Lab Projects

Invited review papers

  1. Application of Top-Down and Bottom-up Systems Approaches in Ruminant Physiology and Metabolism.2012. Shahzad, K., J. J. LoorCurrent Genomics 13:379.
  2. Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state.2012. Bionaz M, Loor JJ. Gene Regulation and Systems Biology 6:109.
  3. Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond2011. Loor, J. J., K. M. Moyes, and M. Bionaz. Journal of Mammary Gland Biology and Neoplasia 16:305.
  4. Cattle genomics and its implications for future nutritional strategies for dairy cattle2011. Seo, S., D. M. Larkin, and J. J. LoorAnimal 19:1.
  5. Genomics of metabolic adaptations in the peripartal cow. 2010. J. J. LoorAnimal4:1110.

Ongoing projects

Nutrient regulated nuclear receptors: their role in regulating tissue metabolism and function.

Related publications:

  1. Fine metabolic regulation in ruminants via nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved in lipid metabolism and immune response partly through PPAR-α activation2011. M. Bionaz, B. J. Thering, and J. J. LoorBritish Journal of Nutrition. Jul 6 [Epub ahead of print]
  2. Effects of the peroxisome proliferator-activated receptor-alpha agonists clofibrate and fish oil on hepatic fatty acid metabolism in weaned dairy calves. 2010. N. B. Litherland, M. Bionaz,R. L. Wallace, J. J. Loor, and J. K. Drackley. Journal of Dairy Science93:2404.
  3. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. 2009. A. K. G. Kadegowda, M. Bionaz, L. Piperova, R. A. Erdman, and J. J. LoorJournal of Dairy Science 92:4276.
  4. Long-chain fatty acid effects on peroxisome proliferator-activated receptor-alpha-regulated genes in Madin-Darby bovine kidney cells: optimization of culture conditions using palmitate. 2009. B. J. Thering, M. Bionaz, and J. J. LoorJournal of Dairy Science 92:2027.

Dairy calf neonatal development in response to nutrition

Related publications:

  1. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves. 2013. Osorio JS, Trevisi E, Ballou MA, Bertoni G, Drackley JK, Loor JJJ Dairy Sci. 2013 Apr 12. doi:pii: S0022-0302(13)00275-0. 10.3168/jds.2012-5759. [Epub ahead of print]
  2. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. 2012. Naeem A, Drackley JK, Stamey J, Loor JJ. Journal of Dairy Science 95:1807.
  3. Level of nutrient intake affects mammary gland gene expression profiles in preweaned Holstein heifers. 2012. Piantoni P, Daniels KM, Everts RE, Rodriguez-Zas SL, Lewin HA, Hurley WL, Akers RM, Loor JJ. Journal of Dairy Science 95:2550.
  4. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development. 2010. P. Piantoni, M. Bionaz, D. E. Graugnard, K. M. Daniels, R. E. Everts, S. L. Rodriguez-Zas, H. A. Lewin, W. L. Hurley, M. Akers, and J. J. Loor. BMC Genomics 11:331.

MilkOmicsTM

Elucidating signaling mechanisms and milk genes in the mammary gland

Related publications:

  1. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. 2012. Bionaz M, Periasamy K, Rodriguez-Zas SL, Everts RE, Lewin HA, Hurley WL, Loor JJPLoS One. 7:e33268.
  2. A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation using the bovine mammary transcriptome. 2012. Bionaz M, Periasamy K, Rodriguez-Zas SL, Hurley WL, Loor JJ. PLoS One. 7:e32455.
  3. Short communication: Endoplasmic reticulum stress gene network expression in bovine mammary tissue during the lactation cycle. 2012. Invernizzi G, Naeem A, Loor JJ.Journal of Dairy Science 95:2562.
  4. Gene networks driving bovine mammary protein synthesis during the lactation cycle2011. M. Bionaz, and J. J. LoorBioinformatics and Biology Insights. 5:83. Epub 2011 May 4.
  5. Glucose transporter and hypoxia-associated gene expression in the mammary gland of transition dairy cattle2011. S.A. Mattmiller, C. M. Corl, J. C. Gandy, J. J. Loor, and L. M. Sordillo. Journal of Dairy Science 94:2912.
  6. In vitro culture and characterization of a mammary epithelial cell line from Chinese Holstein dairy cow. 2009. H. Hu, J. Wang, D. Bu, H. Wei, L. Zhou, F. Li, and J. J. Loor. PLoS One 4 (11):e7636.
  7. Gene networks driving bovine milk fat synthesis during the lactation cycle. 2008. M. Bionaz, and J. J. LoorBMC Genomics 9:366.
  8. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. 2008.M. Bionaz, and J. J. LoorJournal of Nutrition 138:1019.
  9. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. 2007. M. Bionaz, and J. J. LoorPhysiological Genomics 29:312.

Molecular and functional adaptations in bovine liver and adipose tissue

Mechanisms regulating adipose tissue mobilization and liver metabolism during the transition period.

