

### Anamelechi Falasy \* and Richard Cooke

#### Department of Agricultural and Biological Engineering University of Illinois, Urbana — Champaign, Illinois, USA

The *Illini Drainage Tools* [IDTs] are a series of "one-click QGIS processing" plugins being developed in the Department of Agricultural Engineering at the University of Illinois. These tools were developed to simplify the design of subsurface drainage systems and have been placed in the public domain to make them available to a broad audience. They also reduce the level of technical or GIS expertise required for designing a drainage system. These easy-to-use tools have been successfully used to optimize the design and layout of subsurface drainage systems at the University of Illinois South Farm. They are free, are compatible with all versions of QGIS3, and are available for download from the official QGIS Plugin Repository - (<a href="https://plugins.qgis.org/plugins/illini\_drainage\_tools/">https://plugins.qgis.org/plugins/illini\_drainage\_tools/</a>). They can also be accessed from the Illinois Drainage Guide - (<a href="https://publish.illinois.edu/illinoisdrainageguide/illini-drainage-tools/">https://publish.illinois.edu/illinoisdrainageguide/illini-drainage-tools/</a>). The GUI for all the routines in the IDTs is comprised of a main window with two different input sections (A, B) and a usage information window (C), which are organized using tabs. In the main window, Section A contains the input parameters that are essential for the tools to work, while Section B defines the output data files resulting from running the tools. For the optimal benefit of these routines, we recommend that you do not use them in isolation as each precedes the next one: "A to P".

- Illini Drainage Tools a. Coordinates Harmonization
  - b. LiDARThAn c. Plot Field Laylines

  - d. Tile Layout Grids
  - e. Tile Node Generator
  - f. Tile Node Connectivity
  - g. Tile Network Generator
  - h. Network Flow Lines
  - i. Tile Network Orders
  - j. End Point Elevations
  - k. Network Flow Lengths
  - I. Network Elevation Exports
  - m. Tile Burying System
  - n. Network Pipe Sizing
  - o. Sized Pipe Estimations
  - p. Tile Spreadsheet ReadOut

Figure 1. QGIS Table of Content for the Illini Drainage Tools

<sup>\*</sup>Corresponding author at: Department of Agricultural and Biological Engineering (ABE), University of Illinois, Urbana-Champaign, Illinois, USA. E-mail addresses: falasya2@illinois.edu (A. FALASY).

## a. Coordinates Harmonization:

This routine – **Coordinates Harmonization** – helps to ensure that the same coordinate system is applied to both datasets of vector and raster layers respectively. It creates two new layers with the exact same features and geometries. This routine can also be used to repair layers which have been assigned an incorrect projection. The user interface for this routine is shown in figure 2.

#### Input Data Requirements:

- a. Select Raster DEM (LiDAR) Layer
- b. Select any Vector Shapefile Layer (e.g., Boundary or/and line data)
- c. Specify the Targeted CRS (Coordinate Reference System)

#### Output Datafiles (Optional):

- a. New Raster DEM Layer
- b. New Vector Shapefile Layer (e.g., Boundary or/and line data)

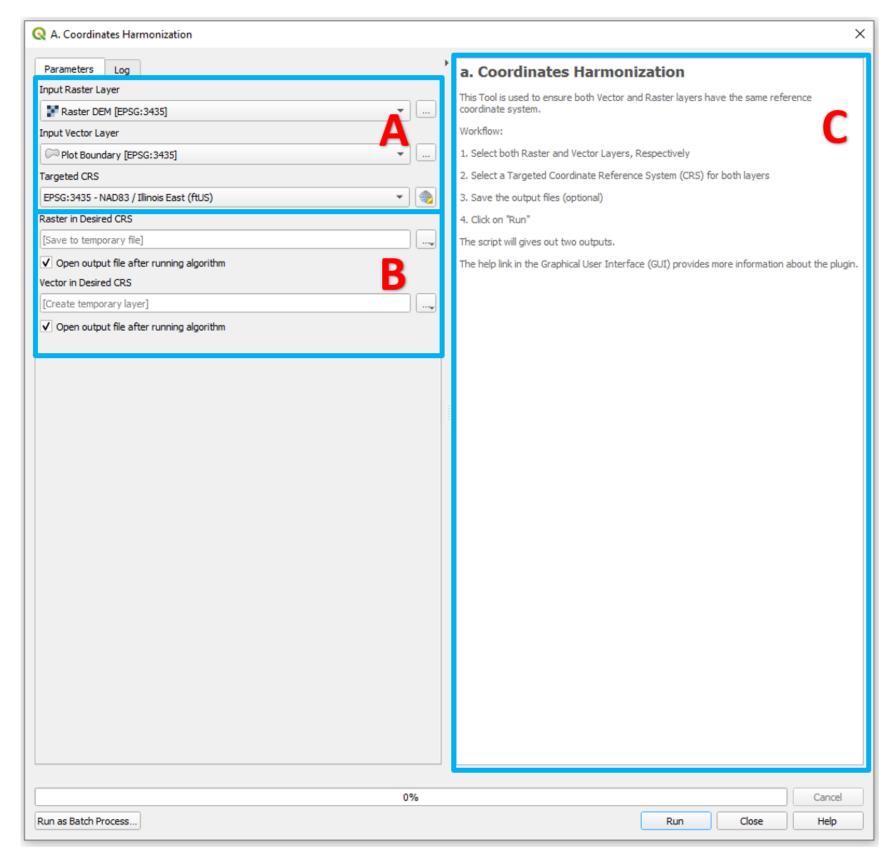



Figure 2. Graphical User Interface of the "Coordinates Harmonization" Routine

## b. LiDARThAn:

Raster LIDAR data is now used for the design of many agricultural or conservation systems in the Midwest. One such use is for the design of drainage systems. LiDARThAn (**LiDAR Thinning Analysis**), the interface of which is shown in Figure 3, was developed to reduce the density of point cloud data based on a specified threshold spacing. This routine can be used for boundary extraction, DEM resampling, pixels point conversion, and the extraction of point-elevation data. The results from successfully testing the new routine (Figure 4) show both a LiDAR DEM thinned to the desired pixel size, and dots on and within the boundary of the extracted area. Each dot of the grid represents a point feature with spatial reference in a point sampling design.

