
J Comput Neurosci (2011) 30:17–44
DOI 10.1007/s10827-010-0247-2

Estimating the directed information to infer causal
relationships in ensemble neural spike train recordings

Christopher J. Quinn · Todd P. Coleman ·
Negar Kiyavash · Nicholas G. Hatsopoulos

Received: 15 December 2009 / Revised: 13 May 2010 / Accepted: 21 May 2010 / Published online: 26 June 2010
© Springer Science+Business Media, LLC 2010

Abstract Advances in recording technologies have
given neuroscience researchers access to large amounts
of data, in particular, simultaneous, individual record-
ings of large groups of neurons in different parts of
the brain. A variety of quantitative techniques have
been utilized to analyze the spiking activities of the
neurons to elucidate the functional connectivity of the
recorded neurons. In the past, researchers have used
correlative measures. More recently, to better capture
the dynamic, complex relationships present in the data,
neuroscientists have employed causal measures—most
of which are variants of Granger causality—with lim-
ited success. This paper motivates the directed infor-
mation, an information and control theoretic concept,
as a modality-independent embodiment of Granger’s
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original notion of causality. Key properties include:
(a) it is nonzero if and only if one process causally
influences another, and (b) its specific value can be
interpreted as the strength of a causal relationship. We
next describe how the causally conditioned directed
information between two processes given knowledge
of others provides a network version of causality: it is
nonzero if and only if, in the presence of the present and
past of other processes, one process causally influences
another. This notion is shown to be able to differentiate
between true direct causal influences, common inputs,
and cascade effects in more two processes. We next
describe a procedure to estimate the directed informa-
tion on neural spike trains using point process gener-
alized linear models, maximum likelihood estimation
and information-theoretic model order selection. We
demonstrate that on a simulated network of neurons, it
(a) correctly identifies all pairwise causal relationships
and (b) correctly identifies network causal relation-
ships. This procedure is then used to analyze ensemble
spike train recordings in primary motor cortex of an
awake monkey while performing target reaching tasks,
uncovering causal relationships whose directionality
are consistent with predictions made from the wave
propagation of simultaneously recorded local field
potentials.

Keywords Causality · Functional connectivity ·
Point processes · Mutual information

1 Introduction

Due to recent advances in multiple electrode recording
techniques, neuroscientists are now able to record the



18 J Comput Neurosci (2011) 30:17–44

simultaneous, individual activity of hundreds of neu-
rons in various regions of the brain. Many researchers
are asking questions about how the spiking of individ-
ual neurons are influencing and influenced by the spik-
ing activity of specific neighboring neurons, the local
ensemble spiking activity, and the spiking activity in
other regions of the brain. The dynamic, complex inter-
actions between neurons often make thorough analysis
of the large volumes of data, such as identifying the
complete, functional topology of the recorded neurons,
quite difficult. However, since such analyses could pro-
vide great insight into brain function, there has been
a concentrated effort by researchers to develop tech-
niques to perform them.

Past work in analyzing the relationships between
multiple, simultaneously recorded neurons often in-
volved using correlative measures. Quantitative tech-
niques such as cross correlation (Eguiluz et al. 2005;
Diekman et al. 2009), mutual information (Paninski
2003), and coherence (Salvador et al. 2005) have been
employed, as they can provide insight to whether two
or more spike trains are statistically dependent. Such
information can be helpful to discern potential func-
tional connections between pairs of neurons or even
groups of neurons. However, since these measures are
correlative, they are symmetric, and thus do not capture
any of the directionality that might be present. For ex-
ample, even if the spiking activity of neuron A directly
affects the spiking activity of neuron B, but there is no
influence in the other direction, correlative measures
would only be able to identify that the spiking activity
of neurons A and B are related.

To address this issue, neuroscientists have recently
begun using alternative, causal measures. The goal of
using these measures is to identify the types of rela-
tionships between the spiking activity of the recorded
neurons, to distinguish if the relationship between neu-
rons A and B are mutual (both influence each other) or
unidirectional (A influences B, but B does not influence
A). Some of the quantitative techniques that have been
used to identify causal relationships include Granger
causality (Granger 1969), extensions of Granger causal-
ity such as directed transfer function (Kaminski and
Blinowska 1991), transfer entropy (Schreiber 2000),
and dynamic causal modeling (Friston et al. 2003),
among others.

The aforementioned techniques have been used in a
variety of settings in the recent past. In some situations,
they have provided insight into the underlying causal
relationships, and consequently the functional connec-
tivity, of the recorded neurons. However, in other cases,
the complicated relationship structures have led to mis-
interpretations (Kamiński et al. 2001).

This paper connects a newly defined information-
theoretic concept of “directed information” to the
Granger’s philosophical relationship between causality
and prediction (Granger 1969) in a rigorous manner,
operating on arbitrary modalities. The estimation pro-
cedure on neural spike trains requires milder assump-
tions than other techniques and has strong proven
consistency properties. Directed information plays a
fundamental role in information theory, especially in
communication with feedback (Massey 1990; Rissanen
and Wax 1987; Kramer 1998; Marko 1973). Within the
context of causality, directed information has been used
sparingly to infer the causal structure of gene regulatory
networks (Rao et al. 2006, 2007, 2008; Mathai et al.
2007) and neural data (Amblard and Michel 2010).
However, in all the aforementioned papers, either a
plug-in estimator (described in Section 5.1), that is not
necessarily statistically consistent was used, or no pro-
posed estimation schemes were discovered. In this pa-
per, we demonstrate a consistent estimation procedure
to infer the directed information between two point
processes (representing neural spike trains). Moreover,
we extend this notion to define “direct” causal re-
lationships that uncover causal relationships between
networks of spike trains.

This paper is organized as follows. First, in Section 2,
definitions and notations are provided. In Section 3,
previously used causal measures will be discussed.
Section 4 introduces the directed information as a mea-
sure of causal influence. Section 5 develops an estima-
tion paradigm, which is consistent under appropriate
assumptions, to estimate the directed information from
simultaneous recordings. A measure of the strength
of each estimated pairwise influence, along with 95%
confidence intervals of the directed information, are
also presented. Section 6 introduces causal condition-
ing to infer causal relationships between a network of
processes. This is particularly important to differentiate
between true direct causal influences and common
inputs or cascade effects. Section 7 demonstrates re-
sults of this estimation paradigm on synthetically con-
structed neural spike trains, where all pairwise causal
relationships (whether there is an influence or not)
are correctly identified. This procedure subsequently
is used to effectively uncover the network structure
of relationships between processes and differentiates
direct causal influences from common inputs or cascade
effects. This procedure is also used to analyze ensemble
spike train recordings in primary motor cortex of an
awake monkey while executing movements pertain-
ing to target reaching (Wu and Hatsopoulos 2006).
The procedure identified strong structure in the esti-
mated causal relationships, the directionality of which is
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consistent with predictions made from the wave propa-
gation of simultaneously recorded local field potentials
(Rubino et al. 2006).

2 Definitions and notations

In this section, we provide probabilistic notations
and information-theoretic definitions that will be used
throughout the remainder of the manuscript. Denote
definitions with the symbol �.

– For integers i ≤ j, define x j
i � (xi, . . . , x j). For

brevity, define xn � xn
1 = (x1, . . . , xn)

– Throughout this paper, X corresponds to a mea-
surable space that a random variable, denoted
with upper-case letters (X) takes values in, and
lower-case values x ∈ X correspond to specific
realizations.

– We define the probability mass function (PMF) of
a discrete random variable by

PX (x) � P (X = x) ,

and the probability density function (PDF) of a
continuous random variable by

fX (x) � lim
�→0

P (X ∈ [x, x + �))

�

– The entropy of a discrete random variable is
given by

H(X) =
∑

x∈X
−PX (x) log PX (x) (1)

– The conditional entropy is given by

H(Y|X) =
∑

x∈X

∑

y∈Y
−PX,Y (x, y) log PY|X (y|x) (2)

– The chain rule for entropy is given by

H(Xn) =
n∑

i=1

H
(
Xi|Xi−1) (3)

– For two probability distributions P and Q on X , the
Kullback–Leibler (KL) divergence is given by

D (P‖Q) � EP

[
log

P(X)

Q(X)

]

=
∑

x∈X
P(x) log

P(x)

Q(x)
≥ 0 (4)

– The mutual information between random variables
X and Y is given by

I(X; Y) � D (PXY(·, ·)‖PX(·)PY(·)) (5a)

= EPXY

[
log

PY|X (Y|X)

PY (Y)

]
(5b)

=
∑

x∈X

∑

y∈Y
PX,Y (x, y) log

PY|X (y|x)

PY (y)
(5c)

= H(Y) − H(Y|X) (5d)

The mutual information is known to be symmetric:
I(X; Y) = I(Y; X).

– The chain rule for mutual information is given by

I(Xn; Yn) =
n∑

i=1

I
(
Yi; Xn|Yi−1) (6)

where the conditional mutual information is
given by

I(X; Y|Z ) = EPXY Z

[
log

PY|X,Z (Y|X, Z )

PY|Z (Y|Z )

]
. (7)

– We denote a random process by X = (Xi : i ≥ 1),
with associated PX(·) which induces the joint prob-
ability distribution of all finite collections of X.

– We denote the set of kth order Markov chains as

Mk (X ) =
{

PX : PXn

(
xn) =

n∏

i=1

PXi|Xi−1
i−k

(
xi−1

i−k

)
}

with X j � ∅ for j < 0.
– We denote the set of all finite-memory random

processes on X as

M (X ) =
⋃

k≥1

Mk (X )

– We denote the set of stationary and ergodic random
processes on X as SE (X )

– The entropy rate and mutual information rate, as-
suming they exist, are given as follows

H(Y) � lim
n→∞

1
n

H(Yn) (8)

I(X; Y) � lim
n→∞

1
n

I
(
Xn; Yn) (9)
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– Within the context of point processes, consider the
time interval (0, T] as the time window for which
our neural spike train is observed. In this context,
define YT to be the set of functions y : (0, T] →
Z+ that are non-decreasing, right-continuous, and
y0 = 0. In other words, YT is the set of point
processes on (0, T]. Succinctly, we can represent a
point process as a sample path y ∈ YT where each
jump in y corresponds to the occurrence of a spike
(at that time)

– Consider two random processes X = (Xτ : 0 ≤
τ ≤ T) and Y = (Yτ : 0 ≤ τ ≤ T) ∈ YT . Define the
histories at time t for the point process Y ∈ YT

as the σ -algebra generated by appropriate random
processes up to time t as:

Ft = σ (Xτ : τ ∈ [0, t], Yτ : τ ∈ [0, t)) (10a)

F ′
t = σ (Yτ : τ ∈ [0, t)) (10b)

It is well known that the conditional intensity func-
tion (CIF) completely characterizes the statistical
structure of all well-behaved point processes used
in statistical inference of neural data (Brown et al.
2003). The CIF is defined as (Daley and Vere-Jones
1988):

λ (t‖Ft) � lim
�→0

P (Yt+� − Yt = 1|Ft)

�
, (11a)

λ
(
t‖F ′

t

)
� lim

�→0

P
(
Yt+� − Yt = 1|F ′

t

)

�
(11b)

Succinctly, the conditional intensity specifies the
instantaneous probability of spiking per unit time,
given previous neural spiking (and, in the scenario
when using Ft, also previous exogenous inputs
X). Almost all neuroscience point process models
(Brown et al. 2002) implicitly use this causal as-
sumption in the definition of Ft given by Eq. (10a).
Examples of how Ft is interpreted will appear in the
experimental results section.

