Superoxide

  1. Gu, M. & Imlay, J. A. Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol. Microbiol. 89, 123–134 (2013).
  2. Gu, M. & Imlay, J. A. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79, 1136–1150 (2011).
  3. Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77,755–776 (2008).
  4. Krishnakumar, R., Kim, B., Mollo, E. a., Imlay, J. A. & Slauch, J. M. Structural properties of periplasmic SodCI that correlate with virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 189, 4343–4352 (2007).
  5. Munroe, W. et al. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. J. Inorg. Biochem. 101,1875–1882 (2007).
  6. Korshunov, S. & Imlay, J. A. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J. Bacteriol. 188, 6326–34 (2006).
  7. Krishnakumar, R., Craig, M., Imlay, J. A. & Slauch, J. M. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar typhimurium strain 14028. J. Bacteriol. 186, 5230–5238 (2004).
  8. Imlay, J. A. What biological purpose is served by superoxide reductase? JBIC J. Biol. Inorg. Chem.7, 659–663 (2002).
  9. Korshunov, S. S. & Imlay, J. A. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol. Microbiol. 43,95–106 (2002).
  10. Messner, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571 (2002).
  11. Srinivasan, C., Liba, A., Imlay, J. A., Valentine, J. S. & Gralla, E. B. Yeast lacking superoxide dismutase(s) show elevated levels of ‘free iron’ as measured by whole cell electron paramagnetic resonance. J. Biol. Chem. 275, 29187–29192 (2000).
  12. Messner, K. R. & Imlay, J. A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 274, 10119–10128 (1999).
  13. Gort, A. S., Ferber, D. M. & Imlay, J. A. The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol. Microbiol. 32, 179–191 (1999).
  14. Gort, A. S., Imlay, J. A. & Gort, A. M. Balance between endogenous superoxide stress and antioxidant defenses. J. Bacteriol. 180, 1402–1410 (1998).
  15. Imlay, K. R. & Imlay, J. A. Cloning and analysis of sodC , encoding the copper-zinc superoxide dismutase of Escherichia coli. Microbiology 178, 2564–2571 (1996).
  16. Keyer, K. & Imlay, J. A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. U. S. A. 93, 13635–13640 (1996).
  17. Imlay, J. A. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. Journal of Biological Chemistry 270, 19767–19777 (1995).
  18. Kargalioglu, Y. & Imlay, J. A. Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. J. Bacteriol. 176, 7653–7658 (1994).
  19. Imlay, J. A. & Fridovich, I. Isolation and genetic analysis of a mutation that suppresses the auxotrophies of superoxide dismutase-deficient Escherichia coli K12. Mol. Gen. Genet. 228, 410–416 (1991).
  20. Imlay, J. A. & Fridovich, I. Superoxide Production by Respiring Membranes of Escherichia Coli. Free Radic. Res. 12, 59–66 (1991).
  21. Imlay, J. A. & Fridovich, I. Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 266, 6957–65 (1991).