#### Input Data Requirements:

- a. Select Raster DEM (LiDAR) Layer
- b. Select Polygon Vector Shapefile Layer (e.g., Boundary data)
- c. Specify Desired Pixel Size (Ft)

#### Output Datafiles (Optional):

- a. New Raster DEM Layer
- b. Three New Point Vector Shapefile Layers

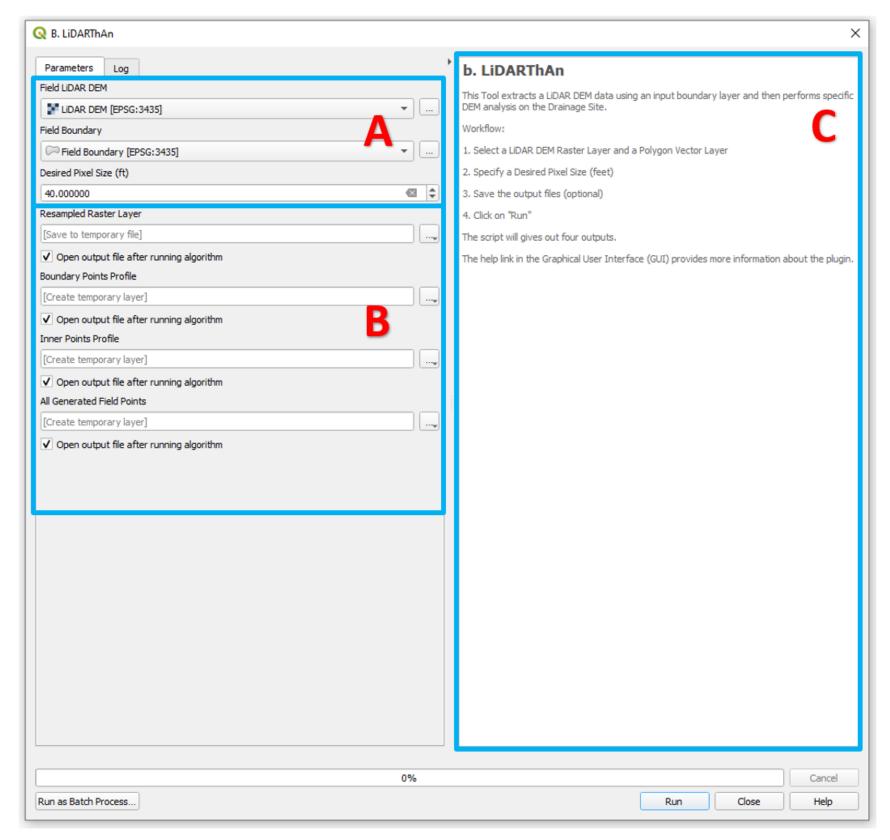



Figure 3. Graphical User Interface of the "LiDARThAn" Routine



Figure 4. LiDARThAn Routine Result

# c. Plot Field Laylines:

The use of LiDAR DEM data has facilitated watershed-based design, and the identification and sizing of run-on areas and depressions. Developing a drainage system layout traditionally includes the generation of contour lines from elevation data and the use of these contour lines to inform the layout of laterals and mains. Experienced designers can identify high points, plateaus, draws or depressions from contour lines, and incorporate these into system layout. However, drainage system layout is somewhat of an art and even experienced contractors can produce distinct design layouts using the same topographic data. Inexperienced contractors or producers

may have difficulty visualizing surface features or flow pathways from contour lines. This routine - **Plot Field Laylines** - produces drainage nets, consisting of contour lines and surface flow pathways, herein called LAYLINES, to help visualize surface features, and thereby simplify drainage system layout, particularly for inexperienced designers. These drainage nets are analogous to flow nets, comprising equipotential lines and streamlines, that are used for steady-state subsurface flow visualization and flow determination, particularly in regions with irregular geometries. Like equipotential lines and streamlines, contour lines and LAYLINES are at right angles to each other. The interface for this routine is shown in Figure 5, and a drain net is shown in Figure 6.

#### Input Data Requirements:

- a. Select the Original Raster DEM (LiDAR) Layer (e.g., 4 x 4-pixel size)
- b. Select the Thinned Raster DEM (LiDAR) Layer (e.g., 40 x 40-pixel size)
- c. Select a Polygon Vector Shapefile Layer (e.g., Boundary data)
- d. Specify the Desired Contour Line Interval (Ft)
- e. Specify the Investigating Raster Depth Difference (Ft)

#### Output Datafiles (Optional):

- a. New Raster DEM Layer (a.k.a. Depression DEM)
- b. Three New Line Vector Shapefile Layers

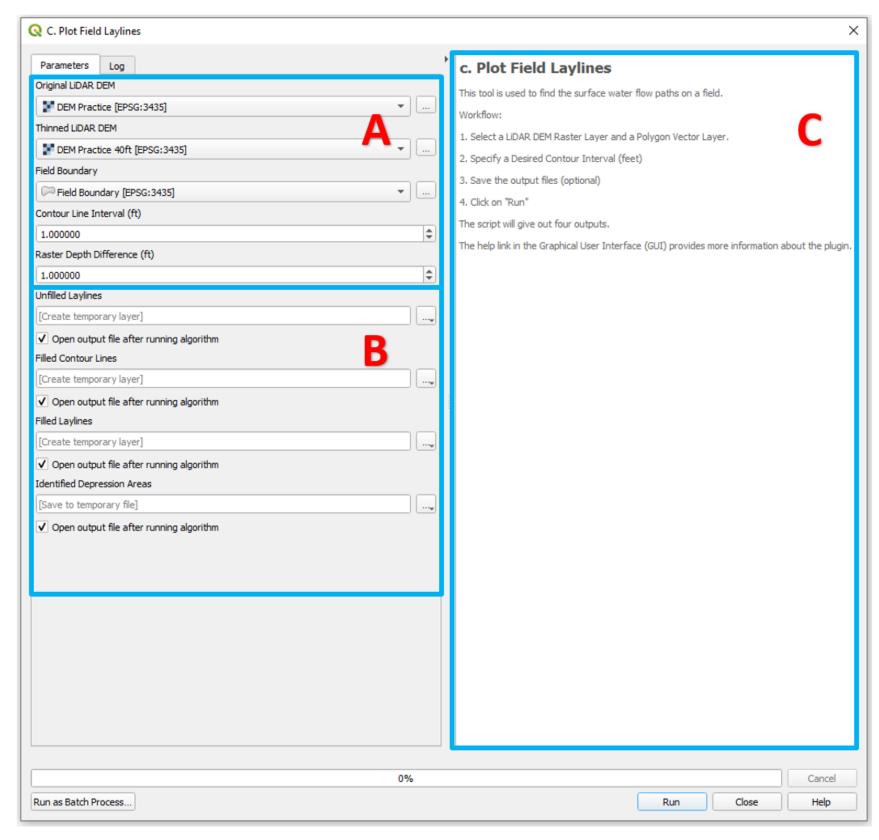
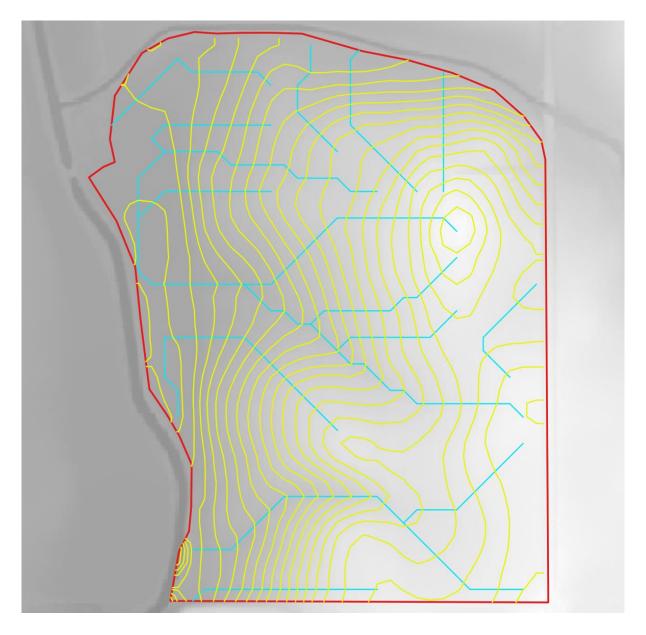
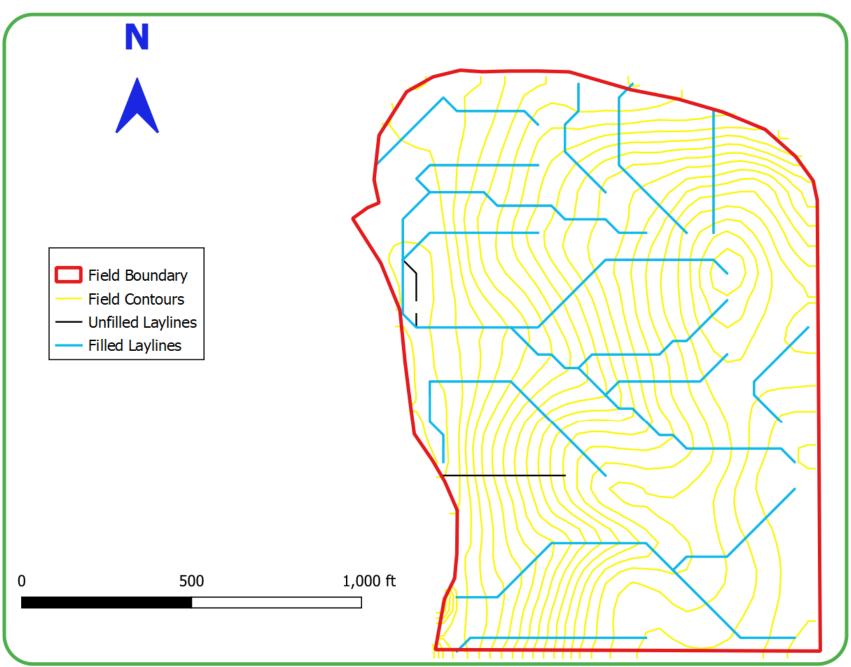