– For a point process Y ∈ YT with conditional inten-
sity functions λ (t‖Ft) and λ

(
t‖F ′

t

)
, the likelihood or

density of Y at y given x is given by (Brown et al.
2003)

fY‖X(y‖x; λ)=exp
{∫ T

0
log λ (t‖Ft) dyt−λ (t‖Ft) dt

}
,

(12)

and analogously, the marginal likelihood or density
of Y at y is given by

fY(y; λ)=exp
{∫ T

0
log λ

(
t‖F ′

t

)
dyt − λ

(
t‖F ′

t

)
dt

}
.

(13)

We use the ‖ notation to explicitly speak to how
these conditional probabilities in Eq. (11b) are
taken with respect to causal histories, specified in
Eq. (10b). By discretizing (0, T] into n = T/� in-
tervals of length � 
 1 so that dy = (dy1, . . . , dyn)

with dyi � y(i+1)� − yi� ∈ {0, 1}, we can approxi-
mate Eqs. (12) and (13) by

− log fY‖X(y‖x; λ)�
n∑

i=1

− log λ (i‖Fi) dyi+λ (i‖Fi)�.

(14)

− log fY(y; λ) �
n∑

i=1

− log λ
(
i‖F ′

i

)
dyi + λ

(
i‖F ′

i

)
�.

(15)

where the discrete time index i corresponds to the
continuous interval (0, T] at time i�.

– Denote the set of GLM point processes with
discrete-time (�) conditional likelihood pertaining
to a generalized linear model of the conditional
intensity: by the function h to be

GLMJ,K (h) =
⎧
⎨

⎩λ : log λ (i‖Fi) = α0 +
J∑

j=1

α jdyi− j

+
K∑

k=1

βkhk(xi−(k−1))

}

The function (h1, . . . , hK) operate on the extrinsic
covariate X in the recent past. We subsequently
define GLM (h) as

GLM (h) =
⋃

J≥1,K≥1

GLMJ,K (h) .

3 Previous approaches to identify causal relationships
in neural data

3.1 Granger causality and DTF

Granger causality (Granger 1969) has been perhaps
the most widely-established means of identifying causal
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relations between two times series (Hesse et al. 2003).
It operates by calculating the variances to correction
terms for autoregressive models. Given two time se-
ries X = {Xi : i ≥ 1} and Y = {Yi : i ≥ 1}, to determine
whether X causally influences Y, Y is first modeled as
an univariate autoregressive series with error correc-
tion term Vi:

Yi =
p∑

j=1

a jYi− j + Vi

Then Y is modeled again, but this time using the X
series as causal side information:

Yi =
p∑

j=1

[
b jYi− j + c jXi− j

] + Ṽi

with Ṽi as the new error correction term. The value of p
can be fixed a priori or determined using a model order
selection tool (Akaike 1976; Barron and Cover 1991).
The Granger causality is defined as

GX→Y � log
var(V)

var(Ṽ)
. (16)

This technique examines the ratio of the variances of
the correction terms. If including X in the modeling
improves the model, then the variance of the correction
term Ṽl will be lower, and thus GX→Y > 0. Usually
GX→Y and GY→X are compared, and the larger term
is taken to be the direction of causal influence.

The directed transfer function (DTF) (Kaminski and
Blinowska 1991) is related to Granger causality, with
the principle difference being that it transforms the au-
toregressive model into the spectral domain (Kamiński
et al. 2001). Instead of working with univariate and
bivariate models, DTF works with multivariate models
for each time series, and so in theory should improve
the modeling, since it can take into account the full
covariance matrix for each of the time series (Kamiński
et al. 2001).

These and derivative techniques have been used ex-
tensively (Hesse et al. 2003; Uddin et al. 2009; Goebel
et al. 2003; Roebroeck et al. 2005; Rogers et al. 2007;
Dhamala et al. 2008; Abler et al. 2006; Korzeniewska
et al. 2003; Wang et al. 2007; Brovelli et al. 2004). These
approaches can be attractive because they are gener-
ally fast to compute and easy to interpret. However,
because of the sample-variance calculations, they are
not necessarily statistically appropriate for statistical
inference questions pertaining to neural spike train
data—which are generally modeled as point processes.

Autocorrelations and spectral transforms on point
processes often do not accurately provide meaning-
ful, conceptual interpretations. Moreover, these ap-
proaches do not have strong statistical guarantees of
correctly identifying causal relations. Another issue
is that even in cases where they can detect a causal
influence, these approaches do not necessarily identify
the extent of the influence (whether A fully causes B
or only partially). It is not clear that the actual val-
ues obtained through these methods, GX→Y , have a
physical meaning beyond comparison with the opposite
direction (e.g. GX→Y v.s. GY→X).

3.2 Transfer entropy

Transfer entropy was developed by Schreiber (2000). It
assumes two stochastic processes X = (Xi : i ≥ 1) and
Y = (Yi : i ≥ 1) satisfy a Markov property:

PYn+1|Yn,Xn

(
yn+1|yn, xn)

= PYn+1|Yn
n−J+1,Xn

n−K+1

(
yn+1|yn

n−J+1, xn
n−K+1

)

for some known constants J and K. Schreiber defined
transfer entropy as:

TX→Y(i) = I
(
Yi+1; Xi

i−K+1|Yi
i−J+1

)

This term is part of a sum of terms (Eq. (21)) that
will be defined as the directed information (with a
Markov assumption applied). Some studies have em-
ployed this measure (Chávez et al. 2003; Gourevitch
and Eggermont 2007; Kraskov 2008). This has not been
as widely employed as Granger causality and related
measures, principally due to the lack of convergence
properties (Pereda et al. 2005). As no model for the un-
derlying distribution is suggested, the straightforward
approach to estimate the transfer entropy is to use plug-
in estimates, which in general do not have statistical
convergence guarantees.

3.3 Dynamic causal modeling

Dynamic causal modeling (DCM) (Friston et al. 2003)
is a recently developed procedure which differs in its
approach from previously discussed techniques. DCM
models the brain as a deterministic, causal, dynamic
multiple-input and multiple-output (MIMO) system,
with a priori unknown coupling coefficients. Through a
series of perturbations and observations, the potentially
time varying coefficients of the system are estimated
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using Bayesian inference (Friston et al. 2003). By incor-
porating dynamic coefficients, DCM could potentially
capture the effects of plasticity, which the aforemen-
tioned procedures, which assume static coefficients,
cannot. DCM has been applied to both fMRI studies
(Stephan et al. 2008; Grefkes et al. 2008; Hamandi
et al. 2008; Schuyler et al. 2009; Bitan et al. 2005), and
EEG and MEG studies (David et al. 2006). While it
has been applied with some success to certain brain
imaging studies, to the authors’ knowledge, it has not
been shown to robustly characterize causal relation-
ships in local recording data such as data obtained with
large electrode arrays. Also, although there are asymp-
totic convergence results for some of the coefficients
through properties of EM estimation (Friston et al.
2003), the model as a whole does not have statistically
guaranteed convergence properties.

4 Directed information as a robust measure
of statistical causality

We will now motivate and introduce a more
general measure of statistical causality—directed
information—and discuss how it has a meaningful
interpretation of statistically causal influences in a
variety of settings.

4.1 Motivation and setup

4.1.1 Background

To help address the aforementioned issues, consider
the construction of Granger causality. In his original
paper, Granger defined causality as “We say that Xt

is causing Yt if we are better able to predict Yt, using
all available information [up to time t] than if the infor-
mation apart from Xt had been used” (Granger 1969).
Despite the generality of this conceptual definition, his
functional definition was restricted to linear models for
the ease of computation and used variances of correc-
tion terms in quantifying causality because variance is
easy to compute and understand (Granger 1969).

Two decades later, Rissanen and Massey, both
Shannon award winners, independently introduced a
different functional definition of causality (Rissanen
and Wax 1987; Massey 1990). Massey, whose work
is based on earlier work by Marko (1973), named
the quantity directed information. Directed information
is philosophically grounded on the same principle as
Granger causality: the extent to which X statistically
causes Y is measured by how helpful causal side infor-
mation of process X is to predicting the future of Y,

given knowledge of Y’s past. Unlike Granger causal-
ity, directed information is not tied to any particular
statistical model. It operates on log likelihood ratios—
which exist for an arbitrary modality. If we imagine the
random processes are all discrete, one interpretation
of directed information is the reduction in the mini-
mum number of bits required to sequentially specify
a source Y given causal knowledge of X. Specifically,
the Shannon codelengths are the “ideal” codelengths
(description lengths) of a random source Y (Cover
and Thomas 2006)—using such a code length mapping
results in the average description length in bits being
within one bit of its fundamental limit: the entropy
H(Y). Shannon codes are a function of the random
sequence’s probability distribution:

lShannon(x) �
⌈

log
1

PX(x)

⌉
.

For example, if a source Y has distribution PY and
is jointly distributed with X according to PX,Y , then
the reduction in the minimum number of bits required
to specify Y given knowledge of X is the mutual
information:

EPX,Y

[
log

1
PY(Y)

− log
1

PY|X(Y|X)

]
= D

(
PY|X‖PY

)

= I(X; Y) (17)

where Eq. (17) follows from Eq. (5d). The mutual infor-
mation is symmetric, and nonzero if and only if the two
random variables are statistically independent. From
Eq. (6), for vectors Xn and Yn, the mutual information
can be written as:

I(Xn; Yn) =
n∑

i=1

I
(
Xn; Yi|Yi−1) (18)

= E

[
n∑

i=1

log
PYi|Yi−1,Xn

(
Yi|Yi−1, Xn

)

PYi|Yi−1

(
Yi|Yi−1

)
]

(19)

=
n∑

i=1

D
(
PYi|Yi−1,Xn‖PYi|Yi−1

)
(20)

where Eq. (18) follows from Eq. (6); Eq. (19) follows
from Eq. (7); and Eq. (20) follows from Eq. (4). The
symmetry I(Xn; Yn) = I(Yn; Xn) implies that the mu-
tual information only measures the correlation between
random processes (in the colloquial sense of statistical
dependence), and will be unable to capture directional-
ity of causation.
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4.1.2 Def inition of directed information

Shannon-award winners Rissanen and Massey sepa-
rately modified the mutual information to capture
causal influences (Rissanen and Wax 1987; Massey
1990), and this new quantity is known as the directed
information, denoted I(X → Y), between two stochas-
tic processes X and Y. With similar work as above:

I
(
Xn → Yn) �

n∑

i=1

I
(
Xi; Yi|Yi−1) (21)

=E

[
n∑

i=1

log
PYi|Yi−1,Xi

(
Yi|Yi−1, Xi

)

PYi|Yi−1

(
Yi|Yi−1

)
]

(22)

=
n∑

i=1

D
(
PYi|Yi−1,Xi‖PYi|Yi−1

)
(23)

where Eq. (22) follows from Eq. (7) and Eq. (23)
follows from Eq. (4). Alternatively by applying the
chain rule for entropy, the directed information can be
written as:

I
(
Xn → Yn) = H(Yn) − H

(
Yn||Xn), (24)

where the causally conditioned entropy H(Yn||Xn), in-
troduced by Kramer (1998), is defined as:

H
(
Yn||Xn) �

n∑

i=1

H
(
Yi|Yi−1, Xi). (25)

The difference between mutual information (Eq. (19))
and directed information (Eq. (22)) is the change from
Xn to Xi: the directed information takes into the ac-
count the causal influence of process X on the current
Yi at each time i.

An important difference between directed informa-
tion and Granger causality is that directed informa-
tion itself is a sum of divergences (Eq. (23)) and thus
is well-defined for arbitrary joint probability distri-
butions (for example, of point processes (Bremaud
1981; Sundaresan and Verdú 2006)). Moreover, cal-
culation of directed information does not impose
any strict probabilistic structure on the (such as an
autoregressive model used for Granger causality). Con-
sequently, directed information is more flexible as a
metric that can be directly applicable to many modali-
ties, including neural spike trains. As one can determine
a “degree of correlation” (statistical interdependence)
by computing the mutual information in bits, one can
also compute the directed information to determine a

“degree of causation” in bits. This quantification allows
for an unambiguous interpretation of how much Y is
statistically causally influenced by X.

