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Abstract—
Modern neuroscientific recording technologies are increas-

ingly generating rich, multi-modal data that provide unique
opportunities to investigate the intricacies of brain function.
However, our ability to exploit the dynamic, interactive interplay
amongst neural processes is limited by the lack of appropriate
analysis methods. In this paper, some challenging issues in neu-
roscience data analysis are described, and some general-purpose
approaches to address such challenges are proposed. Specifically,
we discuss statistical methodologies with a theme of loss functions,
and hierarchical Bayesian inference methodologies from the
perspective of constructing optimal mappings. These approaches
are demonstrated on both simulated and experimentally acquired
neural data sets to assess causal influences and track time-varying
interactions amongst neural processes on a fine time scale.

Index Terms—Loss function; minimax regret; directed infor-
mation; prediction with expert advice; optimal transport theory;
point processes; BRAIN Initiative; Human Brain Project

I. INTRODUCTION

The brain is arguably the most complex dynamic system in
nature, and understanding how it works is one of the greatest
challenges in science. Recently, the developments of existing
recording techniques and the advent of new measurement
methods in neuroscience provide us rich amounts of data,
which allow us to investigate fundamental neuroscience ques-
tions in an unprecedented manner [1], [2]. For example, the
recent development of simultaneous recording of activity from
multiple neurons provides us new opportunities to understand
how complex function and computation arises from networks
of interacting neurons [3]. These recording technologies will
be accelerated by the BRAIN initiative [4], [5].

Most standard analysis methods are developed primarily
for a specific modality such as continuous-valued data and
designed for problems in which the structure in the data is
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static rather than dynamic [3]. As we collect rich datasets,
across multiple modalities and time scales, these inadequacies
in traditional methods will limit our ability to develop effec-
tive scientific conclusions or advance translational therapies.
Here, we briefly describe some challenging analysis issues in
neuroscience research.

• Complexity: The speed of evolution of neuro-
technologies is growing the size of neural datasets
that are acquired, and the BRAIN initiative will perhaps
only accelerate this process. As such, management of
complexity across multiple fronts will be of paramount
importance. First, the complexity of the data acquired
will render it useless to humans for interpretation unless
appropriate simplification of the data is carried out.
In some sense, there is a need to transform the ‘big
data’ that is collected into ‘small data’ that can be
easily visualized, and that balances ease of visualization
with neurobiological relevance to the mechanism of
interest. The details of this balance will undoubtedly
be application-specific, but ideally a common set of
core principles can be applied, by tying it to subsequent
decision-making that will ensue. Secondly, the sheer
amount of neural data of various types require the
development of highly efficient algorithms which in
some instances - e.g. neural prosthetics - will be needed
to be implemented in real time [6], [7].

• Dynamics: The stochastic nature of ensemble activities
of neural processes and the interaction among neural cir-
cuits, requires statistical analysis of ensemble recordings
that succinctly reflect interaction and causal relationships.
Thus, methodologies that can directly elucidate these
interactions are urgently needed. In addition, in some
instances, the time scales over which these interactions
change are faster than what is required to effectively use
statistical approaches assuming time-homogeneity. Such
non-stationarities exacerbate the need to develop theoret-
ical tools, and algorithms, that are able to characterize
the dynamics of these neural patterns.

• Uncertainty: Because of the massive amount of data in
ensemble recordings and their rich dynamics, the imper-
fections in our idealized models may lead to uncertainty
in our predictions. As such, quantifying the uncertainty,
and ensuring sufficient information aggregation that al-
lows for reliable decision-making under uncertainty, will
be a dominant theme moving forward.

Although there are individualized methods that are tailored
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TABLE I
THIS TABLE PROVIDES A CONCISE EXPLANATION OF THE CHALLENGES
FOR NEURAL DATA ANALYSES THAT WE FORESEE AND SOME METHODS.
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to one specific modality or one specific time scale of dynamics,
there is an increasing need to develop a set of core theo-
retical principles that guide the philosophical underpinnings
of algorithms that are then suited to specific physiological or
mechanistic scenarios of neuroscientific interest. There is an
increasing interest from the fields of classical statistics, control
theory, and information theory at taking these core theoretical
principles and tailoring them towards the analysis of complex
neural data [8]. In this paper, we will develop a coherent
philosophical framework that is rooted in the aforementioned
disciplines, guides all of the procedures we develop, and is
broadly applicable across modalities and time scales.

Specifically, in this paper, we will address a part of these
challenges by developing efficient, quantitatively rigorous
methods to track time-varying statistical dynamics of ensem-
ble neural activity as well as parsimonious modeling and
visualization tools to concisely describe multivariate neural
responses. We will show all of these methods are fundamen-
tally developed based on loss function and optimal transport
theory [9], [10]. This framework enables us to understand
the underlying dynamic mechanism of the data set in any
modality and assess the important properties of complex neural
systems with low complexity. Table I attempts to provide a
concise explanation of the challenges we foresee, and how the
methodologies and specific algorithms that are introduced in
this paper provide attempts at ameliorating these challenges.
When this framework is also physiologically guided, we can
exploit the unique features of neuroscience data to develop
new analysis tools to provide us new insight into them.

New recording technologies, combined with appropriate
analysis methods, will have a significant impact on basic
and clinical neuroscience research, and will have a great
synergy with Human Brain Project to perform inference on
existing neural data, simulate the human brain, and provide
insights on future experiments or medical therapies [11], [12].
Succinct and dynamic representation of multiple neural data
can be used to analyze the complex pattern of interconnected
neuronal networks, and detect the origin or the direction of
information propagation within the brain on fine time scales.
Characterization of these complex networks will provide us
a deeper understanding of the mechanism by which the brain
works, leading to the improved diagnoses of neuropathologies,

improved neural prostheses, and offering unique opportunities
to explicitly link experimentation and computational modeling
by using the information from the experiments to quantify
better prediction from more complex models.

The rest of the paper is organized as follows. Section II
suggests a general framework for addressing statistical chal-
lenges in neural data analysis from loss function perspective.
Section III describes an efficient Bayesian inference with
optimal maps to address computational issues in neural data
analysis. Section IV shows the application of these frameworks
to the analysis of multivariate neural spike trains. Section V
concludes and discusses the paper.

II. ANALYSIS FROM LOSS FUNCTION PERSPECTIVE

Advances in recording technologies continue to provide
richer, higher dimensional neuroscience data across a mul-
titude of time scales and modalities. Although elementary
statistical analysis methods such as cross-correlation [13] and
joint peristimulus time histogram (JPSTH) [14] are still widely
used in neural data analysis, there is a growing need to
match the sophistication of experimentation with that of ways
to characterize these dynamic neural processes. Specifically,
as neuroscience experiments grow in their complexity, it
is increasingly a challenge to disambiguate the variability
across time scales and neural processes as an epiphenomenon,
chance, or a reflection of a novel mechanism.

However, at the same time there is a need to balance a small
set of philosophical approaches to modeling and inferring with
data, with being neurobiologically plausible and relevant. We
here demonstrate how measuring performances and designing
algorithms from loss function perspective provide a foundation
for capturing this variability while still embodying neurobio-
logical plausibility.

A. Prediction and Loss Functions

In this section, we describe a conceptual approach towards
developing a suite of robust, scalable, modality-agnostic meth-
ods for statistical analysis of neural data that are not only
relevant now, but will continue to maintain relevance as the
BRAIN and other initiatives create increasingly rich neural
datasets.

Prediction is concerned with guessing an outcome that has
not been observed yet. For example, one specifies a prediction
p on the next outcome y of a random or unknown sequence
given the past outcomes and possibly side information. As a
general way to measure the performance of statistical mod-
eling, we consider a loss function, l(p, y), which defines the
quality of the prediction and thus increases as the prediction
p deviates more from the true outcome y. Although there
are a variety of loss function for specific modalities, e.g. the
squared error loss, absolute loss, 0 − 1 loss, etc, we will
primarily consider the logarithmic loss, which is applicable
to any modality y ∈ Y where Y represents the set of possible
outcomes. In this setting, the prediction p lies in the space of
probability measures over y, i.e. p = {P (y) : y ∈ Y}. Given a
prediction p for an outcome y ∈ Y, the log loss is represented
by
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l(p, y) = − log p(y). (1)

The log loss, also termed the ‘self-information’ loss, is the
ideal ‘Shannon’ code length for compression of a symbol y
drawn from distribution p and achieves the minimum expected
total codelength for any uniquely decodable data compression
scheme [15]. From the perspective of multi-modal neuro-
science data analysis, the log loss has the desirable property
that the prediction p lies in the space of beliefs over Y, so
that we can develop neurophysiologically-specific classes of
statistical models unique to each modality but still have a
common way to perform statistical inference upon them.