Figure 5. Graphical User Interface of the "Plot Field Laylines" Routine





**Figure 6. Plot Field Laylines Routine Result** 

Additionally, Figure 7 highlights the depression in the DEM resulting from the difference between the elevation details of both the thinned DEM and the DEM with filled sinks. The "White Area" within the boundary indicates the existence of depressions at specified depths in the field. With this information, surface inlet points can be located within the field boundary.

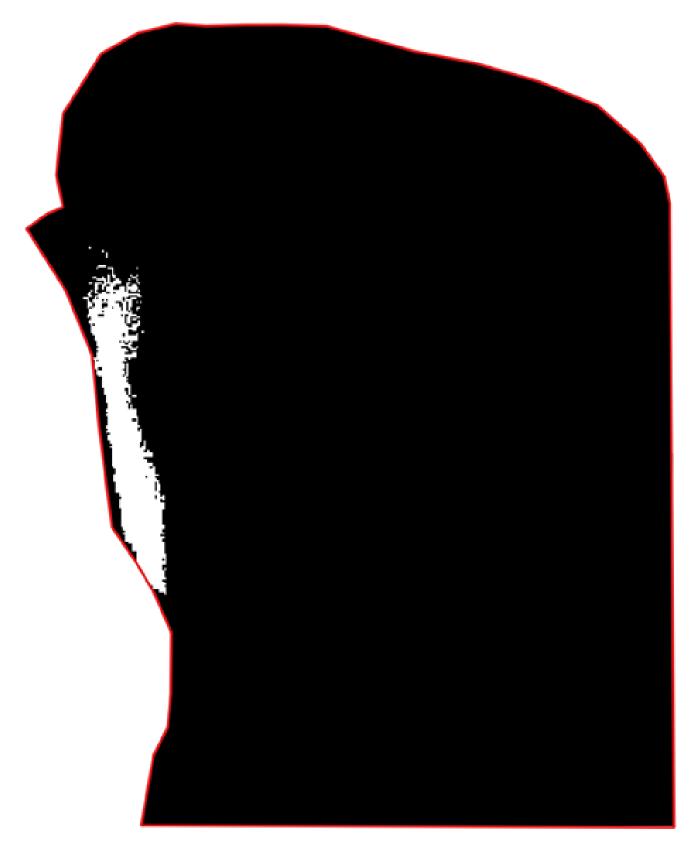



Figure 7. Raster DEM with Depression Areas in "White"

# d. Tile Layout Grids:

This routine - **Tile Layout Grids** – produces guidelines, in the form of overlay-grids, to assist in drainage system layout. The line spacing and grid angle are user specified (Figure 8). An example output is given in Figure 9.

### Input Data Requirements:

- a. Zoom Out on the Map Canvas and Select the "Map Canvas Extent" Option
- b. Select Targeted CRS (Coordinate Reference System)
- c. Specify Drain Spacing (Horizontal and Vertical, in Ft)
- d. Specify Rotation Angle for the Perpendicular Gridlines
- e. Indicate the Grid Center on the Map Canvas

a. Two New Vector Shapefile Layers (Grid Lines: Linear and Perpendicular)