4.1.3 Directed information and prediction

Directed information has an important “information
gain” interpretation of the divergence with respect to
prediction (Cover and Thomas 2006), related to that
of mutual information. The mutual information quan-
tifies the expected reduction in the total description
cost (Shannon code length) of predicting X and Y
separately, as compared to predicting them together
(Eq. (5a)). Alternatively,

I(X; Y) = D
(
PX,Y‖PX PY

)

= D
(
PY|X‖PY

) = D
(
PX|Y‖PX

)
,

the mutual information is equivalent to the description
penalty of predicting Y with knowledge of X as com-
pared to Y by itself. Using the chain rule (Eq. (6)),

I(Xn; Yn) =
n∑

i=1

D
(
PYi|Xn,Yi−1(·)‖PYi|Yi−1(·)) ,

the mutual information between sequences Xn and Yn

(from PXn,Yn ) measures the total expected reduction in
codelength from sequentially predicting (or compress-
ing) the Yn with full knowledge of the Xn sequence and
causal knowledge of the past of Yn as opposed to just
causal knowledge of the past of Yn.

The directed information has a similar interpretation
for prediction with sequences Xn and Yn (from PXn,Yn ).
It is also a sum of KL-divergences (Eq. (23)):

I(Xn → Yn) =
n∑

i=1

D
(
PYi|Xi,Yi−1(·)‖PYi|Yi−1(·)) .

However, it quantifies the total expected reduction in
bits by sequentially encoding Yi using causal side infor-
mation of both processes, Xi and Yi−1, as compared
to encoding Yi given only Yi−1. This expected log-
likelihood ratio follows directly from Granger’s origi-
nal philosophical viewpoint with a Shannon codelength
measure of prediction, but differs operationally from
Granger’s mathematical measure because it operates
on arbitrary modalities and statistical models. Other
ways of statistically measuring causality from a pre-
diction viewpoint beyond the Shannon code length
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have recently been discussed in Al-khassaweneh and
Aviyente (2008), but for the remainder of this manu-
script, we will adhere to the Shannon codelength view-
point on prediction.

4.1.4 Example of measuring causal inf luences

To demonstrate that directed information can identify
the statistically causal influences between relationships
which correlation (as measured by mutual information)
cannot, we next present a simple example discussed by
Massey and Massey (2005). The example involves two
random processes X = (Xi : i ≥ 0) and Y = (Yi : i ≥ 1)

where the Xi random variables are independent, identi-
cally distributed (i.i.d.) binary (Bernoulli) equiprobable
random variables. For i ≥ 1: let Yi = Xi−1, so that X
causally influences Y. Figure 1 depicts the relationship
between the processes. Calculating the normalized mu-
tual information between X and Y,

1
n

I(Xn; Yn) = 1
n

E
{

log
PYn|Xn(Yn|Xn)

PYn(Yn)

}

= 1
n

E

{
n∑

i=1

log
PYi|Xn,Yi−1(Yi|Xn, Yi−1)

PYi|Yi−1(Yi|Yi−1)

}

= 1
n

{
n∑

i=2

log 1 − log
(

1
2

)}

= n − 1
n

(26)

where Eq. (26) follows from Eq. (6), Yi = Xi−1,
and that Xi’s are i.i.d.. Taking the limit, limn→∞ 1

n I
(Xn; Yn) = 1. The mutual information detects a strong
relationship, but offers no evidence as to what kind of
a relationship it is (is there only influence from one

Fig. 1 Diagram of the processes and their causal relationship.
X is drawn i.i.d. equi-probably to be 0 or 1, and Yi = Xi−1.
Clearly X is causally influencing Y. Moreover, Y is not causally
influencing X

process to another or is there crosstalk?). The normal-
ized directed information from Y to X is

1
n

I(Yn → Xn) = 1
n

E

{
n∑

i=1

log
PXi|Yi,Xi−1(Xi|Yi, Xi−1)

PXi|Xi−1(Xi|Xi−1)

}

= 1
n

E

{
n∑

i=1

log
PXi|Xi−1(Xi|Xi−1)

PXi|Xi−1(Xi|Xi−1)

}

= 0, (27)

where Eq. (27) holds because Yi = Xi−1. The normal-
ized directed information in the reverse direction is:

1
n

I(Xn → Yn) = 1
n

E

{
n∑

i=1

log
PYi|Xi,Yi−1(Yi|Xi, Yi−1)

PYi|Yi−1(Yi|Yi−1)

}

= 1
n

E

{
n∑

i=1

log
PXi−1|Xi(Xi−1|Xi)

PXi−1|Xi−2(Xi−1|Xi−2)

}

= 1
n

{
n∑

i=2

log 1 − log
(

1
2

)}

= n − 1
n

(28)

where Eq. (28) follows because Yi = Xi−1 for i ≥ 2 and
the Xis are i.i.d. Therefore, limn→∞ 1

n I(Xn → Yn) = 1.
This example demonstrates the merit of directed infor-
mation in causal inference as it correctly characterizes
the direction of information flow while mutual informa-
tion fails to do so.

4.2 Interpretations of directed information

Mutual information has a canonical role in a variety
of problems (Cover and Thomas 2006). For instance,
it characterizes the maximum data rate (“capacity”)
for reliable communication over a memoryless channel
without feedback. Next, we will examine some of the
important roles that directed information has in similar
settings (in addition to prediction and causal inference).

4.2.1 Communication with feedback

First, consider communication of a message W across a
noisy channel using n channel uses, where an encoder
maps W to channel inputs Xn and the decoder d(·)
receives the channel outputs Yn to construct an esti-
mate Ŵ. Under the performance criterion that the error
probability (P (() W �= Ŵ) tend to 0 in n, the funda-
mental limit (or capacity) is governed by the maximum
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possible reduction in uncertainty about the message W
given knowledge of the channel outputs, Yn, which is
I(W; Yn). When the encoder does not have feedback,
so that each Xi = ei(W), then it can be easily shown
that I(W; Yn) = I(Xn; Yn) (Cover and Thomas 2006).
However, if there is causal feedback of the outputs of
the channel, then the encoder design paradigm is now
Xi = ei(W, Yi−1). See Fig. 2. Here, I(W; Yn) can be re-
written as:

I(W; Yn)

= E
[

log
PYn|W(Yn|W)

PYn(Yn)

]

=
n∑

i=1

E
[

log
PYi|W,Yi−1(Yi|W, Yi−1)

PYi|,Yi−1(Yi|, Yi−1)

]
(29)

=
n∑

i=1

E
[

log
PYi|W,Yi−1,Xi(Yi|W, Yi−1, Xi)

PYi|,Yi−1(Yi|, Yi−1)

]
(30)

=
n∑

i=1

E
[

log
PYi|Yi−1,Xi(Yi|Yi−1, Xi)

PYi|,Yi−1(Yi|, Yi−1)

]
(31)

= I(Xn → Yn) (32)

where Eq. (29) follows from entropy chain rule of
conditional probability; Eq. (30) follows because Xi

is a deterministic function of W and Yi−1; Eq. (31)
because in complete generality, the statistical nature of
the channel output Yi is linked to W only through the
inputs causal Xi and previous outputs Yi (Cover and
Thomas 2006); Eq. (32) follows from Eq. (24). So when
the encoder has feedback, I(W; Yn) = I(Xn → Yn)

and so the directed information I(Xn → Yn) replaces
the mutual information I(Xn; Yn) as the fundamen-
tal limit of communication over noisy channels with
feedback (Kramer 1998; Tatikonda and Mitter 2009;
Permuter et al. 2009b).

Fig. 2 Diagram of a noisy channel. The capacity of the noisy
channel without feedback is a function of I(Xn; Yn). With feed-
back, the capacity of the noisy channel changes. The capacity
of the whole channel (inside the dotted line), which includes
both the noisy channel and the feedback, is always a function of
I(W; Yn) = I(Xn → Yn)

4.2.2 Other interpretations

Permuter et al. considered directed information in
the context of gambling and investment, and showed
that directed information can be interpreted as the
difference of capital growth rates due to available,
causal side information (Permuter et al. 2008, 2009a).
Permuter et al. have also investigated the role of di-
rected information in data compression with causal
side information and hypothesis testing of whether
one sequence statistically causally influences another
(Permuter et al. 2009a). Venkataramanan and Pradhan
consider the setting of sequential lossy compression
(quantization) where the decoder has causal side in-
formation about the source and demonstrated that the
fundamental limit (the rate-distortion function) is given
in terms of the directed information (Venkataramanan
and Pradhan 2007). Recently, Kim et al. have demon-
strated how the directed information can be interpreted
from an optimal causal estimation viewpoint (Kim et al.
2009). Fundamental limits of control when the con-
troller has noisy information about the state of the
system have been specified in terms of directed infor-
mation (Tatikonda 2000; Elia 2004; Martins and Dahleh
2008; Gorantla and Coleman 2010).

5 Estimation

5.1 Previous estimation approaches for information
theoretic quantities

For many neuroscientific scenarios of interest per-
taining to ensemble-recorded neural signals X and
Y, the underlying joint probability distributions PX,Y

is a priori unknown. Consequently, the normalized
information-theoretic quantity (i.e. entropy rate, mu-
tual information rate, etc) cannot be directly computed
must be estimated. There are two principled ways of
estimating information theoretic quantities (which are
functionals of the underlying PX,Y). One approach is
to estimate the underlying joint probability distribution
PX,Y, and then plug this estimate into the formula—for
example, the normalized directed information In(X →
Y) � 1

n I(Xn; Yn). Note from Eq. (22) that In is a func-
tional on the joint PMF of Xn and Yn:

In(X → Y) = gn
(
PXn,Yn (·, ·))

=
n∑

i=1

EPXn ,Yn

[
log

PYi|Yi−1,Xi

(
Yi|Yi−1, Xi

)

PYi|Yi−1

(
Yi|Yi−1

)
]
.
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Similar expressions, in terms of functional on PMFs,
can be described for entropy, conditional entropy, di-
vergence, and mutual information.

A plug-in estimator, first attempts to estimate the
density PXn,Yn (·, ·). We denote the estimate of the den-
sity by P̂Xn,Yn(·, ·). In general, P̂Xn,Yn(·, ·) will not be a
consistent estimate of PXn,Yn (·, ·), as only a single real-
ization of (Xn, Yn) is observed, and there are |X × Y|n
possible realizations, and a probability estimate needs
to be made for each. Consequently, the normalized
directed information estimate

În(X → Y) = gn
(
P̂Xn,Yn(·, ·))

will not be consistent. Note that for i.i.d. processes,
there are consistent density estimators, but there are
none (known) for general processes (Cesa-Bianchi and
Lugosi 2006).

We note that making an i.i.d. sample assumption is
not sensical within the context of developing measures
to understand causal dynamics in random processes.
This is because with i.i.d. processes, there is no cau-
sation through time. Thus, any estimation procedure
that relies on i.i.d. assumptions is not applicable to the
estimation of the directed information.

More recently, non-parametric procedures have
been developed. These procedures attempt to directly
estimate the functional on the joint distribution of in-
terest. For information theoretic quantities such as en-
tropy and KL divergence, there are successful universal
estimators, including Lempel-Ziv ’77 (Ziv and Lempel
1977), the Burroughs-Wheeler Transform (BWT) es-
timator (Cai et al. 2004), and context weighting tree
methods (Cai et al. 2006). Additionally, there has been
work extending the context weighting tree method to
estimating directed information (Zhao et al. 2010). Un-
fortunately, these methods are often computationally
expensive and have slow convergence rates. There has
also been some recent work by Perez-Cruz (2008) for
estimating numerous information theoretic quantities
with better convergence rates and more moderate com-
putational expense, but these procedures depend on
i.i.d. assumptions.

