity of 1 mÅ for Ow and Own absorption lines		XGS	Spectral Resolving Power	5,000
Reveal Invisible					Effective Area at 0.45-0.7 keV	4,000 cm ²
Drivers of Galaxy and Structure	Establish the energetics, physics, and the impact of energy feedback on galactic scales	Spatially and spectrally resolve the structure of		LXM / Ultra High Resolution Array	Spectrometer Pixel Size	1 arcsecond
Formation		starburst-driven winds in low-redshift galaxies.	Measure the outflow velocity profile in 20 galaxies with 100 km/s accuracy, and derive the momentum and energy flux		Energy Resolution @0.2-0.75 keV	0.3 eV (FWHM)
		§2.2	and secondly and secret the momentum and energy man		Spectrometer Subarray Size	1 arcminute × 1 arcminute
		Determine the effects of AGN energy feedback on ISM, and determine the physical state of gas near the SMBH sphere of influence in nearby galaxies. §2		Mirror + LXM / Enhanced Main Array	On-axis Angular Resolution	0.5 arcseconds (HPD)
			In 30 nearby galaxies, resolve extended emission line regions, AGN inflated bubbles, and characterize the thermodynamic		Spectrometer Pixel Size	0.5 arcseconds
			state of gas with 10% precision at or close to the Bondi radius from the central black hole		Energy Resolution @0.6-7 keV	3 eV
			nom the central black hole		Spectrometer Subarray Size	1 arcminute × 1 arcminute
Unveil the Energetic Side of Stellar Evolution and Stellar Ecosystems	Constrain SN explosion physics, the origin of elements, and a relation between SN activity and	Survey of young SNR in Local Group galaxies. §3.3		LXM / Main Array	Spectrometer Pixel Size	1 arcsecond
			Measure spatial structure of SNRs in spectral lines of individual		Spectrometer Field of View	5 arcminutes × 5 arcminutes
			elements (e.g. Fe-Ka), and in non-thermal emission		Energy Resolution @0.6-7 keV	3 eV (FWHM)
	local environment				Effective Area @6 keV	1,000 cm ²


Mission Functional Requirements

observing efficiency of 85%,

Provide data collection that is sufficient for

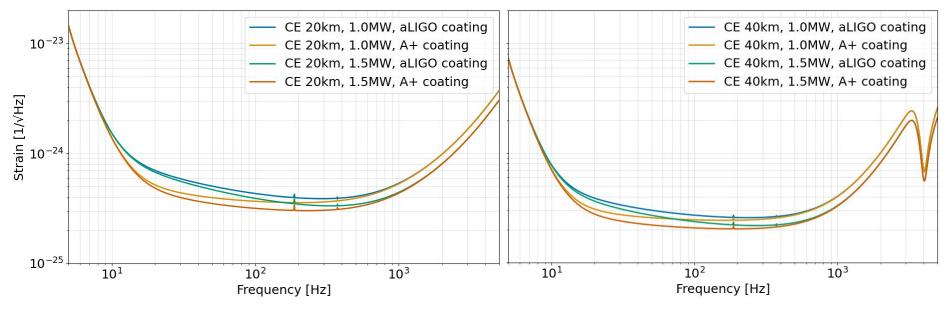
Provide pointing attitude control and knowledge consistent with sub-arcsecond imaging, as well as stability consistent with a 1 arcminute FoV

LIGO-G1900660 (Salvo Vitale)

STM work now ongoing for Cosmic Explorer (Nils, Sathya et al, see plenary)

- Goal is to connect major science objectives with detector and network capabilities, modeled on NASA missions
- What is the "right" parameter space for detector and network options?

Networks


- CE 40km (4 options)
- CE 20km (4 options)
- ET: ∆ or 2L
- LIGO India (in A# configuration)

- Work already done to prepare for the nextGen MPSAC committee
- Here there are plausible "key observations" evaluated in the context of different networks
- Next step is to study how they change given different CE curves, for a fixed network.

Figure 4: Polar histograms (linear scale) showing how CE can accomplish the key science goals discussed in §1. Observatory networks are as in Table 2. Broadly, these histograms show that CE in its reference design, operating with at least one 4 km LIGO A# detector, will achieve the key science goals in §1, and that its scientific output would be further enhanced as part of an international network. Top Left: An XG network is critical to making high-fidelity observations (SNR > 100) of BH and NS populations, including primordial and Population III BBHs, while accurately measuring their masses, redshifts, and locations in the sky. Top Right: The HLA network cannot facilitate the electromagnetic follow-up of mergers at the highest redshifts accessible to the best telescopes while an XG network will routinely provide alerts to such mergers. XG observatories can make exquisite measurements of the radius of NSs and their tidal deformability, and detect post-merger signals from merger remnants. Bottom left: Precision tests of GR are enabled by extremely high-fidelity events (SNR > 1000), and also by combining data from thousands of lower-SNR events, producing root-sum-square SNR > 10 000 in the post-inspiral phase of BBHs. Additionally, thousands of BNS and BBH detections with accurate measurements of the distance and sky-localization facilitate precision cosmology and a few hundred strongly lensed events would provide fundamental probes of GWs and cosmography. Bottom right: The XG network has abundant discovery potential with the ability to measure the dark energy equation of state parameter w_0 (and its variation with redshift [164]), observe weak and rare signals (e.g., pulsars), speculative sources (e.g., BNSs converted to BBHs due to accumulation of dark matter), primordial backgrounds and an opportunity to discover physics beyond the Standard Model (e.g. axion clouds).

CE detector sensitivity options for STM study

- 1 MW or 1.5 MW power
- aLIGO coating or A+ coating
- Different low frequency cut-offs?

STM in Cosmic Explorer language

Agency Mission	Science goal	Science objective	Key Observations	Key Performance Parameters	Observatory System Requirements Subsystem Property Value		

Cosmic Explorer Key Performance Parameters (KPPs)

Parameters that describe the scientific potential of a Cosmic Explorer observatory, focusing on high-level parameters that represent the quality of the product

Are these all of the important parameters?

Parameter	Threshold KPP	Objective KPP	
low-frequeny sensitivity	BBH range	Better range	
mid-frequency sensitivity	max <u>100-500Hz</u> sensitivity	lower max sensitivity	
high-frequency sensitivity	max 500Hz to 2kHz (sensitivity/f)	lower max noise	
observation duty-cycle	70%	90%	
alert latency	30s	5s	
data distribution capacity	10 users/day	100 users/day	
	low-frequency sensitivity mid-frequency sensitivity high-frequency sensitivity observation duty-cycle alert latency	low-frequency sensitivity BBH range max 100-500Hz mid-frequency sensitivity max 500Hz to 2kHz high-frequency sensitivity observation duty-cycle alert latency 30s	

STM in Cosmic Explorer language

Agency Mission	Science goal	Science objective	Key Observations	Key Performance Parameters	Observatory System Requirements Subsystem Property Value		
			BNS post-merger	High-freq sens	SQZ	Sqz level Power in the arms	10 dB 1.5 MW

Open Discussion