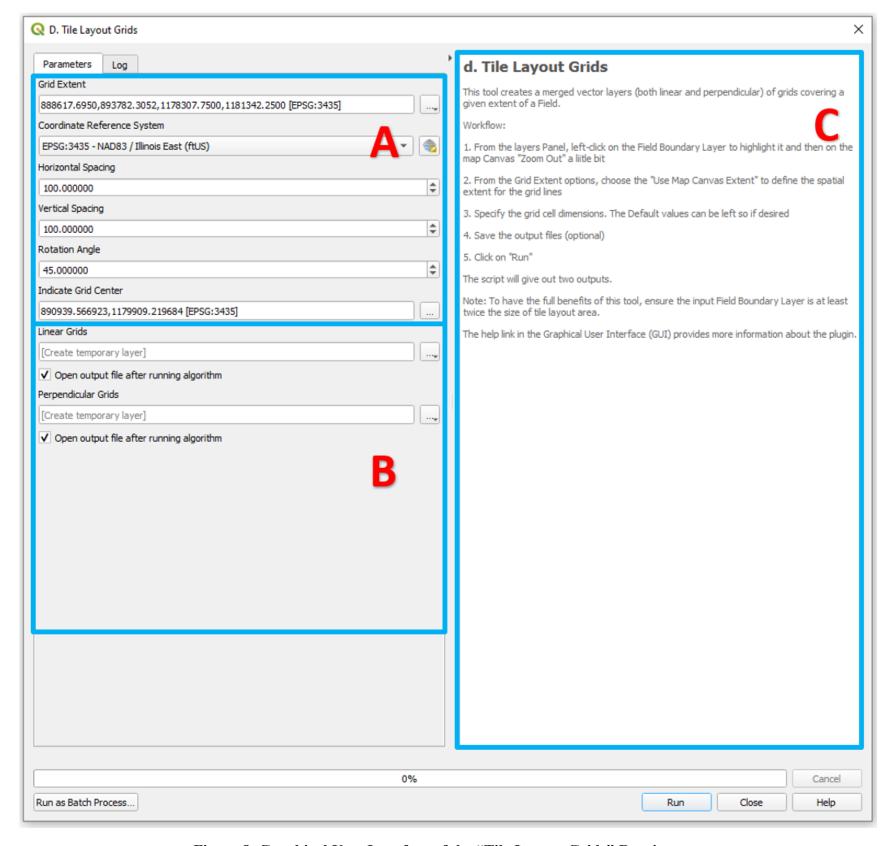
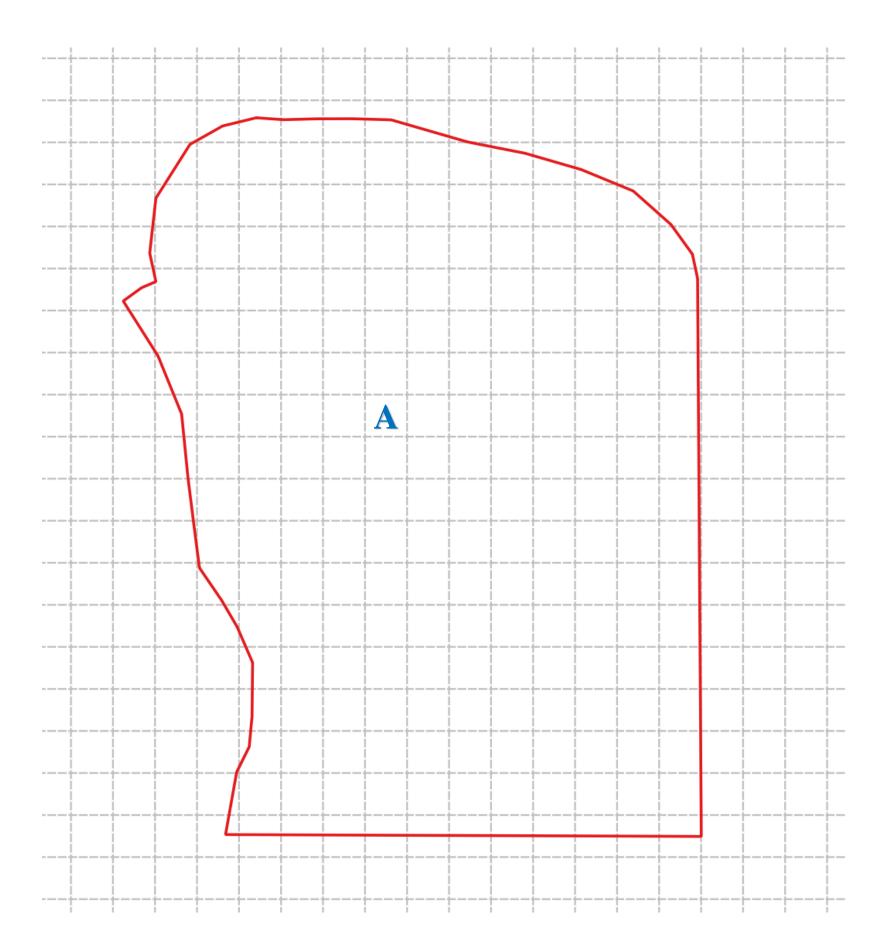




Figure 8. Graphical User Interface of the "Tile Layout Grids" Routine



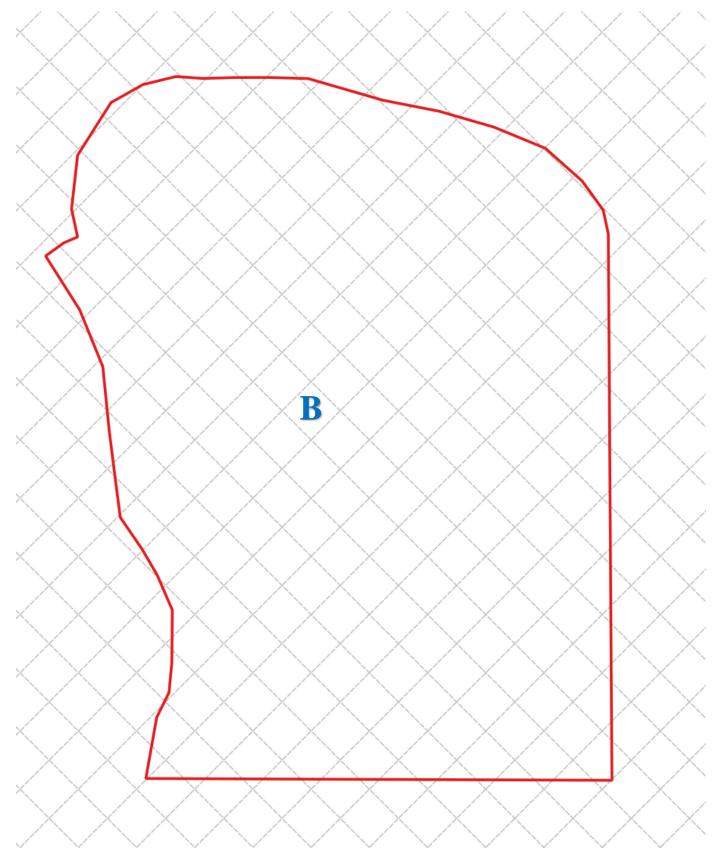



Figure 9. Overlay-Grid Lines: Linear (A) and Perpendicular (B)

## e. Tile Node Generator:

This routine is the first stage of the process to produce a topologically sound network from a digitized tile layout. In practice, these tile lines are often not laid out as topologically sound networks. The tile lines may not be all connected and may not be consistently drawn from upstream to downstream or vice versa. No matter the design complexity, the **Tile Node Generator** routine generates geometrically aligned nodes when applied. The interface is shown in Figures 10.

Depending on the layout of the system, the routines perform the following sequence of tasks:

- a. Extends the endpoint of each line segment to connect with another line, thus forming a node from fractured lines.
- b. Dissolves attributes to aggregate all fracture lines features into a single feature line layer.
- c. Extracts nodes at the endpoints and intersections, if any) of each line segment
- d. Generates location coordinates for these newly generated points.
- e. Snaps the endpoint nodes of a line segment to another node within a specified tolerance.