5.2 A consistent direct estimator for the directed
information rate

In this section, we propose a consistent estimator for
the directed information rate, under some appropriate
assumptions that have physical meaning for questions
of causality, and are analogous to the canonical i.i.d.-

like assumptions for other information-theoretic like
quantities.

– Assumption 1: PX,Y ∈ SE (X × Y).
Here, we assume that the random processes X and
Y are stationary and ergodic. Under this assump-
tion, as will be seen below, this means that the en-
tropy rate H(Y), the causal entropy rate H(Y||X),
and the directed information rate I(X → Y)

all exist. Thus, an estimation procedure can be
developed which separately estimates the entropy
rate and the causal entropy rate, then takes the
difference between the two (see Eq. (24)).

Lemma 1 Let Assumptions 1. Let PX,Y ∈SE (X×Y).
Then H(Y), H(Y||X), and I(X → Y) all exist.

The proof is in Appendix A.

– Assumption 2: PX,Y ∈ M (X × Y).
This assumption is the complete analog to the stan-
dard i.i.d. sample assumption that is used in the sim-
plest of statistical estimation paradigms. Note that
by assuming a Markov model, we are incorporating
a dynamic coupling, through time, on the processes
X and Y which is physically important for any
causal estimation paradigm. The Markov model en-
ables, amongst other things, the strong law of large
numbers (SLNN) for Markov chains to hold (Meyn
and Tweedie 2009). Many Granger causality, DTF,
and other previously discussed estimation proce-
dures assume Markov-like assumptions (Granger
1969; Kaminski and Blinowska 1991; Schreiber
2000), in addition to other constraints.

Lemma 2 Let Assumptions 1 and 2 hold, and let
PX,Y ∈ MJ,K (X × Y). Then for all n,

1
n

H
(
Yn||Xn) = E

[
gJK

(
Yl

l−J, Xl
l−(K−1)

)]
(33)

for the function gJ,K(aJ+1, b K)=− log PYi|Yi−1
i−J ,Xi

i−(J−1)

(aJ+1|aJ
1 , b K

1 ), where the expectation is taken with
respect to the stationary distribution for the Markov
chain.

The proof is in Appendix B. Since the right hand
side of Eq. (33) has no dependence on n, taking the
limit of the above as n → ∞ results in

H(Y||X) � lim
n→∞

1
n

H
(
Yn||Xn)

= E
[
gJK

(
Yl

l−J, Xl
l−(K−1)

)]
.
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By exploiting how sample averages converge to
ensemble averages with our Markov assumption,
we have:

Theorem 1 Let Assumptions 1 and 2 hold, and let J
satisfy PX,Y ∈ MJ,K (X × Y). Then

1
n

n∑

i=1

gJ,K
(
Yi

i−J, Xi
i−(K−1)

) a.s.→ H(Y||X)

Proof Taking the limit on both sides of Eq. (33)
as n → ∞,

H(Y||X) = E
[
gJK

(
Yl

l−J, Xl
l−(K−1)

)]
.

Using the SLLN for Markov chains (Meyn and
Tweedie 2009), for a fixed function g(·) over the
states of the Markov chain, as n → ∞, the sample
mean will converge almost surely to the expected
value:

1
n

n∑

i=1

gJK
(
Yi

i−J, Xi
i−(K−1)

)

a.s.→ E
[
gJK

(
Yl

l−J, Xl
l−(K−1)

)]

= H(Y||X).

�

With these results, if a consistent estimate ĝJK(·) for
the function gJK(·) can be found, then the sample
mean of this function will converge almost surely
to the causal entropy rate H(Y), and thus directed
information rate can be estimated with almost sure
convergence. Note that if Y alone forms a discrete-
time, finite state, stationary, and ergodic Markov
chain, then this result can be used to estimate H(Y)

by taking X to be a known, deterministic process.
– Assumption 3: For point processes X ∈ YT and Y ∈

YT and a pre-specified set of functions {hk : k ≥ 0},
λ (i‖Fi) ∈ GLM (h).
The recorded neural spiking activity—in millisec-
ond time resolution—is known to be well-modeled
using point process theory (Truccolo et al. 2005).
Because of the duration of a neural spike and its
refractory period, we will partition continuous time
into � = 1 millisecond time bins, and denote dyi =
1 if a neural spike occurs within it, and 0 other-
wise. Generalized linear models (GLM) for point
processes (Truccolo et al. 2005) are a flexible class
of parametric point process neural spiking models
that allows for dependencies on a neuron’s own
past spiking, the spiking of other neurons, and ex-

trinsic covariates. GLM models have the following
conditional intensity:

log λ (i‖Fi) = α0 +
J∑

j=1

α jdyi− j

+
K∑

k=1

βkhk
(
xi−(k−1)

)
(34)

where hk(·) is some function of the extrinsic covari-
ate, and

θ = {
α0, α1, · · · , αJ, β1, · · · , βK

}

is the parameter vector. Note that with such a GLM
model, from Theorem 1, we have:

− 1
n

log fY||X
(
Yn

1 ||Xn
1 ; θ

)

= 1
n

n∑

i=1

−(
log(λθ (i|Hi))dyi − λθ(i|Hi)�

)
(35)

= 1
n

n∑

i=1

gθ

(
Yi

i−J, Xi
i−(K−1)

)

a.s.→ E
[
gθ

(
Yi

i−J, Xi
i−(K−1)

)] = H(Y||X) (36)

where Eq. (36) shows that the estimate is a sample
mean of a fixed function (independent of i) of the
data. Note that any probabilistic model (parametric
or nonparametric) could be used to estimated the
directed information, not just GLM.

5.3 Parameterized estimation and MDL

Define 	(J, K) to be vector space of possible para-
meters θ = {α0, α1, · · · , αJ, β1, · · · , βK}. If it is known
a priori that λ (i‖Fi) ∈ GLMJ,K (h), then θ0 can be con-
sistently estimated using Assumptions 1–3 and a maxi-
mum likelihood estimate (MLE) (Casella et al. 2002):

θ̂ (J, K) = arg min
θ∈	(J,K)

− 1
n

log fY||X
(
Yn

1 ||Xn
1 ; θ

)

= arg min
θ∈	(J,K)

1
n

n∑

i=1

gθ

(
Yi

i−J, Xi
i−(K−1)

)
.

In practice, J0 and K0 are unknown. A model or-
der selection procedure can be used to find esti-
mates Ĵ, K̂, and subsequently θ̂ ∈ 	( Ĵ, K̂) by penaliz-
ing “more complex” models, that is—those with larger
J + K values. The minimum description length (MDL)
(Grünwald and Rissanen 2007) is a model order se-
lection procedure, which is known to be have strong
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consistency guarantees (Barron and Cover 1991).
In particular, under the assumption that λ (i‖Fi) ∈
GLM (h)—which means that θ0 ∈ 	(J0, K0), for some
J0 and K0, then it can be shown that an appropriately
designed estimate θ̂ → θ0 a.s.. Specifically, MDL se-
lects the ( Ĵ, K̂) and θ̂ ∈ 	( Ĵ, K̂) according to

( Ĵ, K̂) = arg min
(J,K)

min
θ∈	(J,K)

− 1
n

log fY||X
(
Yn

1 ||Xn
1 ; θ

) + J + K
2n

log n

= arg min
(J,K)

min
θ∈	(J,K)

1
n

n∑

i=1

gθ

(
Yi

i−J, Xi
i−(K−1)

) + J + K
2n

log n

θ̂ = θ̂
(
Ĵ, K̂

)
(37)

As K is the number of extrinsic parameters, if K̂ = 0,
then we say that no causal inf luence was detected, since
Ĥ(Y||X) = Ĥ(Y) which implies that Î(X → Y) = 0.
Thus, to determine whether there is a detected causal
influence or not does not require computation of the
directed information; only the K̂ from the best-fitting
model is necessary. If K̂ = 0, there is no detected
influence (Î(X → Y) = 0). If K̂ > 0, there is a detected
influence (Î(X → Y) > 0).

Although one can identify whether there is a de-
tected causal influence without computing the directed
information, the extent of an influence cannot be deter-
mined by the GLM model alone. Directed information
considers both the model and the data to determine
the influence. An example which illustrates this point
is as follows. Let A and B be two neurons, such that
whenever B spikes, A will spike with probability 1
within each of the next 12 ms except when A has just
fired (refractory period). Let A have a large average
spiking rate, such as one spike per 10 ms, and let B have
a very low average spiking rate, such as one spike per
second (see Fig. 3).

The best fitting GLM model (provided the data
recording is sufficiently long) of neuron A using neu-
ron B as B as an extrinsic process will have K̂ ≈ 12
and {β1, · · · , βK̂} large and Thus, it would seem, from
the GLM model alone, that B strongly influences A.
However, since there are few instances where B spikes,
few of A’s spikes are caused by B’s, and so B will
have a small, causal influence influence on A. If B has
a much larger firing rate, however, then many more
of A’s spikes could statistically be explained by B’s
spikes (if the β parameters remain the same), and thus

(a)

(b)

Fig. 3 Spiking activity of neurons A (top) and B (bottom)

B would have a larger, causal influence. Changes in
the data, with a fixed model, can result in changes in
the extent of the influence. Thus, directed information,
which considers both, is able to measure the extent of
the influence, which the model alone cannot.

5.4 The proposed estimation procedure

Under the Assumptions 1–3, we provide the following
consistent estimation procedure:

1. Find Ĵ, K̂, and θ̂ according to the MDL procedure
Eq. (37).

2. Calculate Ĥ(Y‖X) according to Eq. (36) using the
estimated parameter values θ̂ ∈ 	( Ĵ, K̂).

3. Compute an estimate for the unconditional entropy
rate Ĥ(Y) using a well-established entropy estima-
tor (such as Lempel-Ziv ’77 (Ziv and Lempel 1977)
or the BWT based estimator (Cai et al. 2004)).

4. Calculate the directed information rate estimate

Î(X → Y) � Ĥ(Y) − Ĥ(Y||X)

Theorem 2 If Assumptions 1, 2, and 3 hold, then

Î(X → Y)
a.s.→ I(X → Y) (38)

Proof

1. If Assumptions 1–3 hold, then the MDL proce-
dure will identify the “true” parameter values θ ∈
	(J, K) (Barron and Cover 1991): Ĵ → J a.s., K̂ →
K a.s., and θ̂ → θ a.s..

2. Note that since θ̂ → θ a.s., from the continuity of
gθ , Ĥ(Y‖X) specified above satisfies Ĥ(Y‖X) →
H(Y||X) a.s. by virtue of Theorem 1.
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3. Universal estimators such as Lempel Ziv ’77 and
the BWT based estimator converge almost surely to
the unconditional entropy rate H(Y) for stationary
and ergodic finite-order Markov processes (Lastras
2002; Cai et al. 2004).