B. Causal Inference: Reduction in Loss
Progress in neural recording technologies provides us mul-

tivariate time series neural data [1]. The number of simul-
taneously recorded neurons has been doubling every 7 years
since 1950s, and with current multiple-electrode technology,
hundreds of individual neurons can be recorded simultaneously
[16]. What will be of paramount importance are succinct
ways that humans can take this information, extract statistical
meaning out of it, and characterize brain function or develop
treatment options for intervention.

One class of methods to visualize statistical relationships
between networks of random variables are traditional graphical
models. Markov networks and Bayesian networks in par-
ticular represent two different perspectives on the structure
of networks of random variables. Markov networks directly
represent the dependence between each pair of variables, con-
ditioned on all other variables. Bayesian networks represent
factorizations of the joint distribution, so each variable poten-
tially depends on preceding variables, and then the conditional
terms are reduced. See [17] for an overview of graphical
models.

Attempts to model the interactions of simultaneously
recorded neural responses may be able to shed light on
how the networks of neural processes represent and process
information. If we have N random processes recorded across
T time units, then visualization of statistical relationships
in terms of a network of N × T random variables can be
cumbersome and grows as our recording interval T increases.
Moreover, such a representation will not aid with visualization
of the structure of inter-dynamics of coupled time series, for
instance, how the past of some processes affects the future of
others.

A variety of quantitative techniques have been developed to
elucidate the functional properties of complex neural network
[3], [13], [14]; however, most methods that attempt to identify
associations between neural responses offer little insight into
the directional nature of the neural system, or sometimes
give a misleading picture on the network. In this section,
we discuss a general-purpose framework, resting upon the
log loss, to develop an inference engine that uncovers the
interactive nature of N time series as a directed graph on
N nodes, where a directed edge encodes information about
how the past of some processes affect the future of others
(see Fig 1).

Inference  

engine 

A = (At: tÎ(0,T])   

A 

B 

C 

D 

E 

F 

B = (Bt: tÎ(0,T])   

C = (Ct: tÎ(0,T])   

D = (Dt: tÎ(0,T])   

E = (Et: tÎ(0,T])   

F = (Ft: tÎ(0,T])   

Fig. 1. An inference engine that uncovers the directed functional structure in
the joint statistics underlying a collection of time series pertaining to neural
recordings.

Within a context of a network, we aim to design an inference
engine to produce a directed graph description to elucidate
causal interactions between neural processes, over space and
time, as shown in Fig. 1. Recently, Granger causality has
proven to be an efficient method to infer directional relation-
ships between sets of neural responses [18]–[20]. The basic
idea of causality between time series was originally introduced
by Wiener [21], and later Granger formalized it as follows
[22]:
“we say that X is causing Y if we are better able to predict
the future of Y using all available information than if the
information apart from the past of X had been used.”
Granger instantiated this idea for practical implementation
using multivariate autoregressive (MVAR) models and linear
regression. There is a class of graphical models developed
to represent Granger’s principle, known as Granger causality
graphs [23]–[25]. These are mixed graphs (both directed and
undirected graphs) for multivariate autoregressive time series.
Nodes represent processes. The directed edges represent causal
influences, as measured by Granger causality. The undirected
edges represent instantaneous correlation. However, it is chal-
lenging to identify nonlinear relationships with this approach,
and in other situations it is conceptually mismatched, for
example, neural spike trains are a binary time series on a
millisecond time scale: either one spike occurs or it does not.
In [23], it is suggested that, conceptually, Granger causality
graphs could be employed for nonlinear relationships. How-
ever, it is mentioned that some properties of the graphical
model would not hold. They also suggested it would be
impossible to infer structures where causal influences were
nonlinear without assuming specific models.

Here, we discuss a sequential prediction framework that
generalizes Granger’s mathematical formulation of causality
beyond autoregressive models to any modality. At its core,
Granger’s statement revolves around prediction. We test causal
interaction from a neural process X to Y by comparing
the performance of two predictors. One predictor specifies
a prediction on the future of Y , Yt, given the past of all
processes up to time t-1, Ht−1. The other predictor specifies
a prediction on the future of Y , Yt, given the past of all
processes excluding the process X up to time t-1, Ht−1

X .
We then compare the performance of the two predictors in
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terms of their loss, accumulated sequentially over time. On
average, the predictor with less information incurs more loss.
If their average accumulated losses are about the same, then
we declare that X does not cause Y ; otherwise, X causes
Y . Here, we denote yt , {y1, ..., yt}. Causal inference based
on reduction in loss, accumulated over time, is assessed as
follows:

Causal inference based on reduction in loss
1) Assign Ht−1 as the past of all processes up to time

t − 1, and Ht−1
X as the past of all processes excluding

process X , up to time t − 1. For example, for three
processes X,Y and Z, Ht−1 = (xt−1, yt−1, zt−1) and
Ht−1

X = (yt−1, zt−1).
2) In parallel, update the two predictors: pt =

PYt|Ht−1(yt|Ht−1), p̃t = P̃Yt|Ht−1
X

(yt|Ht−1
X );

3) yt is revealed. The two predictors incur losses given by:
l(pt, yt), l(p̃t, yt);

4) Quantify the reduction in loss: rt = l(p̃t, yt)− l(pt, yt).
5) Let t = t+1; go to 1.

From this, we can quantify the average reduction in loss as
our measure of causality:

CX→Y =
1

T
E

[
T∑

t=1

rt

]
. (2)

If CX→Y is close to zero, it indicates that the past values
of neural process X contain no significant information that
would assist in predicting the activity of neural process Y .
Thus, X has no causal influence on Y . On the contrary, if the
reduction in loss is significantly greater than zero, it indicates
that the past values of X contain information that improves
the ability to predict the neural process Y . Thus X causes Y
in the sense of Granger. We can perform this test for every
possible directed edge for a collection of N recorded time
series.

Using the log loss function, the causality measure CX→Y

in (2) becomes

CX→Y =
1

T

T∑
t=1

E

[
log

PYt|Ht−1(yt|Ht−1)

P̃Yt|Ht−1
X

(yt|Ht−1
X )

]
(3)

=
1

T

T∑
t=1

E
[
D
(
PYt|Ht−1∥P̃Yt|Ht−1

X

)]
=

1

T

T∑
t=1

I(Xt−1;Yt|Ht−1
X ),

, 1

T
I(X → Y |H) (4)

where D(P∥Q) is the Kullback-Leibler (KL) divergence and
I(A;B|C) is the conditional mutual information between A
and B given C [26]. Eqn. (4) turns out to be the causally
conditioned directed information [19], [27], [28], with inter-
pretations in control theory and feedback information theory.
It has the key property that it is non-negative, and zero if and
only if the future of Y is independent of the past of X given
knowledge of all processes excluding X . Note that in general,

unlike mutual information, directed information from X to Y
is not necessarily equivalent to the directed information from
Y to X , thus it provides the desirable property of direction
of information flow across time. Moreover, this framework
for assessing causal interaction is particularly desirable for
neural data analysis because it works on arbitrary modalities
and statistical models [19].

There were some recent works on the conceptual and
theoretical link between Granger causality, conditional inde-
pendence, and directed information theory [29]–[38]. They
justified using directed information conceptually, motivated by
equivalence of Granger causality and directed information in
the case of jointly Gaussian processes [31], but did not identify
properties of the graph. Independently, [35], [36] showed the
relationship between Granger causality and transfer entropy.
Directed information is the time average of transfer entropy.
Transfer entropy was proposed by Schreiber [37], indepen-
dently of directed information. Granger’s original formula-
tion of causality based on the linear regression modeling of
stochastic processes is also a special case of this framework,
when the distributions of neural responses are assumed to be
Gaussian [38].

C. Robust Approximations for Massive Neural Data Analysis

Accessing the directed network of multiple neural processes
can yield insight into the structures of a neural system and their
functions. A large-scale network during motor maintenance
behavior in awake monkeys, for instance, has been demon-
strated using the causal network analysis [18], and strong
local neighborhood structure between retinal ganglion cells has
been found by modeling the interactions of these cells [39].
However, analyzing the high-dimensional neural data obtained
using recent recording technologies becomes very challenging
from both visualization and computational perspectives, even
with directed network analysis, as the number of ensemble
recordings grows.

Several methods have been developed that can reduce the
complexity [40], [41]. They use simpler models but assume
the simultaneously-recorded high-dimensional neural data is
the product of a latent, low-dimensional state space.