Figure 11 shows a drainage system layout, discontinuities in the system, and the nodes generated by the node generator.

#### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Hydraulic Layout data)
- b. Specify the Extended Distances from both Starting and Ending Points (Ft)
- c. Select Targeted CRS (Coordinate Reference System)

### Output Datafiles (Optional):

a. New Node Vector Shapefile Layer (e.g., Point data)

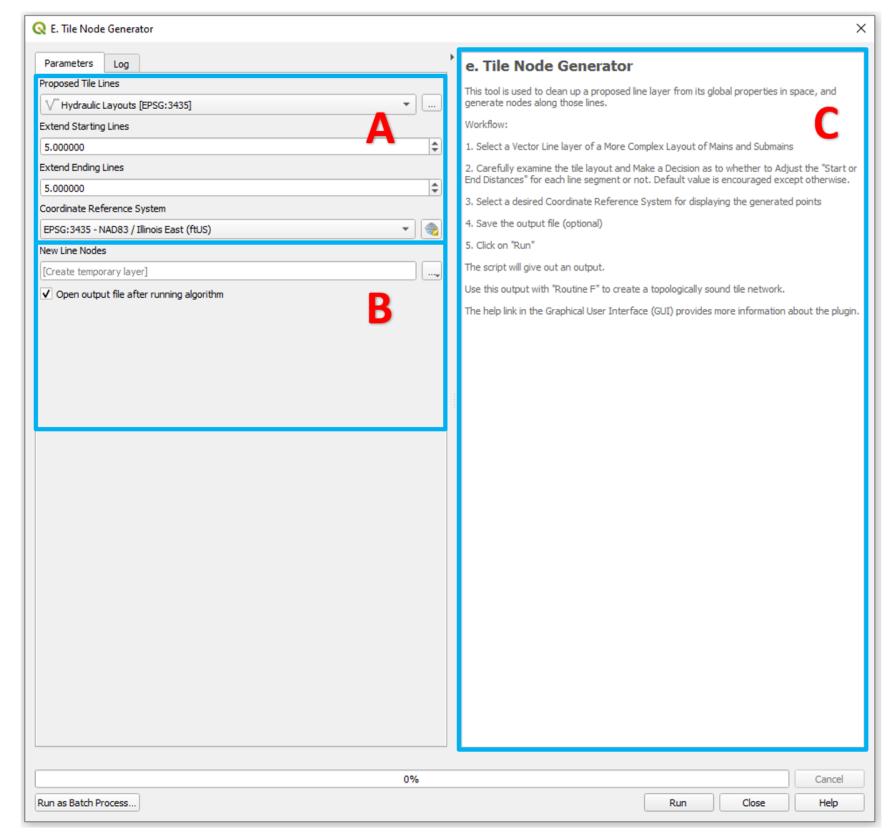



Figure 10. Graphical User Interface of the "Tile Node Generator" Routine



Starting from Routines F - P, their respective input follows the output from the preceding Routine. For example, the input file for Routine F is the output from Routine E, and so on until Routine P.

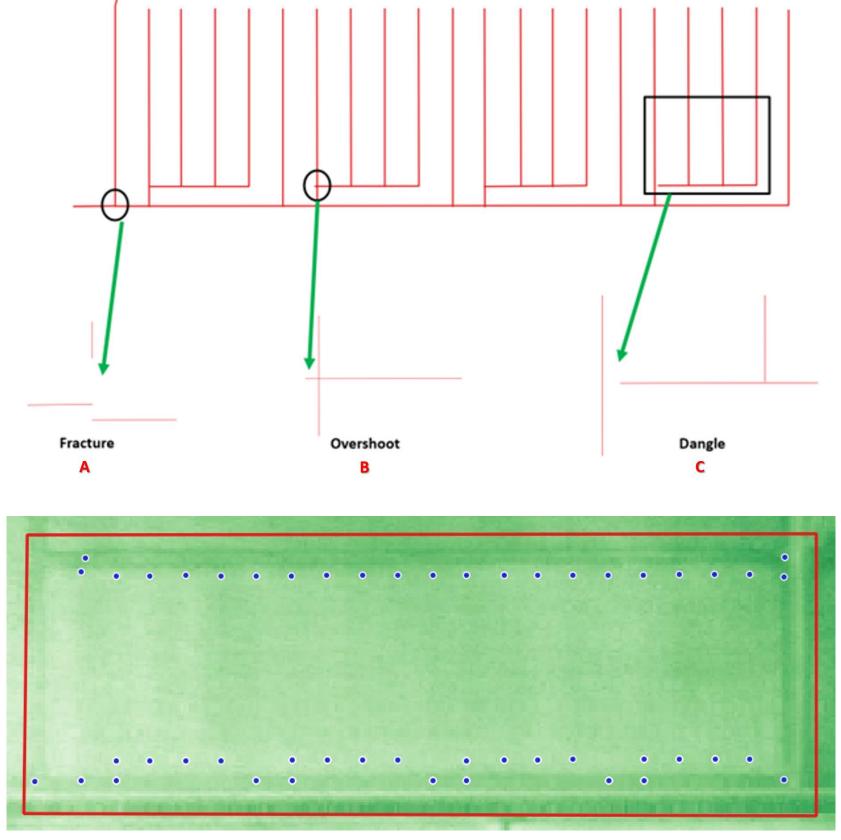



Figure 11. Drainage system with discontinuities and the nodes generated to correct them

# f. Tile Network Connectivity:

This routine, **Tile Network Connectivity**, is the final stage of the process involved in creating a topologically sound tile network. It uses the output from either node generator to perform the following tasks:

- I. Creates a new line layer by connecting the features from the nodes together.
- II. Fix issues related to line geometry, such as adding geometry attributes and removing line features with null entries in the attributes.
- III. Explodes the lines into line segments like in the original proposed tiles line.

The interface for the routine, and the results of two network generation steps at one discontinuity, are shown in Figures 12 and 13, respectively.