4. Combining these results,

Î(X → Y) � Ĥ(Y) − Ĥ(Y||X)

a.s.→ H(Y) − H(Y||X)

= I(X → Y)

�

5.5 Implementation details

To perform the MDL search procedure, we exam-
ine values of J, K ∈ {0, 1, · · · , M}, where M is a user-
specified maximum value. M should be chosen to be
sufficiently large that any causal influences of interest
in the data occur within the timescale of M�. How-
ever, if the best-fitting models have and/or K̂ near
M, then M can be increased adaptively to search for
larger parameter orders (thus, it is not a hard limit).
M is chosen a priori to save computation for when the
procedure settles on small values for Ĵ and K̂. More
precisely, when local communications within a small
brain region is of interest, picking a relatively small
M is sufficient (Truccolo et al. 2005). If we anticipate
that an upper bound for the maximum time scale for
a spike from one neuron to influence another neuron
(including time to propagate) is around 25 ms (Vogels
and Abbott 2005), then it would be appropriate to pick
an M ≈ 25. However, in the case of motor feedback,
e.g. hand movement, the longer delays for the signal to
propagate should be taken into account, and a larger
M, such as M ≈ 150 should be selected (Paninski et al.
2004).

For each (J, K), the MLE parameter vector θ̂ (J, K)

can be computed using the built-in Matlab function
glmf it(·), called with a Poisson link parameter. Then
Eq. (37) is computed to determine θ̂ . The estimate for
the causal entropy rate is taken to be the sample mean:

Ĥ(Y||X) = 1
n

n∑

i=1

gθ̂

(
Yi

i− Ĵ
, Xi

i−(K̂−1)

)
.

To compute an estimate of the entropy rate, Ĥ(Y), a
universal estimator such as the BWT based estimator
could be used (which has a faster convergence rate
than LZ ’77) (Cai et al. 2004). Alternatively, the above
procedure could be used with K = 0 fixed. Through
trials with large neural data binary time series (on the
order of 100,000 bins), the values were quite close,

and obtained quicker than with the universal estima-
tor. The difference between the two estimates, Ĥ(Y) −
Ĥ(Y||X), then becomes the directed information esti-
mate, Î(X → Y).

In some cases, the relative influence of a process
X on a process Y is of interest. The normalized di-
rected information rate can be computed by normalizing
the directed information by the entropy rate of the
process Y:

Î(X → Y)

Ĥ(Y)
= Ĥ(Y) − Ĥ(Y||X)

Ĥ(Y)
= 1 − Ĥ(Y||X)

Ĥ(Y)
. (39)

For values of this quantity close to 1, X can be inter-
preted as having a strong causal influence on Y, and for
values close to 0, X can be interpreted as having a weak
causal influence on Y.

In addition to the bound on the model order search
space, M, there is another design choice to be made be-
fore running the procedure, that of the time resolution
�. The GLM framework which is used for modeling
depends on having binary time series, such that the
data can be modeled as a point process (Truccolo et al.
2005). It has been found that � = 1 ms is a sufficiently
small time window, such that using this resolution will
result in binary data (no more than one spike in that
time window) (Truccolo et al. 2005). However, such
resolution is not necessary for the point-process-GLM
framework; all that is necessary for the modeling is that
the temporal resolution is small enough that the data is
binary (Truccolo et al. 2005).

There are both potential benefits and harms to
choosing � > 1 ms. One benefit of choosing � > is that
there is a reduction of the length of data (number of
bins), which can increase the speed of the procedure.
Another potential benefit is that the fits could be better.
The procedure finds the best fitting α and β parameters.
Choosing a larger � will cause the data to become less
zeros). There could then be more instances of multiple
spikes within the M� time window to fit the window
to fit the α’s and β’s. Also, for a fixed upper bound
on the time scale over which take place, increasing
� will decrease the corresponding M to ensure that
the maximum time scale searched over, M�, is large
enough. The smaller search space would increase the
speed of the procedure.

One possible problem of choosing � to be larger,
such as 2, 5, or 10 ms, is that there is a potential loss of
timing information which can effect detection of causal
influences. For example, consider two neurons, A and
B, such that whenever A fires, B fires 3 ms afterwards
with very high probability. Also, let A and B have very
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low average firing rates, so with 1ms time resolution,
there are many more 0’s than 1’s. While using � =
10 ms might result in A and B having binary spike trains
(so the framework can still be applied), it is possible
that the spikes from A and the corresponding spikes
from B will be grouped in the same time bin. They will
then appear to have occurred simultaneously, instead
of B firing with a firing with a slight delay. The loss
of relevant timing information such as this could effect
how well the detect the underlying influences.

Issues such as the aforementioned problem could po-
tentially be screened beforehand, to determine if both
the time differences between spikes of the different
neurons and the time differences between spikes of
the neuron are smaller than the proposed �. However,
the authors are not aware of any study which has
compared how different choices of sufficiently small
values of � (sufficient so that the data is binary) corre-
spond to differences in how well the best-fitting models
(for a given �) compare with others. There is no known
general procedure for deciding the best value of δ.

Computation time might be a factor in deciding
the maximum model order M, the time resolution
�, and the amount of data to use. Our simulations
were designed and tested in the Matlab environment,
using built-in Matlab functions (the code is available
upon request). The primary computational bottleneck
is finding the α and β parameters for a given J and K,
which were computed with glmf it(·). In our tests (see
Section 7), we used datasets on the order of 100,000
elements. Trials ran on computers with a 2.6 GHz
processor (each estimate of Î(X → Y) ran on a single
computer). A single glmf it(·) operation with 1 ≤ J,
K ≤ 5 took a few seconds. A single glmf it(·) operation
with 20 ≤ J, K ≤ 25 took upwards of 2 min. The pro-
posed procedure involves searching over a larger (J, K)

parameter space for each ordered pair of processes. If
M = 25, then there are M2 = 625 calls to glmf it(·). For
each ordered pair, this search took approximately 2 h.
With six processes total, there are 6 ∗ 5 = 30 ordered
pairs. The total procedure took about 2 and a half days
for each directed information estimate. For causally
conditioned directed information estimates (going be-
yond pairwise estimates; see Section 6), the search
space increased. For causally conditioning on two ele-
ments, the search space involves M4 ≈ 400,000 calls to
glmf it(·). Since the runtime for glmf it(·) changes with
model order, the total time does not scale multiplica-
tively. The computations for different (J, K) orders can
be done in parallel. It is possible that other implementa-
tions of the GLM model fitting (a convex optimization
procedure) could be faster than the Matlab implemen-
tation, thus reducing computation times.

5.6 Confidence intervals

To obtain confidence intervals on the directed infor-
mation estimates, sensitivity analysis using the Fisher
Information is used. Once the observed data is fixed
(a given spike train y ∈ YT , possibly with an extrinsic
spike train x ∈ YT), the directed information estimate
is a function only of the estimated parameters θ̂ ∈
	( Ĵ, K̂). We here perform a sensitivity analysis to char-
acterize how much the directed information estimate
changes as a function of the parameter values used,
in the neighborhood of the original parameters θ̂ . The
variation in estimate values is then taken into account
by specifying a confidence interval.

For this particular estimation problem, since for
fixed ( Ĵ, K̂), the search for the best fitting model is a
MLE problem, and, in particular, since the probabil-
ity class being considered (point process GLMs) are
convex in the parameters, the MLE will be the global
maximum of the probability function

fY||X(y||x; θ) = exp

(T/�∑

i=1

log λ (i‖Fi))dyi − λ (i‖Fi) �

)

over the space of parameter values 	( Ĵ, K̂) (Casella
et al. 2002). Under appropriate aforementioned as-
sumptions that guarantee consistency, the global maxi-
mum converges to the true model almost surely. With a
finite amount of data, we use the curvature of the like-
lihood function in the neighborhood—observed Fisher
information—to estimate a 95% confidence interval on
the directed information. The observed Fisher infor-
mation matrix, denoted as I(z, θ), where z denotes
the data and θ the parameter values, is defined as the
second derivative (or Hessian) of the negative log likeli-
hood, with respect to the parameter values. Analogous
to approximating a continuous function using a Taylor
series approximation, one can approximate the proba-
bility density function near the global maximum with a
gaussian distribution, with a mean value at the global
maximum, and a covariance matrix I(z, θ)−1 (Casella
et al. 2002):

fZ (z) ≈ N
(
θMLE, I(z, θ)−1)

in the neighborhood of θMLE. Using this approxima-
tion, an approximate 95% confidence interval for the
picked θMLE (interpreted as an interval about θMLE

that with 95% probability contains the true parameter
θ0) (Casella et al. 2002):

θMLE ± 1.96√
I(z, θ)

. (40)
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For the purposes of this problem, since the parameters
of interest are those corresponding to whether or not
there is statistically causal influence, the βis, assume
that only the βis from the best fitting model might
vary from those of the true model. Assume that Ĵ, K̂,
and (α̂ j : 1 ≤ j ≤ J) are correct. To find a confidence
interval on any particular parameter βk, consider sec-
ond order partial derivatives of the form ∂2

∂β̂2
k
. For each

l ∈ {1, · · · , K̂}, compute the (l, l)th entry of the observed
Fisher information matrix:

IFisher

(
dyn, dxn; θ̂

)

l,l

= − ∂2

∂βl
2

[
n∑

i=1

log(λ(i|Hi))dyi − λ (i‖Fi) �

] ∣∣∣∣
θ̂

=
n∑

i=1

(
dxi−(l−1)

)2
e(̂α0+∑ Ĵ

j=1 α̂ jdyi− j+∑K̂
k=1 β̂kdxi−(k−1))�.

With this value, the 95% confidence interval for this
parameter β̂l can be calculated using Eq. (40). When
the confidence intervals for all the β̂l parameters are
determined, then the region of parameter values where
α̂ js are the same as the best fitting model, and the β̂ls
are within the Once the maximum variations from the
original directed information estimate values are iden-
tified, they can be considered to be the corresponding
bounds of the 95% confidence interval for the directed
information estimate.

6 Causal relationships in a network of processes

Although there might be situations where researchers
are primarily interested in whether one process
“causes” another, there are many situations in neu-
roscience as well as communications, economics, so-
cial sciences, and other fields were researchers want
to identify the causal relationships in a network of
processes. For example, an electrode array recording
of a brain section might detect the spike trains of 50
neurons, and the researcher might be interested in
which of the neurons causally influence other neurons.
In particular, the researcher might be interested in
identifying the direct, causal influences (as opposed to
indirect influences through other recorded neurons).

Researchers have already begun investigating the
problem of identifying causal relationships in neuronal
networks (Eguiluz et al. 2005; Goebel et al. 2003; Hesse
et al. 2003; Okatan et al. 2005; Uddin et al. 2009;
Kramer et al. 2009; Ramnani et al. 2004; Smith et al.
2006; Seth and Edelman 2007; Stevenson et al. 2009).

As the framework presented in this paper for measur-
ing causal inferences is principally different than previ-
ous, known research, the previous approaches are not
directly applicable. There recently has been research on
using directed information to infer causality graphs for
neuroscience (Amblard and Michel 2010), but they do
not propose an estimation scheme and their conditions
for estimating whether there is a direct, causal influence
or not is different than the definitions in the paper.
More relevant to this paper is research on Bayesian
networks (Pearl 2009). Bayesian networks, or “belief
networks,” define causality between random variables
by using properties of the joint distribution (Pearl
2009). There is also a corresponding graphical depiction
of the network using a directed, acyclic graph. Note,
however, that causality as defined by Bayesian net-
works is not philosophically consistent with Granger’s
definition. The elements of Bayesian networks are ran-
dom variables, so there is no sense of time or prediction.
This work is concerned with the causal relationships
between random processes, where there is a sense of
time. Thus, the methods and definitions developed for
Bayesian networks cannot be directly applied. How-
ever, some of the underlying ideas are related to the
related to the methods and definitions for networks
of random processes presented here. This section will
define causal influences in the context of networks of
random processes and introduce graphical structures to
represent these influences.

6.1 Causal conditioning and direct, causal conditioning

Define the causal conditioning of a length n random
process B on the marginal distribution of another
length n random process A to be

PA||B(·) = PAn
1 ||Bn

1
(·) �

n∏

i=1

PAi|Ai−1,Bi(·) (41)

Define causal influences as follows. Let V be a set of
m + 1 random processes, V = {X1, · · · , Xm, Y}, where
each process is a length n vector, ∀ Z ∈ V, Z = (Zi)

n
i=1.