Within the context of directed network analysis, an approach
was recently demonstrated to approximate the directed in-
formation flow among N processes (with N nodes and N2

possible edges) with a directed tree, containing N nodes and
N − 1 possible edges [42]. Fig. 2 illustrates an example of a
directed tree with six processes.

Each tree represents different dynamics. For example,
suppose Y depends on X and Z, as described by
P (yt|xt−1, yt−1, zt−1). In a directed tree, Y can only have
one parent. If X is chosen, then the tree only represents
the dynamics described by P (yt|xt−1, yt−1). We measure
how “close” this is to the original with the KL divergence,
D(P (yt|xt−1, yt−1, zt−1)∥P (yt|xt−1, yt−1)).

Let TC denote the set of all directed trees. Consider any
particular tree T . Let P̂T denote the distribution corresponding
to T . The goal is to find the tree T that best represents the
full dynamics, argmin

T∈TC

D(P∥P̂T ), where P is the original
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Fig. 2. Diagram of a tree generative model graph representing a sparse,
approximate joint distribution.

TABLE II
VISUALIZATION AND INFERENCE COMPLEXITY OF AFOREMENTIONED

APPROACHES IN TERMS OF NUMBER N OF PROCESSES AND NUMBER T OF
TIME POINTS.

Description Visualization complexity: Inference
nodes, edges complexity

Traditional graphical model NT , (NT )2 hard
Directed info graphs N , N2 medium

Tree directed info graph N , N easy

distribution. The best tree is the one that maximizes a sum of
directed informations along the edges (X,Y ) of the tree [42],

argmin
T∈TC

D
(
P∥P̂T

)
= argmax

T∈TC

∑
(X,Y )∈T

I(X → Y ). (5)

This can be solved by finding the directed information
I(X → Y ) for each pair of processes, and then using an
efficient maximum-weight directed spanning tree algorithm,
such as Edmunds’ algorithm [43] with a complexity of O(N2),
to find the best tree. Note that only N2 calculations of directed
informations are needed. Each calculation only uses statistics
amongst two random processes, for which statistically con-
sistent algorithms exist under appropriate assumptions [19],
[44]. This result is analogous to that of Chow and Liu [45]
for networks of random variables.

Table II provides a concise explanation of the reduction
in complexity for both visualization and computation. It in-
cludes traditional Markov network graphical models, directed
information graphs, and tree approximations. The inference
complexity of traditional graphical models is deemed ‘hard’
because joint statistics on all processes, across all times, is
required. Directed information graphs, instead, simply cal-
culate causally conditioned directed information, which are
moving averages of log likelihoods but nonetheless require
joint statistics amongst all random processes. Lastly, the tree
directed approximations only require pairwise statistics and
have O(N2) total complexity.

Directed trees by definition do not have feedback, which
is undoubtedly important in neuroscience. One purpose of a
tree approximation of the network estimate is to identify the
main path of the information flow in the network. For some
neuroscience data sets such as those described in Section IV B,
the scientific hypothesis to be tested involves understanding
the main direction of information in the network. As such, this
analysis method can efficiently elucidate some phenomena of
interest, but generally speaking should be used with caution.”

D. Dynamics and Non-stationarity: Minimax Regret

The anatomical connectivity between different regions or
different neurons in a given brain region remain relatively

stable over long periods of time, but the ensemble activity we
can now record exhibits dynamic, changing, interactive rela-
tionships over faster time scales. So far, most existing methods
for analyzing neural data are developed based on stationary
joint statistics on the data generating mechanism. Thus, taking
time averages as done before can blur out the dynamic, non-
stationary aspects of brain function we may want to elucidate.
This has typically been addressed in an ad-hoc manner, for
example by using moving windows, whose length choice
suffers from the bias-variance tradeoff [3]. This method did
not track the evolution in a fine time scale, and constrained that
the changing timings should be the same for between all pairs
of neurons. Attempting to develop maximum-likelihood style
approaches for time-varying parametric models are destined to
fail, because the number of parameters grows with the number
T of time points.

Here, we consider an approach from the theory of sequential
prediction to build time-varying statistical models by com-
bining reference forecasters, called experts [9]. The experts
can be interpreted in different ways depending on various
applications. It is possible to regard an expert as a black box of
unknown computational power, possibly with access to private
side information. In some cases the class of experts can be
viewed as a parametric statistical model where each expert
in the class is uniquely specified by a set of parameters and
represents an optimal predictor for a given state of nature.
For example, consider a family of models of binary activity.
One expert corresponds to a Bernoulli probability model with
probability of heads 0.5, while another expert corresponds to
a probability model of heads probability being 0.1. In general,
there can be a continuum of experts, in this case, being one-
to-one correspondence with the [0,1] line. In our framework,
each expert makes a prediction on a next outcome based upon
all information it has had in the past. The predictions of each
expert, and their performance in the past, are available to us.
It is our job to combine these experts’ advice and their past
performances to provide one prediction that performs as best
as possible on the new outcome that has not yet been revealed.
A schematic diagram of sequential prediction with experts’
advice is illustrated in Fig. 3. As shown in the figure, we will
then design our own predictive strategy based on these experts’
advice so that the cumulative loss will be close to that of the
best expert in the class, in hindsight.

Let us denote the class of experts as E where each expert
e ∈ E provides a prediction et ∈ D at each time t where
D represents the set of possible decisions. We make the
predictions of neural data in a sequential manner, and the
performance of this sequential prediction is compared to
that of a class of experts. The aforementioned framework of
prediction with loss can be naturally viewed as the following
repeated game between our own predictor pt and environment
to set the true outcomes yt.

Sequential prediction with expert advice
For each round t = 1, 2, . . . , T ,

1) the environment chooses the next outcome yt ∈ Y and
expert advice et ∈ D; the expert advice is revealed to
the predictor;
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Fig. 3. Sequential prediction with expert advice: (a) Our own predictive
strategy that is designed based on experts’ advice. Initially, experts’ advice is
combined with equal weights. (b) Optimal predictive strategy. For each round
we strategize how to combine these advice for experts with uneven weights
so that the cumulative loss is getting close to that of the best expert in the
class.

2) the predictor p has yt−1 at its disposal and chooses a
prediction pt ∈ D;

3) the environment reveals yt ∈ Y;
4) the predictor p incurs loss l(pt, yt), and expert e ∈ E

incurs loss l(et, yt).
The accumulated loss for the predictor p (or an expert e) on
outcome sequence yT is defined as

LT (p, y
T ) =

T∑
t=1

l(pt, yt). (6)

The difference between the accumulated loss of our predictor
p and that of an expert e is called as ‘regret’ for outcome
sequence yT , which is given by

RT (p, e, y
T ) = LT (p, y

T )− LT (e, y
T ). (7)

This measures how much our predictor experiences, in hind-
sight, of not having followed the advice of this particular
expert [9]. It is our goal to design the predictor p such that
its regret is close to that of the best expert in hindsight. By

understanding the worst-case regret over all experts and all
possible sequences, we desire to make a ‘good’ predictor to
minimize the worst-case regret:

RT (p,E) , sup
yT

sup
e∈E

RT (p, e, y
T ). (8)

This ‘minimax’ regret in the equation (8) measures the best
possible performance guarantee one can have for a predictive
algorithm that holds for all possible classes of experts in E
and all possible sequences of outcomes of length T . It pro-
vides us a non-probabilistic guarantee on robust performance.
This has been used in the classical statistics literature for
development of probably good inference methods [9] and in
the information theory literature for development of probably
good model selection procedures [46], [47]. The minimizer of
(8) is termed the normalized maximum likelihood estimator
(NMLE), but its practical use is prohibitive because it requires
solving an optimization problem whose complexity increases
exponentially with time and does not have the prequential
property [9], [48]. In the next section, we will develop efficient
methods to asymptotically attain the minimax regret.

III. OPTIMAL TRANSPORT AND BAYESIAN INFERENCE

Neuroscience data are increasingly being recorded from
multiple modalities, which can operate on different spatial or
temporal scales. For example, electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI) signals
can be simultaneously recorded where the former has high
temporal resolution but low spatial resolution, but the latter
has the opposite. Although the objective of most current neuro-
physiological experiments is to relate relevant biological stim-
uli to multivariate neural data, the ability to simultaneously
record multiple forms of activity such as neurophysiological,
functional imaging and behavioral data is increasing. Devel-
oping appropriate statistical methods to analyze simultaneous
multi-modality recordings will require innovative approaches
to integrate information properly across the different temporal
and spatial scales of various data sources. One natural way
to perform this is from the perspective of Bayesian inference
where likelihoods can link any specific modality to a latent
mechanism of interest, and from which we can infer infor-
mation across all modalities. The use of Bayesian inference
methods within the context of learning, across heterogeneous
modalities and times scales, for example, was accomplished
within the context of learning in monkeys, in [49].