Related publications:

  1. Liver lipid content and inflammometabolic indices in peripartal dairy cows are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. 2013. Graugnard, D.E., K. M. Moyes, E. Trevisi, M. J. Khan, D. Keisler, J. K. Drackley, G. Bertoni, and J. J. LoorJournal of Dairy Science 96:918.
  2. Change in subcutaneous adipose tissue metabolism and gene network expression during the transition period in dairy cows, including differences due to sire genetic merit. 2013. Khan, M.J., A. Hosseini, S. Burrell, S. M. Rocco, J. P. McNamara, and J. J. LoorJournal of Dairy Science doi: 10.3168/jds.2012-5794. [Epub ahead of print]
  3. Feed restriction, but not l-carnitine infusion, alters the liver transcriptome by inhibiting sterol synthesis and mitochondrial oxidative phosphorylation and increasing gluconeogenesis in mid-lactation dairy cows. 2013. Akbar H., M. Bionaz, D.B. Carlson, S.L. Rodriguez-Zas, R. E. Everts, H. A. Lewin, J. K. Drackley, and J. J. LoorJournal of Dairy Science doi: 10.3168/jds.2012-6036. [Epub ahead of print]
  4. Endocannabinoid system and proopiomelanocortin gene expression in peripartal bovine liver in response to prepartal plane of nutrition. 2012. Khan, M.J., D.E. Graugnard, J.J. LoorJournal of Animal Physiology and Animal Nutrition (Berl) 96:907.
  5. Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum. 2012. Graugnard DE, Bionaz M, Trevisi E, Moyes KM, Salak-Johnson JL, Wallace RL, Drackley JK, Bertoni G, Loor JJ. Journal of Dairy Science 95:1749.
  6. Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum. 2012. Graugnard DE, Bionaz M, Trevisi E, Moyes KM, Salak-Johnson JL, Wallace RL, Drackley JK, Bertoni G, Loor JJ. Journal of Dairy Science 95:1749.
  7. Overfeeding a moderate energy diet prepartum does not impair bovine subcutaneous adipose tissue insulin signal transduction and induces marked changes in peripartal gene network expression. 2012. Ji P, Osorio JS, Drackley JK, Loor JJ. Journal of Dairy Science 95:4333.
  8. Dietary lipid during the transition period to manipulate subcutaneous adipose tissue peroxisome proliferator-activated receptor-γ co-regulator and target gene expression. 2011. Schmitt, E., M.A. Ballou, M.N. Correa, E.J. DePeters, J.K. Drackley, and J. J. Loor. Journal of Dairy Science 94:5913.
  9. Adipose tissue depots of Holstein cows are immune responsive: inflammatory gene expression in vitro. 2010. M. Mukesh, Bionaz, D. E. Graugnard, J. K. Drackley, and J. J. Loor. Domestic Animal Endocrinology 38:168.
  10. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. 2007. J. J. Loor, R. E. Everts, M. Bionaz, H. M. Dawn, D. E. Morin, R. Oliveira, S. L. Rodriguez-Zas, J. K. Drackley, and H. A. Lewin. Physiological GenomicsOct 9 [Epub ahead of print]
  11. Plane of nutrition pre-partum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. 2006. J. J. Loor, H. M. Dann, N. A. Janovick-Guretzky, R. E. Everts, R. Oliveira, C. A. Green, N. B. Litherland, S. L. Rodriguez-Zas, H. A. Lewin, and J. K. Drackley. Physiological Genomics 27:29.
  12. Temporal gene expression profiling of liver from periparturient dairy cows reveals complex adaptive mechanisms in hepatic function. 2005. J. J. Loor, H. M. Dann, R. E. Everts, R. Oliveira, C. A. Green, N. A. Janovick-Guretzky, S. L. Rodriguez-Zas, H. A. Lewin, and J. K. Drackley. Physiological Genomics 23:217.

Beef cattle adipose tissue development and regulation during growth in response to pre and postnatal nutrition

Identification of nutrient-regulated genes for economically important traits.

Related publications:

  1. Yin Yang 1 and Adipogenic Gene Network Expression in Longissimus Muscle of Beef Cattle in Response to Nutritional Management. 2013. S. J. Moisa, D. Shike, W. T. Meteer, D. Keisler, D. B. Faulkner, and J. J. LoorGene Regulation and Systems Biology 7:71-83.
  2. High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle. 2010. D. E. Graugnard, L. L. Berger, D. B. Faulkner, and J. J. LoorBritish Journal of Nutrition 103:953-963.
  3. Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus x Simmental cattle fed high-starch or low-starch diets. 2009 D. E. Graugnard, P. Piantoni, M. Bionaz, L. L. Berger, D. B. Faulkner, and J. J. LoorBMC Genomics 10:142.

Regulation of milk fat and protein synthesis

Nutrient sensing and metabolic decisions in the bovine mammary gland.