Definition 1 The random process Xi is said to causally
inf luence the random process Y if:

PY||Xi(·) �= PY(·) (42)

Note that this definition only identifies if there is
influence through some path, possibly This form of
influence will also be denoted as “pairwise” influence,
since it is from one process to another. In many cir-
cumstances, causal influences can be fully explained



32 J Comput Neurosci (2011) 30:17–44

by paths of causal influence through other processes,
without any “direct” influence.

Definition 2 The random process Xi is said to directly,
causally influence the random process Y with respect
to V if:

∀ W ⊆ V\{Xi, Y} PY||W,Xi,(·) �= PY||W(·) (43)

Thus, even with causal knowledge of any of the other
processes in the network, there is still some influence
influence from Xi to Y. Here, the “directness” of an
influence is only with respect to the known processes
V. For example, in an electrode array recording of neu-
rons, there could be many undetected neurons which
greatly influence the recorded ones. It might even be
the case that none of the recorded ones have direct,
physical connections, but instead all go through other,
unrecorded neurons. Thus, the meaning of “direct”
in this context is statistical, and if no subset of the
other, known processes (recorded neurons) can explain
statistically the influence of one process Xi on another
Y, then it is said that Xi has a direct influence on
Y. These conditions are related to the conditions of
“d-separation” in Bayesian networks (Pearl 2009). Let
VY denote the set of all the Y. Let V′

Y denote the set of
all the processes that causally influence Y. By the above
definitions,

VY ⊆ V′
Y.

The set of direct, causal influences amongst processes
in set V is a subset of the causal influences amongst
processes V.

6.2 Graphical depiction and indirect influences

Bayesian networks and other approaches to identify-
ing causal relationships in networks often use directed
graphs to depict the relationships (Pearl 2009). They
can be used here as well. Let each of the processes
in V be represented as a node. Let there be a solid
arrow from process Xi to process X j (i �= j) iff Xi

directly, causally influences X j. Otherwise, let there be
no arrow. An example is shown below for processes A,
B, C, D, and E is Fig. 4.

A similar representation for causal influences in a
network (that is, not just those which are direct) will
be used. Let there be a long-dashed arrow from process
Xi to process X j (i �= j) iff Xi causally influences X j.
Otherwise, let there be no arrow. An example is shown

Fig. 4 A graphical depiction of the direct, causal influences in a
network of processes

below for processes A, B, C, D, and E, which is con-
sistent with the above graph for the direct influences is
Fig. 5. It is consistent because all of the direct, causal
influences are present, and the extra arrows could be
due to indirect influences, which are discussed below.

Two types of indirect influences which result in
more causal influences than direct, causal influences
will be denoted as “proxy” and “cascading” influences.
In a proxy influence, process X1 influences process X2

which in turn influences X3, but with no direct influence
from X1 to X3. In some cases, there will be a causal
influence from X1 to X3 through X2 (Fig. 6), and causal
knowledge of X2 renders X1 and X3 statistically inde-
pendent. Thus, proxy effects can be considered anal-
ogous to the analogous to the Markovicity property.
Note that if there is a loop of direct, causal influence
between a set of processes (such as X1 → X2, X2 → X3,
X3 → X4, and X4 → X1), then the causal influences
from every process to all the others, due to proxy
effects.

Fig. 5 A graphical depiction of the causal influences in a network
of processes
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Fig. 6 A graphical depiction of two types of indirect influences.
Each arrow depicts a causal influence. The arrows with a question
mark are the indirect influencs influences

Another form of indirect influence is “cascading”
influence. Here two processes X2 and X3 have a com-
mon influencing process X1. Knowledge of X1 renders
X2 and X3 statistically independent, but there is causal
influence between the two possibly accounted for by
residual self dependence in X1 (Fig. 6).

6.3 Causal conditioning and directed information

The definitions of causal influences and direct, causal
influences can be used to establish related conditions
using causally conditioned directed information.

Theorem 1 The process Xi causally influences the
process Y if and only f I(Xi → Y) > 0.

Proof That causal influence implies positive directed
information is proven as follows. PY||Xi(·) �= PY(·) by
definition. Recall that the KL distance is 0 if and only if
PY||Xi(·) �= PY(·). Secondly, note from Eq. (23) that

I(Xi → Y) =
n∑

j=1

D
(
PY j|Y j−1,Xi,1,...Xi, j‖PY j|Y j−1

)
.

�

The definition of direct, causal influences can also
be extended to conditions of directed information. The
conditions will require causally conditioning on extrin-
sic processes. Kramer introduced causally conditioned
directed information for a process Xi, process Y, and
set of processes W as (Kramer 1998):

I
(
Xi → Y||W)

� H
(
Y||W) − H

(
Y||Xi, W

)
(44)

Lemma 2 PY||W,Xi,(·) �= PY||W(·) if and only if I(Xi →
Y||W) > 0.

The proof is identical to the proof of the above theo-
rem but causally conditioning on the set of processes W.

Theorem 3 The random process Xi directly, causally
inf luences the random process Y with respect to V if f:

∀ W ⊆ V\{Xi, Y} I(Xi → Y||W) > 0 (45)

The proof here follows from Lemma 2 and the
definition of direct, causal influences.

6.4 Identifying the direct, causal influences
in a network of processes

Identification of all of the causal influences in a
network of processes V is straightforward by the
definition. For each ordered pair of distinct processes
(Xi, X j), compute I(Xi → X j). If the value is positive,
then there is causal influence from Xi to X j, or Xi →
X j. Otherwise, there is no causal influence.

Identificaton of all the direct, causal influences in a
network of processes is more complicated, as there are
more conditions to check than for causal influences.
Since every direct, causal influence is causal influence,
one could first identify all of the causal influences, and
then determine which of those of those were also di-
rect, causal influences. Consider two processes in V,
Xi and Y, such that I(Xi → Y) > 0. Thus, Xi causally
influences Y. To determine if Xi directly, causally
influences Y, one could check that for each W ⊆
V\{Xi, Y}, I(Xi → Y||W) > 0. If so, then Xi directly,
causally influences Y, else if there is even one such
W for which I(Xi → Y||W) = 0, then the influence is
not direct. Since some processes are statistically inde-
pendent of Xi and/or Y, it can be helpful to focus on
the subsets W which contain those X j’s such that each
X j causally influences Y and causally influences or is
influenced by there is a causal subgraph that could
contain a proxy or cascading influence, to check those
first.

7 Results

7.1 Simulated data

To test the effectiveness of this estimation procedure,
it was applied to simulated data. A small network of
six binary processes, modeled as neuronal spike trains,
was simulated. Each process will be referred to as a
“neuron,” and is labeled with a letter between “A”
and “F.” Twenty independent samples of the network
were randomly generated using the same values and
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procedure. Point process GLM models were used to
generate the spike trains. For fixed values of the model
orders J and K, the conditional intensity functions were
selected according to λ (i‖Fi) ∈ GLMJ,K (h), where
(hk : 1 ≤ k ≤ K) were all the identity function. The
values of the parameters were selected to be within the
range of parameters (J, K, and α, β values) previously
identified in point process GLM model fits to spike
trains from electrode array recording data of goldfish
retinal ganglia (Iyengar and Liao 1997) and primate
primary motor cortex (Wu and Hatsopoulos 2006). In
particular, 3 ≤ J ≤ 20, 0 ≤ K ≤ 20, −10 ≤ αi, β j ≤ 10.
The time width � = 1 ms was used, and 160,000 ms of
data were generated. Once the data and experimental
design parameters were determined, the time series for
each neuron was obtained by generating a sequence
of i.i.d. unit rate exponentials and inverting the time-
rescaling theorem (Brown et al. 2002).

The designed influence structure, or the “functional
topology,” is shown in Fig. 7. An arrow from neuron X
to neuron Y depicts that during the generation of Y’s
spike train, the spike train of X was used as an extrinsic
covariate (thus X directly, causally influences Y). The
βis were either positive, corresponding to an excitatory
influence, or negative, corresponding to an inhibitory
influence. An arrow from neuron Y to neuron Y depicts
autoregressive influence, such that at time step i, the
recent past of Y’s spike train (beyond a 2–3 ms refrac-
tory period) influenced the present. The absence of an

Fig. 7 Diagram of the direct, causal influence structure that the
simulated data set models. Note that an arrow from neuron M to
neuron N (possibly with M = N) means that N was designed to
be causally dependent on M’s firing via N’s conditional intensity
function. Thus, the arrows represent direct, causal influences

arrow from neuron X to neuron Y depicts that the spike
train of neuron X was not used as an extrinsic covariate
in generating the spike train of Y. Note that some of the
neurons, in particular E and F, both have two arrows
from two other neurons. For these, two sets of extrinsic
covariates were used when calculating the conditional
intensity function:

log(λ(i|Hi)) = α0 +
J∑

j=1

α jdyi− j +
K1∑

k1=1

βk1 dx1;i−(k1−1)

+
K2∑

k2=1

βk2 dx2;i−(k2−1),

where dx1
i−(k1−1)

corresponds to the i − (k1 − 1)th value
of the first extrinsic spike train.

As an example of the selected parameters, neuron
F, which was influenced by C and D (inhibitory and
excitatory respectively), was set to have constant firing
rate α0 = 1.8, J = 3, KC = 5, KD = 7,

{
α1, α2, α3

} = {−7.8, −5.5, −3.4
}

{
βC

1 , · · · , βC
5

} = {−8.1, −5.8, −4.4, −4.1, −2.1
}

{
βD

1 , · · · , βD
7

} = {0.15, 0.9, 3.8, 5.1, 4.7, 2.7, 1.1
}

A sample of the time series for neurons C, F, and D
respectively are shown in Fig. 8.

After the data was generated for each of the 20
samples, the estimation algorithm described in the pre-
vious section was used for each sample, using Matlab
(code available upon request). No knowledge of the
parameters for generating the data was used in the

Fig. 8 A one second sample of the spike trains generated for
neurons D, F, and C. Neuron D was excitatory, whereas neuron
C was inhibitory, in causally influencing neuron F
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estimation procedure. First all of the pairwise directed
information rates, Î(X → Y), were computed. All
0 ≤ J, K ≤ 15 were examined. None of the design pa-
rameter values were more than 10, and none of the
estimated Ĵ or K̂ were larger than 12, so increasing the
range would not have effected the procedure. If any
of the Ĵ or K̂ were near 15, then the range for J and
K examined would have been increased. The pairwise
directed information estimates were then normalized
with the respective unconditional entropy estimates
Ĥ(Y), which were found using the same procedure with
K = 0. The same ordered pairs (X, Y) were estimated
as having nonzero directed information rates across all
20 samples, and all of the other ordered pairs were
estimated as having zero directed information rate in all
the samples (thus, the same structures were found for
each sample). Figure 9 shows the averaged normalized
estimates (see Eq. (39)) for all of the nonzero values
with averaged normalized 95% confidence intervals.
The averages were taken over the 20 samples. The em-
pirical standard deviations for the estimated rate values
(across the samples) were between 0.001 and 0.007
for each of the nonzero estimated rates. The empirical

Fig. 9 Diagram of the averaged non-zero, estimated normal-
ized pairwise directed information rates (with averaged 95%
confidence intervals) for the simulated data set, using 20 inde-
pendently generated samples. The procedure selected the same
structure for each sample. The procedure identified all the di-
rect, causal relationships, which are depicted with thick, dashed
arrows (see Fig. 7). No invalid (pairwise) causal influences were
detected (18 of the possible 30 arrows), nor were any planned
causal influences undetected. The procedure also identified some
indirect influences, which are depicted with thin, dashed arrows,
such as “proxy” influences (i.e. the groups B, D, and F) as well as
some “cascading” influences (i.e. the groups B, D, and E)

Fig. 10 Diagram depicting a subgraph, in which cascading
influences (denoted by arrows with adjacent“?”) were detected
by the pairwise directed information estimates

standard deviations for the confidence intervals (across
the samples) were between 0.001 and 0.031.