Generally speaking, Bayesian inference provides a foun-
dation for learning from noisy and incomplete neural data;
for instance, it offers a general approach to estimating the
representation of biological information in neural observations
[50]. However, when the latent variable θ is in a continuum,
we have Bayes’ rule as

fΘ|Y (θ|y) =
fΘ(θ)fY |Θ(y|θ)

βy
(9)

where βy ,
∫
Θ
fΘ(u)fY |Θ(y|u)du. Computing βy or drawing

samples from the posterior is one of the central challenges
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in Bayesian inference. The typical approach for solving this
problem is the use of Markov Chain Monte Carlo (MCMC)
methods, where samples are drawn from a Markov chain
whose invariant distribution is that of the posterior [51].
Despite popularity of MCMC method, when samples are gen-
erated from a Markov chain, they are statistically dependent,
leading to smaller effective sample sizes. More importantly,
the number of iterations of running the chain that is necessary
for the system to converge is not well understood.

An alternative approach for Bayesian inference to avoid
Markov chain simulation was recently proposed in [52], which
is inspired by optimal transport theory [10]. The main idea
of this approach is to find a map that transforms a random
variable distributed according to the prior to a random variable
distributed according to the posterior. However, in general,
solving an optimal transport problem is hard. Recently, we
showed that for a large class of Bayesian inference problems
(e.g. with log-concave likelihoods and priors, which can model
the various kinds of neural data), one class of variational prob-
lems over maps leads to an efficient (e.g. convex) optimization
problem that only requires drawing independent, identically
distributed (iid) samples from the prior [53]. Because there
is a rich theory of convergence for iid time series and the
prior is typically easy to sample from, and because there
are many methods to solve convex optimization problems
[54], this provides an alternative approach, with decades-old
convergence criteria, for solving these classes of log-concave
Bayesian inference problems.

A. Jacobian Equation and Optimal Transport

We now provide some notation relevant to development of
our efficient Bayesian inference algorithms where the latent
variable is in a continuum. Consider a set W ⊂ Rd for some
d, and define the space of all probability measures on W as
P (W). Given a P ∈ P (W) and a Q ∈ P (W), we seek a map
S : W → W to push forward P to Q (denoted as S#P = Q)
if a random variable W distributed with P results in Z ,
S(W ) distributed with Q. We say that S : W → W is a
‘diffeomorphism’ on W if S is invertible and both S and S−1

are differentiable. For any such diffeomorphism S assuming
that p (q) is the density of P (Q), then we have from the
Jacobian equation that

p(u) = q(S(u))| det JS(u)| (10)

where JS is the Jacobian of the map S. From the theory of
optimal transport [10], for any p and q, there always exists a
monotonic map S (for which det JS(u) > 0) such that S#P =
Q. Thus, without loss of generality, by defining the set of
monotonic diffeomorphisms on W as S(W), we have that for
any such S ∈ S(W):

p(u) = q(S(u)) det JS(u). (11)

Within the context of Bayesian inference, P represents the
given prior PΘ and Q represents the posterior PΘ|Y=y we are
trying to develop. We seek a monotone diffeomorphism map
S∗
y for which S∗

y#
PΘ = PΘ|Y=y to push forward the prior

distribution PΘ to the posterior distribution PΘ|Y=y , giving
rise to the following equation:

fΘ(θ) = fΘ|Y=y(S
∗
y(θ)) det

(
JS∗

y
(θ)

)
(12)

=
fY |Θ(y|S∗

y(θ))fΘ
(
S∗
y(θ)

)
βy

det
(
JS∗

y
(θ)

)
(13)

where (13) follows from (9). Then, for an arbitrary monotone
diffeomorphism Sy ∈ S(W) instead of S∗

y , a new operator T
can be defined as

T (Sy, θ) , log fY |Θ(y|Sy(θ)) + log fΘ (Sy(θ))

+ log det
(
JSy (θ)

)
− log fΘ(θ). (14)

When we consider any other diffeomorphism Sy instead of S∗
y

in (13), we note that either Sy#PΘ = P̃Θ|Y=y where P̃Θ|Y=y

need not equal the true posterior PΘ|Y=y, or equivalently the
inverse S−1

y satisfies S−1
y #

PΘ|Y=y = P̃Θ where P̃Θ need not
equal the true posterior PΘ. This is shown in Fig. 4. For any
diffeomorphism Sy , the Kullback-Leibler (KL) divergence is
given by

D
(
PΘ∥P̃Θ

)
,

∫
θ∈Θ

fΘ(θ) log
fΘ(θ)

f̃Θ(θ)
dθ

= log βy −
∫
θ∈Θ

fΘ(θ)T (Sy, θ)dθ.

The KL divergence is non-negative and clearly there exists a
monotone diffeomorphism S∗

y satisfying S∗
y#PΘ = PΘ|Y=y ,

for which the KL divergence is exactly zero. Thus an equiv-
alent problem to solve is to minimize a KL divergence, or
equivalently, maximize the expectation of the T operator:

(P1) S∗
y = argmin

Sy∈S(W)

D
(
PΘ∥P̃Θ

)
(15)

= argmax
Sy∈S(W)

∫
θ∈Θ

fΘ(θ)T (Sy, θ)dθ. (16)

Fig. 4. Bayesian inference with optimal maps. We design a map that pushes
forward the prior distribution to the posterior distribution. We begin with a
prior distribution PΘ. Upon an observation Y = y, it is our objective to find
PΘ|Y =y . Up front, because of the difficulty in computing βy , PΘ|Y =y is
unknown; but we know it exists. A ‘desirable’ diffeomorphism S∗

y pushes the
prior PΘ to the posterior PΘ|Y =y ; equivalently, S∗

y
−1 pushes the posterior

PΘ|Y =y to the prior PΘ. An arbitrary diffeomorphism Sy will push PΘ

to some distribution P̃Θ|Y =y that is not necessarily PΘ|Y =y ; equivalently,
Sy

−1 pushes the posterior PΘ|Y =y to some distribution P̃Θ that is not
necessarily PΘ.

The optimization problem to find a map Sy is a search over
an infinite-dimensional space of monotone diffeomorphisms.
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From here, we can transform the problem into searching for
coefficients of an orthogonal basis of functions using the
Wiener-Askey polynomial expansion [55]–[57]. For example,
if Θ = [−1, 1] and PΘ is uniformly distributed, then ϕ(j)(θ)
are the Legendre polynomials. If Θ = R and PΘ is Gaussian,
then ϕ(j)(θ) are the Hermite polynomials. Rather than opti-
mizing over functions, we can perform functional analysis and
approximate any S ∈ S(Θ) as a linear combination of basis
functions:

S(θ) =
∑
j∈J

gjϕ
(j)(θ), (17)

where ϕ(j)(θ) ∈ R are d-variate polynomials and gj ∈
Rd are the expansion coefficients, with d being the dimen-
sion of W. By assembling the set {gj}j∈J into a ma-
trix F = [g1, ...,gK ] of size d × K where K = |J |,
and every polynomial {ϕ(j)(θ)}j∈J into a column vector
A(θ) = [ϕ(1)(θ), ..., ϕ(K)(θ)]T of size K × 1, the map is then
represented as

S(θ) = FA(θ). (18)

Under the basis expansion in (18), we have JS(θ) =
FDΘA(θ) of size d × d, and we define the analogous T
operator for the coefficients of the basis as:

T̃ (F, θ) , log fY |Θ(y|FA(θ)) + log fΘ (FA(θ))

+ log det (FJA(θ))− log fΘ(θ). (19)

We now define a problem where we approximate an expec-
tation of T̃ (F, θ) by a weighted sum of iid samples, and
we approximate the set of all functions using a truncated
polynomial chaos expansion [55]–[57]:

(P2) F ∗ = argmax
F∈Rd×K :FJA(Θ1)≻0,...,FJA(ΘN )≻0

V (F ),

V (F ) , 1

N

N∑
i=1

T̃ (F,Θi) (20)

where Θ1,Θ2, . . . ,ΘN are drawn iid from PΘ. This leads to
the following theorem [53]:

Theorem III.1. Problem (P2) solves the Bayesian inference
problem, and if fΘ(θ) is log-concave and fY |Θ(y|θ) is log-
concave in θ, then this problem is convex and thus efficiently
solvable.