#### Input Data Requirements:

- a. Select a Node Vector Shapefile Layer (e.g., Point data)
- b. Select the named Fields ("Vertex Part Index" & "Group Vertex Part")

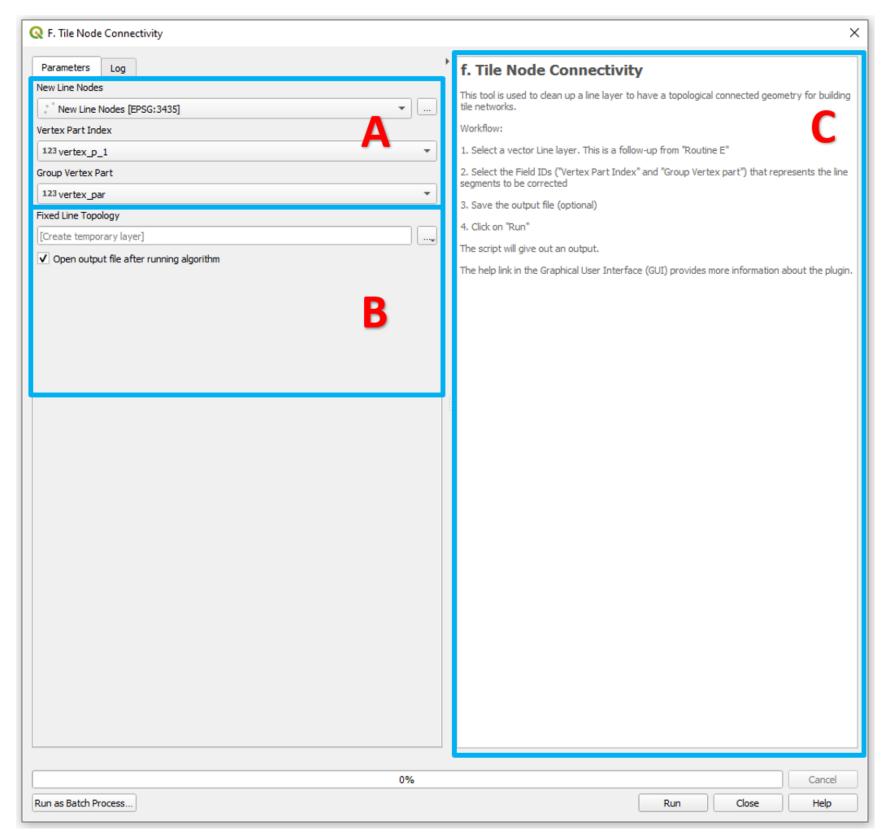



Figure 12. Graphical User Interface of the "Tile Network Connectivity" Routine

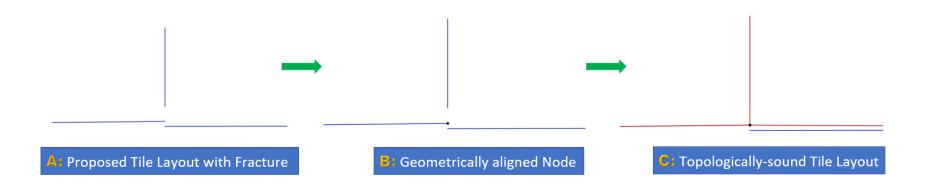



Figure 13. Fixing Flow Process: Topologically Sound Tile Line

# g. Tile Network Generator:

The **Tile Network Generator** routine, with interface shown in Figure 14, uses the output generated from the **Tile Network Connectivity** routine to reorient line segments so that the beginning and end nodes of each is consistently upstream and downstream, respectively, and identifies line segments immediately upstream and downstream of each line segment. This routine requires the specification of the outlet line segment (Figure 15). The outlet line segment is easily selected on the map canvas from the corrected network layer using the "Select Feature by Area or Single Click" tool in QGIS. Figure 16 shows the log from the routine with the number of unconnected segments highlighted (zero after this correction). Figure 17 shows a side-by-side comparison of the original digitized tile layout, and the corrected network.

#### Input Data Requirements:

a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Line data)

#### Output Datafiles (Optional):

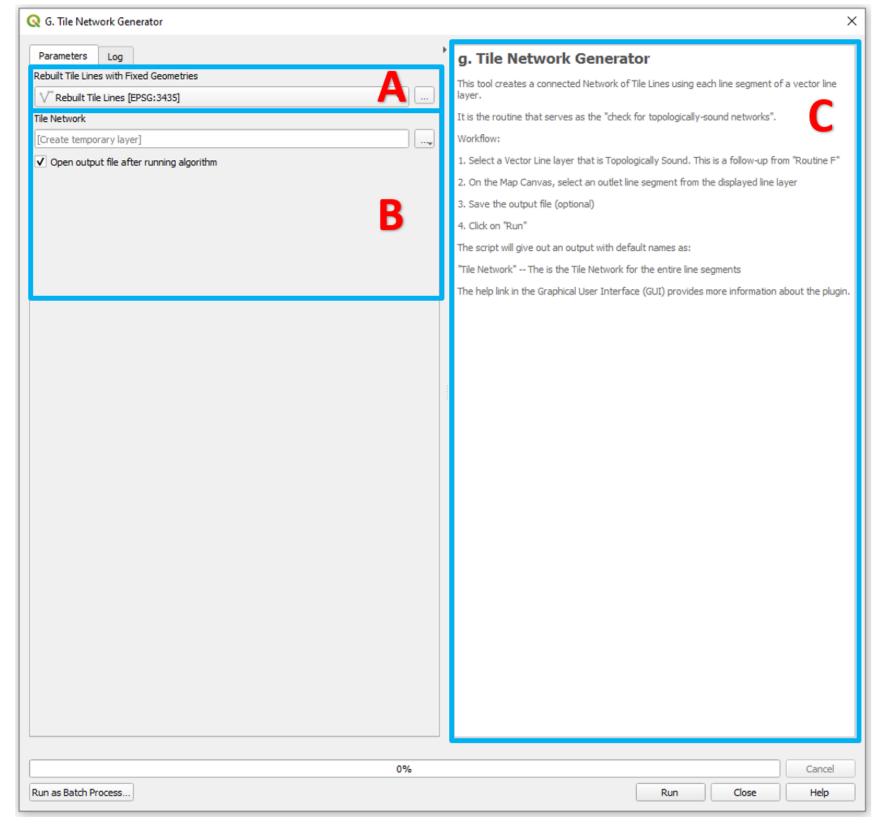



Figure 14. Graphical User Interface of the "Tile Network Generator" Routine



Figure 15. Selected Downstream Outlet Point in the Tile Layout

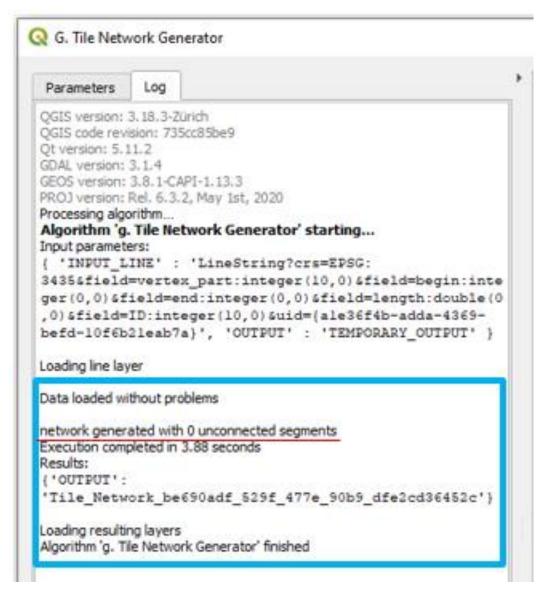



Figure 16. Tile Network Generator Routine Result

| Tile_ID | Tile_TO     | Tile_FROM   |
|---------|-------------|-------------|
| 1       | unconnected | unconnected |
| 2       | unconnected | unconnected |
| 3       | unconnected | unconnected |
| 4       | unconnected | unconnected |
| 5       | unconnected | unconnected |
| 6       | unconnected | unconnected |
| 7       | unconnected | unconnected |
| 8       | unconnected | unconnected |
| 9       | unconnected | unconnected |
| 10      | unconnected | unconnected |
| 11      | unconnected | unconnected |
| 12      | unconnected | unconnected |
| 13      | unconnected | unconnected |
| 14      | unconnected | unconnected |
| 15      | unconnected | unconnected |
| 16      | unconnected | unconnected |
| 17      | unconnected | unconnected |
| 18      | unconnected | unconnected |
| 19      | Out         | 19          |
| 20      | unconnected | unconnected |
|         | Α           |             |