An arrow in Fig. 9 indicates that causal influence was
detected (K̂ > 0), and the corresponding normalized
estimate is adjacent to it. Absence of an arrow indi-
cates that K̂ = 0, so no statistically causal influence was
detected. The procedure identified all of the planned
causal relationships, which are depicted with thick ar-
rows (see Fig. 7). Note that no invalid causal influences
were detected, such as from A→B and D→A. There
were 18 of the possible 30 influences which would
have been invalid, and all of these had pairwise di-
rected information estimates of 0. Also, no planned
causal influences were undetected (6 of the possible 30
influences). It also identified some indirect influences,
which are depicted with thin arrows, such as “cas-
cading” influences (see Fig. 10) (C→E, E→C, D→E,
E→D), “proxy” influences (see Fig. 11) (A→F and
B→F), and higher order influences (E→F, F→E).

Fig. 11 Diagram depicting a subgraph, in which proxy influences
(denoted by arrows with adjacent“?”) were detected by the
pairwise directed information estimates
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�Fig. 12 Steps of the algorithm to identify which of the detected
(pairwise) causal influences are direct causal influences. A check-
mark is placed next to influences that were tested and kept at
that stage in the algorithm. An “X” is placed over the influences
which were determined to not be direct, causal influences. The
algorithm found the same results for the top three figures in each
of the 20 sample sets. The bottom f igure has smaller “X”s because
the algorithm estimated that those influences were not direct in
most, but not all, of the sample data sets

After the pairwise estimates were computed,
causally conditioned directed information rates were
computed and the spurious influences were removed
(see Fig. 12). Neurons A and B did not have any
detected influencing neurons, so they were not
examined. There were no neurons with only one
input; if there had been, the input would have been
accepted. Neurons C and D both had two influencing
neurons, and for both there were connections amongst
the influencing neurons. For neuron C, A and E were
found to be influences. Î(A → C||E) and Î(E → C||A)

were computed by first computing Ĥ(C||E, A) and then
comparing with Ĥ(C||E) and Ĥ(C||A) respectively. For
all samples, it was estimated that Î(A → C||E) > 0
and Î(E → C||A) = 0, so A→C was kept and E→C
was rejected. The same procedure was performed for
neuron D with influences B and E, and it was found
that Î(B → D||E) > 0 and Î(E → D||B) = 0, so B→D
was kept and E→D was rejected.

Neurons E and F both had five influences, but those
influences were not all connected. For example, the
subsets {A, C} and {B, D} each were estimated as hav-
ing influences on both E and F, but not with the other
subset. Thus, they could be considered separately (for
example, the hypothesis that A influences F through
B did not need to be tested). First, the influences for
neuron E were examined. Î(C → E||A) was found to
be 0 as was Î(D → E||B), for all of the samples, so
C→E and D→E were rejected. Since A and B did
not have any detected influences between them, A→E
and B→E were kept. The same tests were done for
F instead of E, but the estimates were nonzero in
most cases, so they were inconclusive (since they were
nonzero, but the other inputs to F were not also causally
conditioned upon). To resolve this, Î(A → F||C, D)

and Î(B → F||C, D) were both computed and found to
be 0 for all the samples, and consequently A→F and
B→F were rejected.

A, B, C, D were now considered unambiguous in
terms of influences on them. E and F were still ambigu-
ous. E had A, B, and F as possible direct influences,
and F had C, D, and E as possible direct influences.
To resolve the ambiguity with E, Î(F → E||A, B) was
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computed. For 15 of the 20 samples, it was 0, and thus
F→E was rejected, with A→E and B→E kept. E’s
influences were now unambiguous. For the five samples
where the estimated rate was greater than 0, Î(A →
E||F, B) and Î(B → E||A, F) were both computed and
found to be nonzero, so F→E, A→E, and A→E, and
B→E were all kept, and E’s influences were now un-
ambiguous. A similar procedure was done 12 of the 20
samples, E→F was rejected, leaving C→F and D→F;
for the rest E→F was also kept. was also kept. Two
of the samples kept both E→F and F→E. All of the
influences for each of the neurons was thus resolved.
The remaining influences were taken to be the direct,
causal influences between the neurons (see Fig. 13).

Figure 13 depicts the averaged non-zero normalized
causally conditioned estimated directed information
rates for the simulated data set (with averaged 95%
confidence intervals). For each of the samples, all of
the planned direct, causal influences (see Fig. 7) were
detected, and these all had “reliable” estimated rates
(the rates much larger than the confidence interval).
These are depicted with solid arrows. For some of
the samples, the procedure only selected the direct,
causal influences and no spurious (indirect) ones. Only
two spurious influences, E to F and F to E, were
detected amongst any of the samples, and their es-

Fig. 13 Diagram of the averaged non-zero normalized causally
conditioned estimated directed information rates for the simu-
lated data set (with averaged 95% confidence intervals). For each
of the samples, all of the direct, causal influences (see Fig. 7) were
detected. Only two spurious (indirect) influences, E to F and F
to E, were detected amongst any of the samples. Nine of the 20
samples detected neither and nine of the 20 only detected one of
them. Their estimated rates were small and found to be unreliable
(rates much smaller than confidence interval)

timated rates were small and found to be unreliable
(rates much smaller than confidence interval). The
rates and confidence intervals for these two influences
were calculated only using those samples which had
detected them. Of the 20 samples, the procedure picked
E→F for only eight samples, and F→E for only five
samples (two of these had both). Enforcing the cri-
terion that only reliable estimated rates would be ac-
cepted would result in only the planned, direct causal
influences being accepted (that is, there would be no
errors). The values in the graph (Fig. 13) are: Î(A→C),
Î(B→D), Î(A→E||B), Î(B → E||A), Î(C → F||D),
Î(D → F||C), Î(F → E||A, B), and Î(E → F||C, D).

It is difficult to determine how accurate the directed
information estimates for the synthetic data set are.
Calculating the joint statistics of the neurons using the
design parameters (which were choices of J, K, K,
{αi}J

i=1, and {βi}K
i=1 for each neuron) is difficult and was

not done for data set. However, none of the values
obtained for the normalized directed information rates
were substantially larger or smaller than what was an-
ticipated given the design parameters. For two neurons
X and Y, where Y is designed to causally depend on
X’s past spiking, if the α values of Y are fixed, then
the extent of X’s influence can be changed by varying
X’s spiking rate and the β values used in generating Y.
In Eq. (34) of the conditional intensity function, which
for neurons uses hk(xi−(k−1)) = xi−(k−1), a 1 if X had a
spike at time index i − (k − 1) and 0 otherwise, larger
(positive or negative) values of β will generally cause
the sum

∑K
k=1 βkxi−(k−1) to have a larger magnitude

(in particular when the β’s have the same sign), thus
having more of an effect on the conditional intensity
and thus Y’s spiking rate. Also, if X has a larger spiking
rate, there will, in general, be more non-zero values in
the sum

∑K
k=1 βkxi−(k−1), also effecting the conditional

intensity more and thus Y’s spiking rate. For example,
Î(A → C) ≈ 0.4. C was designed to depend on A with
parameters J = 6, K = 5,

{α1, · · · , α6} = {−9.03, −7.02, −0.15, 1.02, 3.8, 1.3}
{β1, · · · , β5} = {0.1, 0.9, 4.5, 4.8, 4.1}
A had approximately 18,000 spikes total, and C had
15,000. In contrast, Î(B → D) ≈ 0.9. D was designed
to depend on B with parameters J = 8, K = 5,

{α1, · · · , α8} = {−9.03,−7.02,−2.5,

−0.15, 0.02, 1.3, 4.8, 0.3}
{β1, · · · , β5} = {0.1, 7.8, 5.4, 3.1, 1.1}
B and D both had approximately 25,000 spikes. The
α’s were comparable, but the larger β values for D’s
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dependence on B and B’s larger spiking rate resulted in
a larger influence for B→D as compared to A→C.

7.2 Experimental data

7.2.1 Data source

In addition to simulated data trials, experimental data
from Wu and Hatsopoulos (2006) was analyzed. The
data consisted of electrode array recordings from the
arm area of the primary motor cortex (MI) in a juvenile
male macaque monkey. The monkey was performing a
series of trials involving contralateral arm movement
tasks. One of the monkey’s arms was attached to a
robotic arm system, which constrained the arm (the
shoulder joint was abducted 90◦) such that shoulder
and elbow movements were restricted to the horizontal
plane. In each trial, a series of seven targets appeared
in a workspace on the horizontal plane. The monkey
moved its arm, which correspondingly moved a cursor,
to hit the current target. Each target was presented for a
maximum of 2 s, and if the monkey did not hit the target
within that time period, the target would disappear
and the next target was presented. The targets were
randomly positioned, with a bias towards the exterior
of the workspace, to ensure full movement of the arm.
The monkey had been operantly trained to perform
this task. When the monkey successfully hit the seven
targets presented in a trial, the monkey was rewarded
with a drop of water or juice at the end of the trial.

The recordings were obtained with a silicon micro-
electrode array, which consisted of 100 platinized tip
electrodes, 1.0 mm in length and with 400 μm sepa-
ration (Cyberkinetics Inc, Salt Lake City, UT, USA)
(Wu and Hatsopoulos 2006). The arrays were im-
planted in the arm area of the monkey’s primary motor
cortex (MI). The signals were filtered, amplified (gain
5,000), and digitally recorded (14-bit) at 30 kHz per
channel (Cerebus acquisition system; Cyberkinetics,
Inc.). After the experiment, the waveforms (1.6 ms
in duration) with a peak voltage that passed a set
threshold were stored. These selected waveforms were
then spike-sorted (Offline Sorter; Plexon Inc., Dallas,
TX, USA). For the sorting process, the Contours and
Templates methods were used to manually extract
single units. After sorting, only the single units with
signal-to-noise ratio greater than 3 were kept (Wu and
Hatsopoulos 2006).

7.2.2 Data analysis

For the purposes of testing the proposed directed infor-
mation estimation procedure, a single data set (record-

ings from a single monkey in one session, with several
hundred trials) was used. The data set contained spike
train data (spike times) for 115 neurons for a duration
of an hour. The data for each neuron was converted
to a binary times series with 1 ms time resolution.
7 s samples of the data selected for neurons 3 and 1
are shown in Fig. 14. Due to the computational cost
of analyzing the complete data set, only a subset of
the data was used. Spike train data for only the 37
neurons with the highest total spike count (over the
whole session) were kept, and only data from the first
500 s (from the beginning of the first trial) were used.
Due to the sparsity of the data (the largest total spike
count in the first 500 s for selected neurons was about
spikes, or approximately one spike every 62 ms on
average), � = 5 ms was used. Although the resulting
data was not strictly binary, there were very few in-
stances with more than one spike in the same 5 ms
time window. Directed information estimates for all
ordered pairs of neurons were computed. Figure 15 is
a graph of the pairwise results. Each box with a label
of i ∈ {1, 2, · · · , 37} corresponds to a different neuron,
but the labeling is arbitrary (the numbers do not cor-
respond to any sorting of the data). The position of
a neuron in the graph corresponds to the position of
the electrode on the array that detected that neuron.
Note that adjacent boxes, such as {2, 3, 4} and {5, 6}
correspond to multiple neurons detected on the same
electrode, although for visual purposes the boxes are
only partially overlapping.