Related publications:

  1. Milk fat depression induced by dietary marine algae in dairy ewes: persistency of milk fatty acid composition and animal performance responses. 2012. Bichi, E., G. Hervás, P. G. Toral, J. J. Loor, and P. Frutos. Journal of Dairy Science 96:524.
  2. Duodenal infusion of α-linolenic acid affects fatty acid metabolism in the mammary gland of lactating dairy cows. 2012. Yang G, Bu DP, Wang JQ, Khas-Erdene, Zhou LY, Loor JJ. Journal of Dairy Science 95:5821.
  3. Gene networks driving bovine mammary protein synthesis during the lactation cycle2011. M. Bionaz, and J. J. LoorBioinformatics and Biology Insights. 5:83. Epub 2011 May 4.
  4. Effects of feeding roasted safflower seeds (variety IL-111) and fish oil on dry matter intake, performance and milk fatty acid profiles in dairy cattle2011. A.R. Alizadeh, M. Alikhani, G.R. Ghorbani, H.R. Rahmani, L. Rashidi, and J. J. LoorJournal of Animal Physiology and Animal Nutrition (Berl) May 20 [Epub ahead of print].
  5. Effect of incremental levels of fish oil supplementation on specific bacterial populations in bovine ruminal fluid2011. S.J. Liu, D.P. Bu, J.Q. Wang, L. Liu, S. Liang, H.Y. Wei, L.Y. Zhou, D. Li, and J. J. LoorJournal of Animal Physiology and Animal Nutrition (Berl) Jan 4 [Epub ahead of print].
  6. Sustained upregulation of stearoyl-CoA desaturase in bovine mammary tissue with contrasting changes in milk fat synthesis and lipogenic gene networks caused by lipid supplements. 2010. G. Invernizzi, B. J. Thering, M. A. McGuire, G. Savoini, and J. J. LoorFunctional and Integrative Genomics. 2010 Jul 6. [Epub ahead of print]
  7. t10,c12-18:2-induced milk fat depression is less pronounced in cows fed high-concentrate diets. 2010. F. Glasser, A. Ferlay, M. Doreau, J. J. Loor, and Y. Chilliard. Lipids. 45:877.
  8. Adipose tissue lipogenic gene networks due to lipid feeding and milk fat depression in lactating cows. 2009. B. J. Thering, D. E. Graugnard, P. Piantoni, and J. J. LoorJournal of Dairy Science 92:4290.
  9. Gene networks driving bovine milk fat synthesis during the lactation cycle. 2008. M. Bionaz, and J. J. LoorBMC Genomics 9:366.

Tools and techniques in gene expression and bioinformatics analyses

Related publications:

  1. Selection and reliability of internal reference genes for quantitative PCR verification of transcriptomics during the differentiation process of porcine adult mesenchymal stem cells. 2010. E. Monaco, M. Bionaz, A. S. de Lima, W. L. Hurley, J. J. Loor, and M .B. Wheeler. Stem Cell Research and Therapy 1:7.
  2. Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements. 2008. A. K. G. Kadegowda, M. Bionaz, L. Piperova, R. A. Erdman, and J. J. LoorJournal of Dairy Science92:2007.
  3. Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation. 2008. S. Tramontana, M. Bionaz, A. Sharma, D. E. Graugnard, E. A. cutler, P. Ajmone-Marsan, W. L. Hurley, and J. J. LoorJournal of Dairy Science 91:3057.
  4. Gene expression ratio stability evaluation in prepubertal bovine mammary tissue from calves fed different milk replacers reveals novel internal controls for quantitative polymerase chain reaction. 2008. P. Piantoni, M. Bionaz, D. E. Graugnard, K. M. Daniels, R. M. Akers, and J. J. LoorJournal of Nutrition 138:1138.
  5. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. 2007. M. Bionaz, and J. J. LoorPhysiological Genomics 29:312.
  6. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary treatment. 2007. N. A. Janovick Guretzky, H. M. Dann, D. B. Carlson, M. R. Murphy, J. J. Loor, and J. K. Drackley. Journal of Dairy Science 90:2246.

Completed projects

Energy Balance and Mastitis Resistance

Molecular adaptations in the mammary gland to energy balance status and a pathogen challenge.

Related publications:

  1. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. 2012. Naeem A, Zhong K, Moisá SJ, Drackley JK, Moyes KM, Loor JJ. Journal of Dairy Science 95:6397.
  2. Predisposition of cows to mastitis in non-infected mammary glands: effects of dietary-induced negative energy balance during mid-lactation on immune-related genes. 2010. K.M. Moyes, J.K. Drackley, D.E. Morin, S.L. Rodriguez-Zas, R.E. Everts, H.A. Lewin, and J. J. LoorFunctional and Integrative Genomics. 11:151.
  3. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response. 2010. K. M. Moyes, J. K. Drackley, D. E. Morin, S. L. Rodriguez-Zas, R. E. Everts, H. A. Lewin, and J. J. LoorPhysiological Genomics 41:161.
  4. Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. 2010. K. M. Moyes, J. K. Drackley, D. E. Morin, and J. J. LoorFunctional and Integrative Genomics 10:53.
  5. Dietary-induced negative energy balance has minimal effects on innate immunity during a Streptococcus uberis mastitis challenge in dairy cows during midlactation.2009. K. M. Moyes, J. K. Drackley, J. L. Salak-Johnson, D. E. Morin, J. C. Hope, and J. J. LoorJournal of Dairy Science 92:4301.