This result is dependent upon log-concavity of the prior and
likelihood, but for most neural data sets, this assumption holds:
Many common statistical models in neural data sets satisfy
the prior and likelihood assumptions in Theorem III.1. For
example, Gaussian/Laplace/Uniform priors on θ [58] and gen-
eralized linear model (GLM) likelihood functions for f(y|θ)
[59], all fall within the class of log-concave distributions.

Fig. 5 illustrates an example of Bayesian inference using
an optimal map in a 2-dimensional compact space. Each color
of color maps represents a specific set of parameters in the
2-dimensional space. That is, each color uniquely specifies a
particular expert. Initially we assume a uniform distribution
over these parameters as shown in the top plot of Fig. 5 (a).

All the parameters (colors) are uniformly distributed in the
2-dimensional compact space as shown in Fig. 5 (b). The
boxed-in region represents an area, which shows the relatively
high likelihood values given a next outcome. The likelihood
function is illustrated in the top plot of Fig. 5 (c). This
likelihood function places more of its mass over this area.
Fig. 5 (d) shows the ‘visual effect’ of the nonlinear mapping
of the 2-dimensional parameter space using a designed optimal
map. We can see a large increase in resolution (i.e., an
increase in probability) over the green/yellow/orange space of
interest at the expense of the remaining parameter space. Note,
however, none of the colors have been removed.

B. Relation to Minimax Sequential Prediction

Bayesian inference plays an important role in designing
mixture forecaster with experts’ advice in Section II-D. One
implementable approach pertaining to a sublinear minimax
regret is considered. A natural predicting strategy is based
on computing a weighted average of experts’ predictions as
illustrated in Fig. 3 (b). Since our goal is to minimize the
regret, it is reasonable to decide the weights according to
the regret up to time t − 1. For example, if the regret is
large, then we give more weight to the corresponding expert,
and vice versa. That is, we weight more those experts whose
cumulative loss is small, and thus we regard the weight as an
arbitrary function of the experts’ loss. This leads to the class of
mixture forecasters that are more easily implementable while
still satisfying sublinear regret.

Suppose that each expert e is uniquely specified by a pa-
rameter θ such as e(yt|yt−1, θ). We also define for notational
convenience: l(e, yt−1) , l(θ, yt−1). We define a weight wθ,t

for each expert e at time t as

wθ,t =
e−ηLt−1(θ,y

t−1)∫
θ
e−ηLt−1(θ,yt−1)dθ

(21)

where η is a positive number. So the weight of an expert e
depends on its past performance Lt−1(θ, y

t−1), and implies
we listen more to the advice of the experts, whose recent loss
functions are relatively small.

To define the mixture forecaster, a non-negative number
π0(θ) ≥ 0 is assigned to each expert such that

∫
θ
π0(θ)dθ = 1

as a prior information. Then the mixture forecaster becomes a
weighted average of experts’ predictions, which is represented
by

p∗E(yt|yt−1) =

∫
θ

π0(θ)e(yt|yt−1, θ)wθ,t−1dθ. (22)

When we select η = 1, it is expressed by

p∗E(yt|yt−1) =

∫
θ
π0(θ)e(yt|yt−1, θ)e(yt−1|θ)dθ∫

θ
π0(θ)e(yt−1|θ)dθ

(23)

=

∫
θ

πt−1(θ)e(yt|yt−1, θ)dθ (24)

where
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(a) (b) 

(c) (d) 

(Q1, Q2) 

Fig. 5. An example of Bayesian inference with optimal maps in 2-dimensional compact parameter space. (a) Uniform prior on the parameters in the space.
The red rectangular on top represents a uniform prior on the parameters. Different colors on bottom represent different values in the parameter space, i.e.,
different experts. (b) Distribution of the parameters under the uniform prior. The boxed-in region represents an area of interest given a next outcome. (c)
More weights on the area with high likelihood values given the outcome. The 2-dimensional distribution on top represents the likelihood values given the next
outcome. The parameters on the area with high likelihood values will be more weighted. (d) The effect of the nonlinear optimal mapping on the parameter
space.

πt−1(θ) =
π0(θ)e(y

t−1|θ)∫
θ
π0(θ)e(yt−1|θ)dθ

. (25)

The mixture forecaster in (24) builds a predictive strategy
as a weighted average of experts’ advice and each weight
at time t is determined by a posterior probability of expert
given the observation up to time t− 1. It is a natural way to
combine the experts’ advice, since the posterior distribution
represents one’s state of knowledge about each expert. It can
also be calculated by efficient Bayesian inference method with
optimal transport and convex optimization as described in
Section III A. Using the law of conditional probability it can
be rewritten as

p∗E(yt|yt−1) =
e(yt|yt−1, θ)πt−1(θ)

πt(θ)
. (26)

The mixture forecaster in (26) is a ‘good’ predictor satisfying
RT (p

∗
E,E) = o(T ). When we think of π0 as a prior on E,

then this is a Bayesian approach, and there is a natural way
to select the prior based on Jeffrey’s prior [60]. Under general
conditions, Jeffrey’s prior, denoted as f∗

θ (u), is the unique
prior, for which minimax optimality holds [48]. It is given by

f∗
θ (u) ∝

√
det(J(u)) (27)

where J(u) is Fisher information with respect to the likelihood
function [15]. Jeffrey’s prior is log-concave for the point
process GLM of neural spiking activity. Thus, performing

inference on this class of models with minimax optimal regret
is efficient.

With these dynamic, time-varying predictions from ex-
pert advice, we separately compute the sequential predictor
p∗E(yt|Ht−1) and p∗E(yt|H

t−1
X ) and then compute

CX→Y (t) , D
(
p∗E(yt|Ht−1)||p∗E(yt|Ht−1

X )
)

(28)

at time t. This provides a time-varying measure of causality
where each individual predictor at time t is computed effi-
ciently with our Bayesian inference methodology and minimax
integration of each expert’s advice.

IV. APPLICATIONS

In this section, we demonstrate the application of the afore-
mentioned methodologies to the analysis of simultaneously
recorded spiking activity from multiple neurons. Methods
based on reduction in loss function were used to infer the
causal network of ensemble neural spiking activity using point
process model. This approach was tested first on simulated
data, and subsequently applied to neural activity recorded
from the primary motor cortex (M1) of a monkey. Some
examples of the approximate estimated network topologies
with reduced complexity are shown. Moreover, a time-varying
causal inference extension of our methodology was performed
on the same data using the sequential prediction framework.
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A. Network Analysis of Ensemble Neural Spiking Activity

A general framework for analyzing the causality network
between multiple neural processes was introduced based on
reduction in loss function in the subsection II-B. In this subsec-
tion, we will show how this framework is applied to estimate
the causality network between multiple neural spike trains
using the point process models [19], [20]. The discrete, all-or-
nothing nature of a sequence of action potentials together with
their stochastic structure suggests that neural spike trains may
be regarded as point processes [61]–[63]. Let Ni,t denote the
sample path that counts the number of spikes of neuron i in
the time interval (0, t] for t ∈ (0, T ] for i = 1, ...,M recorded
neurons. A point process model of a spike train for neuron
i can be completely characterized by its conditional intensity
function (CIF), λi(t|Ht), defined as

λi(t|Ht) = lim
∆→0

Pr[Ni,t+∆ −Ni,t = 1|Ht]

∆
(29)

where Ht denotes the spiking history of all the neurons in the
ensemble up to time t [64]. The CIF represents the instan-
taneous firing probability and serves as a fundamental block
for constructing the likelihoods and probability distributions
for point process data. It is a history dependent function,
and reduces to a Poisson process if it is independent of the
history. To simplify the notation we denote λi(t|Ht) as λi(t).
In the GLM framework to model the relationship between the
spiking activity and its covariates (the spiking history) [65],
the logarithm of the CIF is modeled as a linear combination of
the functions of the covariates that describe the neural activity
dependencies, and thus is expressed as

log λi(t) = θi,0 +

M∑
m=1

θi,m · ht
m. (30)

Here, θi,0 relates to a background level of the activity of
neuron i, θi,m is a d-dimensional vector of parameters to
relate the past spiking of neuron m to the future spiking
of neuron i, and ht

m is a d-dimensional vector whose each
element represents the spikes in the spiking history of neuron
m up to time t. The ‘·’ represents the dot product between
vectors.

To test the causal interaction from neuron j to i, we
developed two ‘predictors’, one class of point process GLM
models that P (NT

i ) that has the past of all neurons as the
covariates for the CIF, and another class given by Q̃(NT

i )
that has the past of all except for neuron j. The point process
likelihood is given, up to a normalization constant, by [64]:

P (NT
i ) = exp

{∫ T

0

log λi(t)dNi,t −
∫ T

0

λi(t)dt.