A directed arrow is graphed for each ordered pair
(X,Y) of neurons for which the estimation proce-
dure detected a statistically causal influence (K̂ > 0).
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Fig. 14 Seven second snapshot of spiking activity of neurons 1
and 3 in the data set from Wu and Hatsopoulos (2006) used for
analysis. The procedure found that neuron 3 causally influences
neuron 1, in an excitatory manner



J Comput Neurosci (2011) 30:17–44 39

Fig. 15 Diagram of statistically estimated causal relationships for
the 37 neurons used from the subset of electrode recordings in
the arm area of a monkey’s primary motor cortex (MI) from
Wu and Hatsopoulos (2006). Each box with a number indicates
a different neuron. The relative positions of the neurons in the
diagram correspond to the relative positions of the electrodes
on the electrode array where the neurons were detected. An
arrow from a box labelled X to a box labelled Y depicts that
a statistically causal relationship was detected from X to Y (in
particular, K̂ > 0). Absence of an arrow from X to Y depicts
that the procedure detected no statistically causal relationship
from X to Y (K̂ = 0). The transparent diagonal arrow represents
a ‘dominant’ orientation of the detected causal influences. This
might correspond to the direction of propagating local field
potential waves discussed in Rubino et al. (2006)

Absence of an arrow between an ordered pair (X,Y)
depicts that the estimation procedure detected that
there was no statistically causal influence (K̂ = 0). The
normalized directed information estimates are not in-
cluded in the graph for clarity purposes. Most of the
normalized directed information estimates were on the

Fig. 16 Diagram depicting the induced subgraph of neurons 1, 9,
and 4. Both 1 and 9 have pairwise influences into 4, one of which
might be due to an indirect influence. A question mark is drawn
adjacent the arrows in question

Fig. 17 The resulting
subgraph after computing
causally conditioned directed
information estimates.
Î(1 → 4||9) > 0 and
Î(9 → 4||1) = 0, so 9→4 was
removed, and 1→4 was kept

order of 10−2 to 10−3. Note that the causal influences
detected in this data set were not as large as those
detected in the simulated data set. The simulated data
set was constructed to have large statistically causal
influences, whereas neurons recorded from in brain
tissue could have many neighboring neurons exciting or
inhibiting it (thus the influence from any one neuron
could be small). It is also possible that the neurons
which were detected to have a statistically causal rela-
tionship do not directly communicate with each other,
but only do so through other neurons that might not be
present in the data set.

After the pairwise directed information estimates
were computed, a small number of nodes were se-
lected which had few pairwise influences and whose
influences were ambiguous. These nodes and their re-
spective influences were then examined using causally
conditioned directed information, to determine which
of the influences were direct. The subsets examined
include {1, 4, 9}, {3, 10, 13}, {5, 13, 35}, {8, 10, 27}, {13,
18, 25}, and {32, 33, 36}. For each of the subsets {1, 4, 9},
{3, 10, 13}, and {13, 18, 25}, one of the causally con-
ditioned directed information estimates were 0, and
thus one of the estimated of the estimated pairwise
influences was removed from each. See Figs. 16, 17,
18, 19, 20 and 21. For the other subsets, all of the
causally conditioned directed information estimates
were greater than 0, and so they were kept.

A strong structure can be seen in the graph (Fig. 15).
Some neurons have many incoming and outgoing con-
nections, such as 1, 8, and 12. Some have more incoming
than outgoing, such as 8, and 18. Some have very few, if
any, incoming or outgoing connections. Note that this
is only suggestive of the functional connectivity of the
neurons, and only amongst those used in the analysis.

Fig. 18 Diagram depicting
the induced subgraph of
neurons 3, 10, and 13. Both 3
and 13 have pairwise
influences into 10, one of
which might be due to an
indirect influence. A question
mark is drawn adjacent to the
arrows in question
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Fig. 19 The resulting
subgraph after computing
causally conditioned directed
information estimates.
Î(3 → 10||13) = 0 and
Î(13 → 10||3) > 0, so 3→10
was removed, and 13→10 was
kept

It is unclear what the underlying physical connectivity
structure of the region of recorded brain tissue is. That
a statistically causal influence from a neuron X to a
neuron Y is detected in this data set is only suggestive
that there might be some physical pathway between the
two neurons, such that the spiking activity of activity
of X could influence the spiking activity of Y. Many
of the neurons present in the section of brain tissue
recorded from are not present in this analysis (Wu
and Hatsopoulos 2006). Similar to the analysis of the
simulated data set, even amongst the recorded neurons,
it is unclear what influences are “direct,” which might
be accounted for by “proxy” or “cascading” effects
(see Fig. 6).

In addition to the number of detected influence re-
lationships between the neurons, there is also a visibly
dominant orientation of the connections (see Fig. 15).
While the procedure detected relationships in many di-
rections, there are a large number of connections along
the bottom left to upper right diagonal (oriented with
respect to the recording electrode array). Neurons 1, 5,
12, 13, and 31 all have several arrows (incoming and
outgoing) along this diagonal. This result is promising,
because it might correspond to propagating waves of
high frequency oscillations in the beta range (10–45 Hz)
in the motor cortex (Rubino et al. 2006). These oscil-
lation waves observed in local field potentials (LFPs)
in the motor cortex have been found to encode infor-
mation about visual targets in reaching tasks, and are
thought to facilitate information transfer between intra-

Fig. 20 Diagram depicting the induced subgraph of neurons 13,
18, and 25. Both 13 and 18 have pairwise influences into 25, one
of which might be due to an indirect influence. A question mark
is drawn adjacent to the arrows in question

Fig. 21 The resulting subgraph after computing causally condi-
tioned directed information estimates. Î(13 → 25||18) > 0 and
Î(18 → 25||13) = 0, so 18→25 was removed, and 13→25 was
kept

and inter-cortical regions during movement prepara-
tion and execution (Rubino et al. 2006). Other studies
have found that in the turtle visual cortex, these waves
were present during the introduction of visual stimuli
(Prechtl et al. 1997) and have been shown to encode
information related to target position (Du et al. 2005).
Similar wave-like spatiotemporal activity has been ob-
served in other areas of the nervous systems of a variety
of animals and are thought to have an important role
in the communication between different areas of the
brain (Ermentrout and Kleinfeld 2001). Physically, beta
oscillations are believed to correspond to the summed
effects of multiple, synchronous postsynaptic potentials
from neurons close to the recording electrode (Rubino
et al. 2006). There is little is known about the precise
mechanisms through which the propagation of these
waves occur (Rubino et al. 2006). The proposed estima-
tion procedure could provide insight into these mech-
anisms. The procedure could potentially both identify
the local propagation pathways (by detecting structure
as in Fig. 15) as well as the specific relationship dy-
namics between the recorded neurons (by identifying
the coefficients of the conditional intensity function,
the αis and β js).

8 Future work

The current estimation procedure has been proven
theoretically and shown through simulated data trials
to correctly identify statistically causal influences. It
has also identified strong structure in an electrode
recording data set. There are several improvements
that could furthermore enhance both the theoretical
and practical aspects of this procedure. To improve
computation time, stochastic optimization procedures,
such as cross-entropy (De Boer et al. 2005) and model
reference adaptive search (MRAS) (Hu et al. 2007),
will be tested. In the current, deterministic, estimation
procedure, the MLEs for a large number of (J, K)

values are separately computed and then compared
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with corresponding complexity penalty terms. This can
be computationally expensive and possibly redundant
(as the MLE calculation for a large (J, K) searches
over the spaces examined for smaller values of (J, K)).
Stochastic optimization procedures, however, directly
optimize over the objective function (Eq. (37)), poten-
tially accelerating the optimization process. Addition-
ally, the development of efficient algorithms to identify
the direct, causal structure of a network could benefit
the employment of this procedure to large data sets.
In the simulated and electrode array recordings data
sets analyzed in the results section, all of the pairwise
directed information estimates were analyzed first, and
then indirect influences examined. This might not be
efficient for all networks of interest, in particular when
there is a priori knowledge of underlying structure.

9 Conclusion

The information theoretic quantity directed informa-
tion was introduced as a measure of statistical causality.
The directed information has been shown to charac-
terize statistically causal influences between arbitrary
processes, including binary time series of neuronal spik-
ing activity, in a more robust and meaningful way than
previously used methods such as Granger causality. It
was also noted that while it is quantitatively different
than Granger causality, their philosophical underpin-
nings are identical. Using an established, statistical
model class for neuronal spiking activity, a parametric
estimation procedure for the directed information was
developed and consistency properties were proven.

The procedure was tested on simulated data and ap-
plied to experimental data, both with promising results.
Further tests on more complicated simulated data, and
further analyses of real data will be performed to fur-
ther test the effectivenss of this procedure. Also, several
theoretical and practical improvements will be made
to enhance this methodology. This technique could
become a practical, provably-good, and philosophi-
cally well-grounded means of identifying the statisti-
cally causal, complex relationships between neurons
in large data sets of simultaneous, multiple electrode
recordings.

Appendix A: Proof of Lemma 1

Proof First, prove that H(Y||X). This proof closely
follows the proof for the unconditional entropy rate
in Cover and Thomas (2006). An important theorem
used for the proof is the Cesaro mean theorem (Cover

and Thomas 2006): For sequences of real numbers
(a1, · · · an) and (b 1, · · · b n), if limn→∞ an = a, and b n =
1
n

∑n
i=1 an, then limn→∞ b n = a.

By definition, H(Yn||Xn) = 1
n

∑n
i=1 H(Yi|Yi−1, Xi).

Since conditioning reduces entropy, entropy is nonneg-
ative, and the processes are jointly stationary, we have

0 ≤ H
(
Yi|Yi−1, Xi) ≤ H(Y1) ∀ i.

Observe that

H
(
Yi|Yi−1, Xi) ≤ H

(
Yi|Yi−1

2 , Xi
2

)
(46)

= H
(
Yi−1|Yi−2, Xi−1) , (47)

where Eq. (46) uses the property that conditioning re-
duces entropy (in reverse) and Eq. (47) uses stationar-
ity. This sequence of real numbers (once the process is
defined, that is, the underlying probability distribution
is specified), the entropies are deterministic numbers)
ai � H(Yi|Yi−1, Xi) are nonincreasing and bounded be-
low by 0. Therefore, limit of an as n → ∞ exists, and
thus, by employing Cesaro mean theorem, H(Y||X ) �
limn→∞ 1

n H(Yn||Xn) exists.
Next, taking Xn to be a deterministic sequence,

and following the above, H(Y) � limn→∞ 1
n H(Yn) ex-

ists. Taking the limit in Eq. (24), I(X → Y) �
limn→∞ 1

n I(Xn → Yn) also exists. �

Appendix B: Proof of Lemma 2

Proof The normalized causal entropy can be rewrit-
ten as

1
n

H
(
Yn||Xn)

= 1
n

n∑

i=1

H
(
Yi|Xi, Yi−1) (48)

= 1
n

n∑

i=1

E
[− log PYi|Yi−1,Xi

(
Yi|Yi−1, Xi)] (49)

= 1
n

n∑

i=1

E
[
− log PYi|Yi−1

i−J ,Xi
i−(K−1)

(
Yi|Yi−1

i−J, Xi
i−(K−1)

)]

(50)

= 1
n

n∑

i=1

E
[
gJK

(
Yi

i−J, Xi
i−(K−1)

)]

= E
[
gJK

(
Yl

l−J, Xl
l−(K−1)

)]
(51)

where Eq. (48) follows by the definition of causally
conditioned entropy, Eq. (49) follows by chain rule for
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entropy, Eq. (50) follows from the Markov assumption,
and Eq. (51) follows from the stationarity assumption.

�
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