}
. (31)

Note that for P (NT
i ), λi(t) includes the past spiking of all

neurons. The other point process likelihood, P̃ (NT
i ), is given

by the same equation (31), but with λi(t) replaced as λ̃i(t):

log λ̃i(t) = θ̃i,0 +
M∑

m=1
m ̸=j

θ̃i,m · ht
m, (32)

which excludes the effect of the past spiking of neuron j.
Model parameters for P (NT

i ; θi) and for P̃ (NT
i ; θ̃i) were

fitted by maximium likellihood and then the causality measure
from j to i is defined using the expected value of reduction
in log loss functions, which is given by

Cj→i =
1

T
E

[
log

P (NT
i ; θ∗i )

P̃ (NT
i ; θ̃∗i )

]
(33)

= D(P (NT
i ; θ∗i )||P̃ (NT

i ; θ̃∗i )). (34)

If the history spiking of neuron j helps predict the spiking
activity of neuron i, the directed information should be greater
than zero, and then we say that neuron j ‘Granger-causes’
i [66]. The equality of the causally conditioned directed
information holds when neuron j has no causal influence on
i. Excitatory and inhibitory influences from neuron j to i are
distinguished by the sign of

∑
τ θi,j(τ) in the equation (30),

which represents an averaged influence of the past spiking of
j on i.

The directed information measure, Cj→i, of the equation
(33) given by the log-likelihood ratio provides an indica-
tion of the relative strength of causal interaction, but little
insight into whether or not it is statistically significant. We
use the goodness-of-fit (GOF) statistics based on the log-
likelihood ratio test to address this issue. We denote the
deviance obtained using the model parameter θ∗i as D0, and
the deviance obtained using θ̃∗i as D1. The deviance difference
between two models is equivalent to 2 times log-likelihood
ratio given by ∆D = D0 − D1 = 2Cj→i [67]. If both
models describe the data well, then the deviance difference
may be asymptotically described by ∆D ≈ χ2

d where d is the
difference in dimensionality of two models [67], [65]. Thus,
if the value of ∆D is consistent with the χ2

d distribution,
the causal influence is not statistically significant. On the
contrary, if the value of ∆D is in the critical region, i.e.,
greater than the upper tail 100(1 − α)% of the χ2

d where
α determines false positive rates, then the causal influence
is determined as statistically significant. When we use the
common statistical thresholds to detect statistically significant
causal interactions between possibly many pairs of neurons,
we will suffer from unacceptably large false positives [68].
Here we used a multiple-hypothesis testing error measure
called false discovery rate (FDR) to address the multiple
comparison problem [69].

In Fig. 6, the network estimates of cross-correlation based
and causal inference methods were compared using synthet-
ically generated neural spike trains. Simulated spike train
data were generated based on the three-neuron network of
Fig. 6 (a). The blue and red arrows represented the inhibitory
(causing a decrease in firing rate) and excitatory (causing an
increase in firing rate) interactions, respectively. In the net-
work, there were directed excitatory interactions from neuron
1 to 2 and 2 to 3 but there was no excitatory interaction from
1 to 3. The neurons had inhibitory effects on each other in
a counterclockwise direction. Specific point process models
that were used to generate spike trains based on this network
were described in the Simulation section of [20]. Examples
of generated neural spike trains during the first 5 sec are
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illustrated in Fig. 6 (b). It is hard to visually estimate the
underlying network between neurons from this raster plot.
Fig. 6 (c) shows the estimated network using the cross-
correlogram method. Note that this method determined a direct
excitatory connection from neuron 1 to 3 as well as direct
excitatory connections from 1 to 2 and 2 to 3. However, truly,
there was no direct excitatory connection from 1 to 3. It failed
to detect all inhibitory interactions either. Fig. 6 (d) presents
the estimated network using the causal inference method. The
estimated pattern matched the original network exactly. This
estimated network did not show the excitatory connection
from neuron 3 to 1 and succeeded in detecting all inhibitory
interactions.
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Fig. 6. Comparison of network estimates using synthetic neural spike trains:
(a) Three-neuron network used to generate synthetic neural spike trains. The
blue and red arrows represent the inhibitory (causing a decrease in firing rate)
and excitatory (causing an increase in firing rate) interactions, respectively. (b)
Examples of generated neural spike trains during the first 5 sec. (c) Network
estimate based on cross-correlation. (d) Network estimate based on causal
inference.

B. Directed Graph Representations of Ensemble Neural Data

Multiple neural spike trains were simultaneously recorded
from the M1 of a monkey during visuomotor task; The monkey
was trained to move a cursor on a horizontal screen that was
aligned to the monkey’s hand to the position of a target. When
the monkey successfully reached the current target, a new
target was displayed at a random location within a workspace
while the current target disappeared. The monkey received a
juice reward after successfully acquiring five or seven consecu-
tive targets. Multiple single unit spiking activities from the M1
in a monkey were then recorded using an Utah microelectrode
array. More details can be found in [70].

Fig. 7 (a) depicts a directed network graph estimated by
applying the causal inference method in (34) to 37 high
firing neurons recorded in the M1 of the monkey [42]. The
blue arrow represents the dominant direction of the edges,
which is along the rostro-caudal axis (or anterior-posterior
axis), which is a straight line as an axis that has at the

upper end the nose, followed by the tail. This direction
is consistent with the beta wave propagation direction of
local field potentials in the motor cortex, which researchers
surmise mediates the information transfer between different
brain regions [71]. Fig. 7 (b) illustrates that the directed
tree approximation methodology from Section II-C enabled
more succinct visualization with a directed tree approximation,
and but still preserved relevant information for analysis of
mechanistic neurobiological phenomena.

(a) (b) 

Fig. 7. Graphical structures of statistically significant directed information and
its causal dependence tree approximation. The blue arrow depicts a dominant
orientation of the edges. The relative positions of neurons correspond to those
of the recording electrodes. (a) Graphical structure of directed information
values. (b) Causal dependence tree approximation. The figure is from Quinn
et al., 2013 [42].

C. Dynamic Analysis of Ensemble Neural Data

In this section, we demonstrate the use of minimax time-
varying causality measures from Section III-B elucidate how
simultaneously recorded, motor cortical neurons in non-human
primates spatially coordinates their spike activity during a
visuomotor task using a two-link exoskeleton manipulandum
[72].

Fig. 8 shows the spatiotemporal patterns of network con-
nectivity during the visuomotor task obtained using static
and dynamic methods, respectively. The top plot presents
the network connectivity estimated using the static causal
inference method at different timings in relation to the visual
cue onset at 0 ms: time window 1 for [−100, 50] ms, 2 for
[50, 200] ms, and 3 for [200, 350] ms, respectively [73]. As
shown, most functional connectivity was detected for time
window 2 than other two intervals.

Fig. 8 (b) shows the time-varying causal interactions be-
tween some pairs of neurons at every 1 ms. It could track time-
varying causality networks and observed more interactions
after visual stimulus, which is consistent with the findings in
Fig. 8 (a). It also provided the timing information on when
the causal influences occurred and disappeared in relation to
visual cue onset. Fig. 8 (b) elucidates more details about the
dynamic, non-stationary causal influences, and is consistent
with the static analysis (for example, the directed edge 8 →
1 is absent in the first panel, and present in the next two).
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Fig. 8. Spatiotemporal patterns of network connectivity. The dynamics of
effective network in primary motor cortex of a monkey using real neural
spike train data is tracked: (a) Three snapshots of time-varying networks are
obtained every 150 ms using conventional approach. Red arrow represents
functional connections. The black dots represent the relative positions of the
electrodes on the array where the neurons were detected. (b) The evolution of
network dynamics is tracked every 1 ms using the proposed approach. Red
vertical bar represents the onset time of visual cue.

V. CONCLUSION

We have developed a framework to develop scalable, multi-
modal methods that address the key challenges that are of
increasing importance in neuroscience data analysis. It was
our attempt to balance having classical statistics, information
theory, and control theory underpinnings with the agility to be
applicable to specific neuroscientific scenarios where physio-
logical constraints can be embedded within the framework.

Our approach based on general loss function perspective
enables us to extend the analysis of neuroscience data to
high-dimensionality, dynamics, and harness robustness to un-
certainty. The use of optimal transport theory provided us
a tool for efficiently solving Bayesian inference problems
with convex optimization, which by itself is of importance
in many statistical analysis settings, but more specifically,
enables our ability to develop robust methods for dynamic
analysis of ensemble neural processes. Although our examples
were specific to causal inference for ensemble neural spiking
activity, we note that our general purpose exposition elucidates
how it can be applicable more generally.

In the future, we believe that uncertainty due to large
dynamic data sets will lead to new theoretical statistics and
algorithms that are specifically tailored to these massive,
dynamic data sets. What will be important is a balance devel-
oping theoretical frameworks that have a ‘forest’ perspective
and have common underpinnings, with having the features and
extensibility to be applicable to neurophysiology of interest.
In addition, we believe that the uncertainty due to these
massive datasets will lead to the need for novel methods of

performing sequential experimental design: providing canon-
ical frameworks to extract information from experiments,
characterize uncertainty, and if necessary provide suggestions
on subsequent interventional experiments to refine uncertainty
as efficiently as possible. There is reason to suggest that
newly developed principles and algorithms that lie at the
intersection of (i) sequential transmission of a message point in
a continuum over a noisy channel with feedback [74]–[76] and
(ii) ‘observability’ and ‘filter stability’ in stochastic systems
[77]–[80] can play an important role in this setting.

ACKNOWLEDGMENT

The authors would like to thank N. G. Hatsopoulos for
providing neural spike train data, and D. Mesa and R. Ma
for providing useful comments and figures.

REFERENCES

[1] M. A. Nicolelis, Methods for neural ensemble recordings. CRC press,
2007.

[2] A. P. Alivisatos, M. Chung, G. M. Church, R. J. Greenspan, M. R.
Roukes, and R. Yuste, “The brain activity map project and the challenge
of functional connectomics,” Neuron, vol. 74, no. 6, pp. 970–974, Jun
2012.

[3] E. N. Brown, R. E. Kass, and P. P. Mitra, “Multiple neural spike
train data analysis: state-of-the-art and future challenges,” Nature Neu-
roscience, vol. 7, pp. 456–461, 2005.

[4] “Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) Working Group Interim Report,” National Institute of Health,
Interim Report, Sep. 2013.

[5] B. He, T. Coleman, G. M. Genin, G. Golver, X. Hu, N. Johnson, T. Liu,
S. Makeig, P. Sajda, and K. Ye, “Grand challenges in mapping the
human brain: NSF workshop report,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 11, pp. 2983–2992, 2013.

[6] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue,
“Neuronal ensemble control of prosthetic devices by a human with
tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171, 2006.

[7] J. C. Kao, S. D. Stavisky, D. Sussillo, P. Nuyujukian, and K. V. Shenoy,
“Information systems opportunities in brain-machine interfaces,” Pro-
ceedings of the IEEE, 2014.

[8] O. Milenkovic, G. Alterovitz, G. Battail, T. Coleman, J. Hagenauer,
S. Meyn, N. Price, M. Ramoni, I. Shmulevich, and W. Szpankowski,
“Introduction to the special issue on information theory in molecular
biology and neuroscience,” IEEE Transactions on Information Theory,
vol. 56, pp. 649–652, 2010.

[9] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge University Press, 2006.

[10] C. Villani, Topics in optimal transportation. AMS, 2003.
[11] A. Abbott, “Brain-simulation and graphene projects win billion-euro

competition,” Nature News, 2013.
[12] A. H. Ropper et al., “Brain in a box,” The New England journal of

medicine, vol. 367, no. 26, pp. 2539–2541, 2012.
[13] C. D. Brody, “Correlations without synchrony,” Neural computation,

vol. 11, no. 7, pp. 1537–1551, 1999.
[14] G. L. Gerstein and D. H. Perkel, “Simultaneously recorded trains of

action potentials: analysis and functional interpretation,” Science, vol.
164, no. 3881, pp. 828–830, 1969.

[15] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[16] I. H. Stevenson and K. P. Kording, “How advances in neural recording
affect data analysis,” Nature Neuroscience, vol. 14, no. 2, pp. 139–142,
2011.

[17] D. Kollar and N. Friedman, Probabilistic graphical models: principles
and techniques. The MIT Press, 2009.

[18] A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L.
Bressler, “Beta oscillations in a large-scale sensorimotor cortical net-
work: directional influences revealed by granger causality,” Proc Natl
Acad Sci, vol. 101, pp. 9849 – 9854, 2004.



PROCEEDINGS OF THE IEEE 13

[19] C. J. Quinn, T. P. Coleman, N. Kiyavash, and N. G. Hatsopoulos, “Esti-
mating the directed information to infer causal relationships in ensemble
neural spike train recordings,” Journal of computational neuroscience,
vol. 30, no. 1, pp. 17–44, 2011.

[20] S. Kim, D. Putrino, S. Ghosh, and E. N. Brown, “A Granger causality
measure for point process models of ensemble neural spiking activity,”
PLoS Comput Biol, vol. 7, no. 3, March 2011.

[21] N. Wiener, The theory of prediction. In: Beckenbach EF, editors.
Modern mathematics for engineers. New York: McGraw-Hill., 1956.

[22] C. W. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica, vol. 37, pp. 424–438, 1969.

[23] R. Dahlhaus and M. Eichler, “Causality and graphical models in time
series analysis,” Oxford Statistical Science Series, pp. 115–137, 2003.

[24] R. Dahlhaus, “Graphical interaction models for multivariate time series
1,” Metrika, vol. 51, no. 2, pp. 157–172, 2000.

[25] M. Eichler, “Granger causality and path diagrams for multivariate time
series,” Journal of Econometrics, vol. 137, no. 2, pp. 334–353, 2007.

[26] T. Cover and J. Thomas, Elements of information theory. Wiley-
Interscience, 2006.

[27] J. Massey, “Causality, feedback and directed information,” in Intl. Symp.
on Info. Th. and its Applications. Citeseer, 1990, pp. 27–30.

[28] G. Kramer, “Directed information for channels with feedback,” Ph.D.
dissertation, University of Manitoba, Canada, 1998.

[29] P.-O. Amblard and O. J. Michel, “The relation between granger causality
and directed information theory: a review,” Entropy, vol. 15, no. 1, pp.
113–143, 2012.

[30] P. Amblard and O. Michel, “On directed information theory and Granger
causality graphs,” Journal of computational neuroscience, vol. 30, no. 1,
pp. 7–16, 2011.

[31] ——, “Relating Granger causality to directed information theory for net-
works of stochastic processes,” Arxiv preprint arXiv:0911.2873, 2009.

[32] C. Gourieroux, A. Monfort, and E. Renault, “Kullback causality mea-
sures,” Annals of Economics and Statistics, pp. 369–410, 1987.

[33] J. Rissanen and M. Wax, “Measures of mutual and causal dependence
between two time series (corresp.),” IEEE Transactions on Information
Theory, vol. 33, no. 4, pp. 598–601, 1987.

[34] C. W. Granger, “Some recent development in a concept of causality,”
Journal of econometrics, vol. 39, no. 1, pp. 199–211, 1988.

[35] L. Barnett, A. Barrett, and A. Seth, “Granger causality and transfer
entropy are equivalent for Gaussian variables,” Physical review letters,
vol. 103, no. 23, p. 238701, 2009.

[36] L. Barnett and T. Bossomaier, “Transfer entropy as a log-likelihood
ratio,” Physical Review Letters, vol. 109, no. 13, p. 138105, 2012.

[37] T. Schreiber, “Measuring information transfer,” Physical review letters,
vol. 85, no. 2, pp. 461–464, 2000.

[38] S. Kim and E. N. Brown, “A general statistical framework for assessing
granger causality,” in 2010 IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP). IEEE, 2010, pp. 2222–2225.

[39] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke,
E. Chichilnisky, and E. P. Simoncelli, “Spatio-temporal correlations and
visual signalling in a complete neuronal population,” Nature, vol. 454,
no. 7207, pp. 995–999, 2008.

[40] M. M. Churchland, B. M. Yu, M. Sahani, and K. V. Shenoy, “Tech-
niques for extracting single-trial activity patterns from large-scale neural
recordings,” Current opinion in neurobiology, vol. 17, no. 5, pp. 609–
618, 2007.

[41] M. Y. Byron, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V.
Shenoy, and M. Sahani, “Gaussian-process factor analysis for low-
dimensional single-trial analysis of neural population activity,” Journal
of neurophysiology, vol. 102, no. 1, pp. 614–635, 2009.

[42] C. J. Quinn, N. Kiyavash, and T. P. Coleman, “Efficient methods to
compute optimal tree approximations of directed information graphs,”
IEEE Transactions on Signal Processing, vol. 61, no. 12, pp. 3173–3182,
2013.

[43] P. Humblet, “A distributed algorithm for minimum weight directed
spanning trees,” IEEE Transactions on Communications, vol. 31, no. 6,
pp. 756–762, 1983.

[44] L. Zhao, H. Permuter, Y. Kim, and T. Weissman, “Universal estimation
of directed information,” in 2010 IEEE International Symposium on
Information Theory Proceedings (ISIT). IEEE, 2010, pp. 1433–1437.

[45] C. Chow and C. Liu, “Approximating discrete probability distributions
with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, no. 3, pp. 462–467, 1968.

[46] N. Merhav and M. Feder, “Universal prediction,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2124–2147, 1998.

[47] A. Barron, J. Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE Transactions on Information
Theory, vol. 44, no. 6, pp. 2743–2760, 1998.

[48] P. Grünwald, The minimum description length principle. The MIT
Press, 2007.

[49] T. P. Coleman, M. Yanike, W. A. Suzuki, and E. N. Brown, “A
mixed-filter algorithm for dynamically tracking learning from multiple
behavioral and neurophysiological measures,” The dynamic brain: an
exploration of neuronal variability and its functional significance, pp.
1–16, 2011.

[50] Y. Ahmadian, J. Pillow, and L. Paninski, “Efficient markov chain monte
carlo methods for decoding neural spike trains,” Neural Computation,
vol. 23, no. 1, pp. 46–96, 2011.

[51] J. S. Liu, Monte Carlo Strategies in Scientific Computing. Springer,
2008.

[52] T. El Moselhy and Y. Marzouk, “Bayesian inference with optimal maps,”
Journal of Computational Physics, vol. 231, no. 23, pp. 7815–7850,
2012.

[53] S. Kim, R. Ma, D. Mesa, and T. P. Coleman, “Efficient Bayesian
Inference Methods via Convex Optimization and Optimal Transport,”
in IEEE International Symposium on Information Theory (ISIT), 2013.

[54] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[55] R. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral
approach. DoverPublications, 2003.

[56] D. Xiu and G. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations,” SIAM journal on scientific computing,
vol. 24, no. 2, pp. 619–644, 2003.

[57] N. Wiener, “The homogeneous chaos,” American Journal of Mathemat-
ics, vol. 60, no. 4, pp. 897–936, 1938.

[58] I. H. Stevenson, J. M. Rebesco, N. G. Hatsopoulos, Z. Haga, L. E.
Miller, and K. P. Kording, “Bayesian inference of functional connectivity
and network structure from spikes,” Neural Systems and Rehabilitation
Engineering, IEEE Transactions on, vol. 17, no. 3, pp. 203–213, 2009.

[59] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N.
Brown, “A point process framework for relating neural spiking activity to
spiking history, neural ensemble, and extrinsic covariate effects,” Journal
of neurophysiology, vol. 93, no. 2, pp. 1074–1089, 2005.

[60] N. Merhav and M. Feder, “Universal prediction,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2124–2147, 2002.

[61] E. N. Brown, “Theory of point processes for neural systems,” Methods
and models in neurophysics, pp. 691–726, 2005.

[62] E. N. Brown, R. Barbieri, U. T. Eden, and L. M. Frank, “Likelihood
methods for neural spike train data analysis,” Computational neuro-
science: A comprehensive approach, pp. 253–286, 2003.

[63] R. E. Kass, V. Ventura, and E. N. Brown, “Statistical issues in the
analysis of neuronal data,” Journal of Neurophysiology, vol. 94, no. 1,
pp. 8–25, 2005.

[64] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes: volume II: general theory and structure. Springer, 2007,
vol. 2.

[65] A. J. Dobson, An introduction to generalized linear models. CRC press,
2010.

[66] C. Granger, “Investigating causal relations by econometric models and
cross-spectral methods,” Econometrica, 1969.

[67] P. MacCullagh and J. A. Nelder, Generalized linear models. CRC press,
1989, vol. 37.

[68] R. G. Miller, Simultaneous statistical inference. McGraw-Hill New
York, 1966.

[69] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 289–300, 1995.

[70] J. Reimer and N. G. Hatsopoulos, “Periodicity and evoked responses in
motor cortex,” The Journal of Neuroscience, vol. 30, no. 34, pp. 11 506–
11 515, 2010.

[71] D. Rubino, K. A. Robbins, and N. G. Hatsopoulos, “Propagating waves
mediate information transfer in the motor cortex,” Nature neuroscience,
vol. 9, no. 12, pp. 1549–1557, 2006.

[72] S. H. Scott, “Apparatus for measuring and perturbing shoulder and elbow
joint positions and torques during reaching,” Journal of Neuroscience
Methods, vol. 89, no. 2, pp. 119 – 127, 1999.

[73] S. Kim, K. Takahashi, N. G. Hatsopoulos, and T. P. Coleman, “Infor-
mation transfer between neurons in the motor cortex triggered by visual
cues,” in IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE, 2011, pp. 7278–7281.



PROCEEDINGS OF THE IEEE 14

[74] C. Omar, A. Akce, M. Johnson, T. Bretl, R. Ma, E. Maclin, M. Mc-
Cormick, and T. Coleman, “A feedback information-theoretic approach
to the design of brain–computer interfaces,” Intl. Journal of Human-
Computer Interaction, vol. 27, no. 1, pp. 5–23, 2010.

[75] O. Shayevitz and M. Feder, “Optimal feedback communication via
posterior matching,” IEEE Trans. Inf. Theory, 2011.

[76] R. Ma and T. Coleman, “Generalizing the posterior matching scheme to
higher dimensions via optimal transportation,” in Allerton Conference,
2011.

[77] R. Van Handel, “Observability and nonlinear filtering,” Probability
theory and related fields, vol. 145, no. 1-2, pp. 35–74, 2009.

[78] R. van Handel, “When do nonlinear filters achieve maximal accuracy?”
SIAM Journal on Control and Optimization, vol. 48, no. 5, pp. 3151–
3168, 2009.

[79] ——, “Nonlinear filtering and systems theory,” in 19th International
Symposium on Mathematical Theory of Networks and Systems (MTNS
2010), 2010.

[80] S. Gorantla and T. P. Coleman, “Equivalence between reliable feedback
communication and nonlinear filter stability,” in 2011 IEEE International
Symposium on Information Theory (ISIT), 2011, pp. 164–168.

PLACE
PHOTO
HERE

Sanggyun Kim (S’02-M’09) received the Ph.D. de-
gree in electrical engineering and computer science
(EECS) from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in 2008.
He joined the Statistical Learning for Signal Process-
ing Laboratory in EECS at KAIST in 2001. From
January 2009 to June 2010 he was a postdoctoral
researcher at the Department of Brain and Cognitive
Sciences (BCS), Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA.

He is currently a postdoctoral scholar in Bio-
engineering at the University of California San Diego (UCSD), USA. His
research interests include statistical signal processing, machine learning and
information theory with applications to neuroscience and multimedia data.

PLACE
PHOTO
HERE

Christopher J. Quinn (S’10) received a B.S. in
Engineering Physics from Cornell University and
M.S. in Electrical and Computer Engineering from
the University of Illinois at Urbana-Champaign in
2008 and 2010 respectively.

He is currently a Ph.D. student in Electrical and
Computer Engineering at the University of Illinois
at Urbana-Champaign. His research interests include
information theory, network science, and statistical
signal processing.

PLACE
PHOTO
HERE

Negar Kiyavash (S’99-M’06) is an assistant profes-
sor in the Department of Industrial and Enterprise
Systems Engineering (ISE) at the University of Illi-
nois at Urbana-Champaign, USA. She received the
Ph.D. degree in electrical and computer engineering
from the University of Illinois at Urbana-Champaign
in 2006. Her research interests include information
theory and statistical signal processing with applica-
tions to security and network inference. Dr. Kiyavash
is a recipient of the NSF CAREER and AFOSR YIP
awards.

PLACE
PHOTO
HERE

Todd P. Coleman (S’01-M’05-SM’11) received the
Ph.D. degree in electrical engineering from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 2005.

He was a postdoctoral scholar in neuroscience
at MIT and MGH during the 2005-2006 academic
year. He was an Assistant Professor in ECE and
Neuroscience at the University of Illinois from 2006-
2011. He is currently an Associate Professor in
Bioengineering and director of the Neural Interac-
tion Laboratory at UCSD. His research is highly

interdisciplinary and lies at the intersection of bio-electronics, neuroscience,
medicine, and applied mathematics. Dr. Coleman is a science advisor for the
Science & Entertainment Exchange (National Academy of Sciences).