Figure 17. Attribute Table (A) Unsound Network (B) Sound Network

# h. Network Flow Lines:

The routine, **Network Flow Lines**, with interface shown in Figure 18, was developed to determine the flow line path in the tile layout. Flow lines are useful for visualizing flow patterns, wake formation and circulation in layout designs. The results from this routine indicate the direction of flow from the downstream outlet to the upstream inlet of the line segments (Figure 19).

#### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Tile Network Line data)
- b. Select the named Fields ("TILE\_FROM" & "TILE\_TO")

### Output Datafiles (Optional):

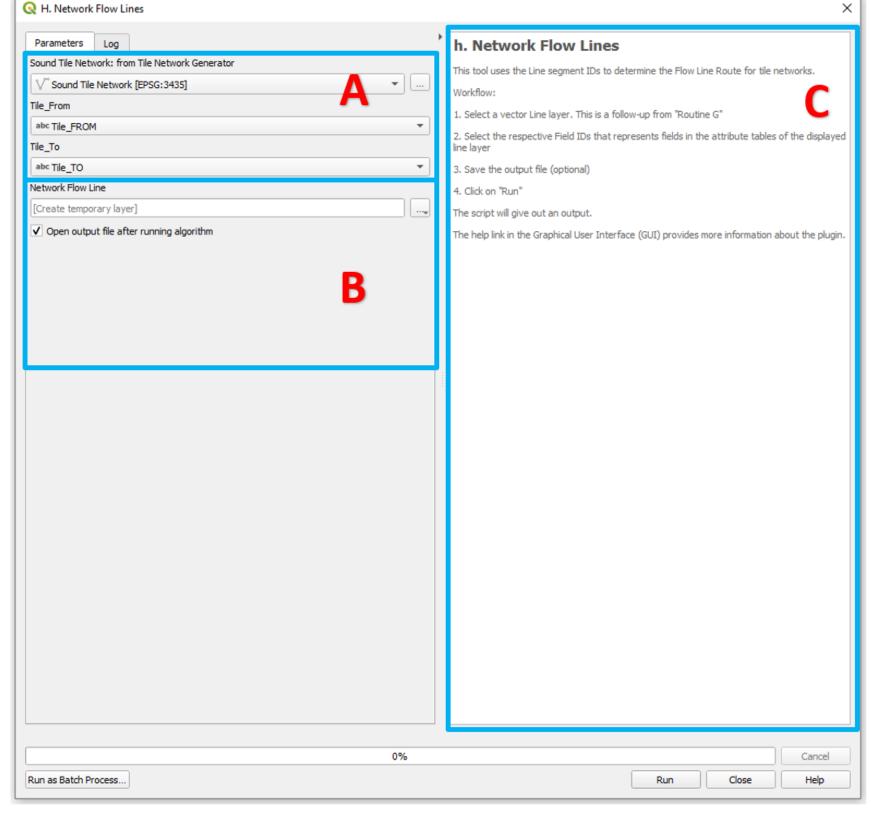



Figure 18. Graphical User Interface of the "Network Flow Lines" Routine

|    | <br> |    |    |    | - F                        |
|----|------|----|----|----|----------------------------|
| 8  | 6    | 8  | 3  | 1  | Inlet Point                |
| 7  | 4    | 7  | 2  | 2  |                            |
| 6  | 4    | 6  | 13 | 3  |                            |
| 5  | 2    | 5  | 1  | 4  |                            |
| 4  | 2    | 4  | 12 | 5  |                            |
| 3  | 13   | 3  | 9  | 6  |                            |
| 2  | 13   | 2  | 11 | 7  |                            |
| 13 | 12   | 13 | 8  | 8  |                            |
| 1  | 12   | 1  | 10 | 9  |                            |
| 12 | 9    | 12 | 7  | 10 |                            |
| 9  | 11   | 9  | 4  | 11 | ₩                          |
| 11 | 10   | 11 | 6  | 12 | Downstream<br>Outlet Point |
| 10 | Out  | 10 | 5  | 13 |                            |
|    |      |    |    |    |                            |
| ~  |      | 10 |    |    | 8 6 4 2                    |
| 7  |      |    |    |    |                            |
|    |      |    |    |    |                            |

FLOW\_LINE

TILE\_FLOW

**Upstream** 

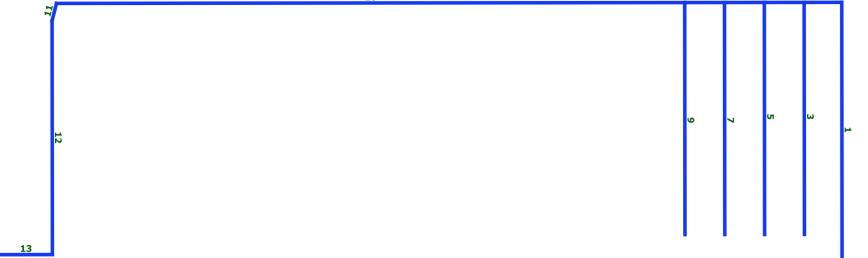



Figure 19. Layout Flow Line: Upstream Inlet to Downstream Outlet Points

## i. Tile Network Orders:

TILE\_ID

TILE\_TO

TILE\_FROM

The routine, **Tile Network Orders**, with interface shown in Figure 21, was developed by applying the "Top Down" principle of Strahler Stream Order (Figure 20) to determine the Flow Order for each line segment in the tile network. The routine determines two Stream Orders: (a) "Flow\_Order" with respect to the Flow\_Line field in the attribute table (b) "Tile\_Order" with respect to the Tile\_ID field in the attribute table (Figure 22a). This provides a hierarchical system within the tile network layout. This ordering of the line segments in tile network layout reflects the flow strength in the drainage system and forms the basis of important hydrographical indicators of its structure, such as its drainage density and frequency.

#### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Network Flow Line data)
- b. Select the named Fields ("TILE\_FROM", "TILE\_TO" & "FLOW\_LINE")

#### Output Datafiles (Optional):

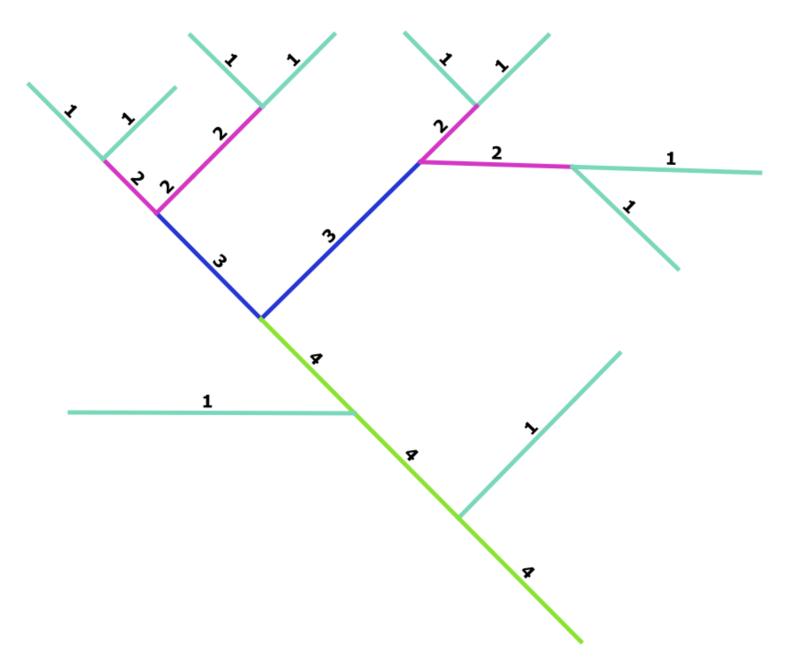



Figure 20. Strahler Stream Ordering

In Figure 20, the number 1 stands for the First-order, which represents the smallest and most numerous streams in the river network, in this case the lateral lines in the tile network. When two first-order streams merge, they form a Second-order, which is represented by the number 2. Order 2 and above refers to the sub-mains in the tile network layout. As a principle, when two streams of the same order converge, they create a higher stream order. However, when two streams of different orders converge, the stream order remains the same as the higher stream order. This same pattern continues until the last order (e.g., Fourth-Order) for the Main is determined in the network. This Strahler Stream Order is exemplified in Figure 22b.

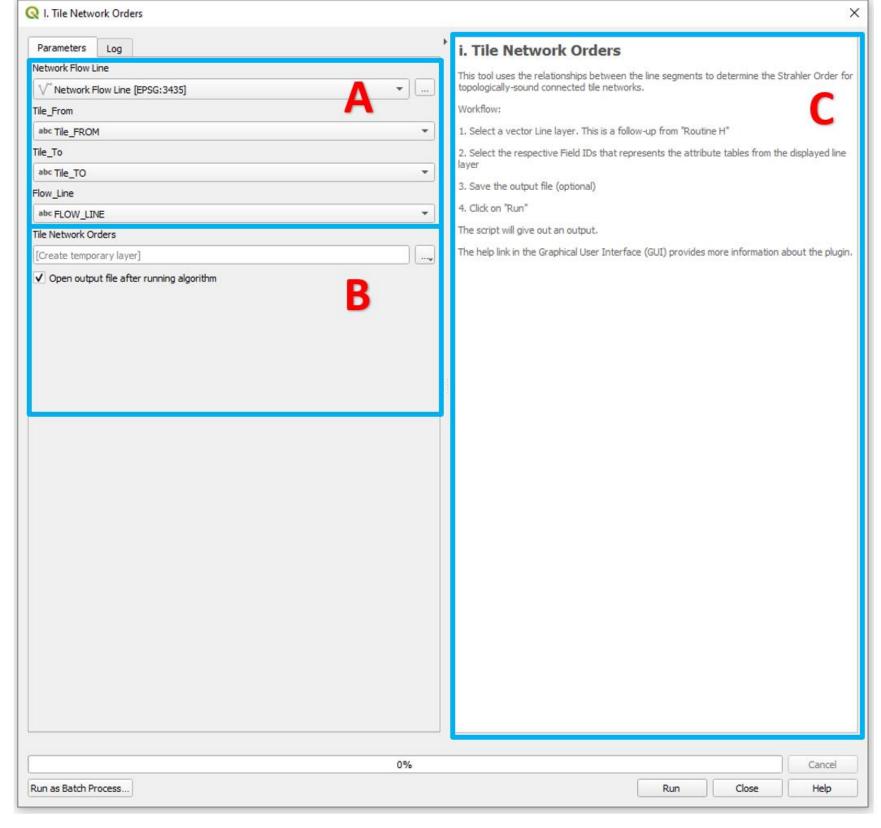



Figure 21. Graphical User Interface of the "Tile Network Orders" Routine

| TILE_ID | TILE_TO | TILE_FROM | FLOW_LINE | TILE_FLOW | FLOW_ORDER | TILE | ORDER      |   | Upstream                |
|---------|---------|-----------|-----------|-----------|------------|------|------------|---|-------------------------|
| 8       | 6       | 8         | 3         | 1         | 1          | 1    |            |   | Inlet Point             |
| 7       | 4       | 7         | 2         | 2         | 2          | 1    |            |   |                         |
| 5       | 4       | 6         | 13        | 3         | 2          | 1    |            |   |                         |
| 5       | 2       | 5         | 1         | 4         | 1          | 1    |            |   | - 1                     |
| 1       | 2       | 4         | 12        | 5         | 2          | 2    |            |   |                         |
| 3       | 13      | 3         | 9         | 6         | 2          | 1    |            |   |                         |
| 2       | 13      | 2         | 11        | 7         | 2          | 2    |            |   |                         |
| 3       | 12      | 13        | 8         | 8         | 1          | 2    |            |   |                         |
| I       | 12      | 1         | 10        | 9         | 2          | 1    |            |   |                         |
| 2       | 9       | 12        | 7         | 10        | 1          | 2    |            |   |                         |
| )       | 11      | 9         | 4         | 11        | 2          | 2    |            |   | <u>-</u>                |
| 1       | 10      | 11        | 6         | 12        | 1          | 2    |            |   | <b>D</b> (              |
| 0       | Out     | 10        | 5         | 13        | 1          | 2    |            |   | Downstream Outlet Point |
| ~       |         |           | 2         | A         |            |      | 2 2        | 2 | 1                       |
| 2       |         |           |           | В         |            | ı    | . <b>+</b> | - | 1 1                     |

Figure 22. Flow according to the layout Tile Order: Attribute table (A) and Screen Display (B)

# j. End Point Elevations:

The **End Point Elevations** routine, with interface shown in Figure 23 drapes a DEM over the tile network, to add four additional fields in the attribute table for the tile network. The four fields are the starting and ending endpoint elevations, the true length, and the slope of each line segment (Figure 24).

### Input Data Requirements:

- a. Select the Original Raster DEM (LiDAR) Layer (e.g., 4 x 4-pixel size)
- b. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Tile Network Orders Line data)
- c. Specify the Multiplying Factor Value for the Line Segments (Note: Default value can be left)

#### Output Datafiles (Optional):

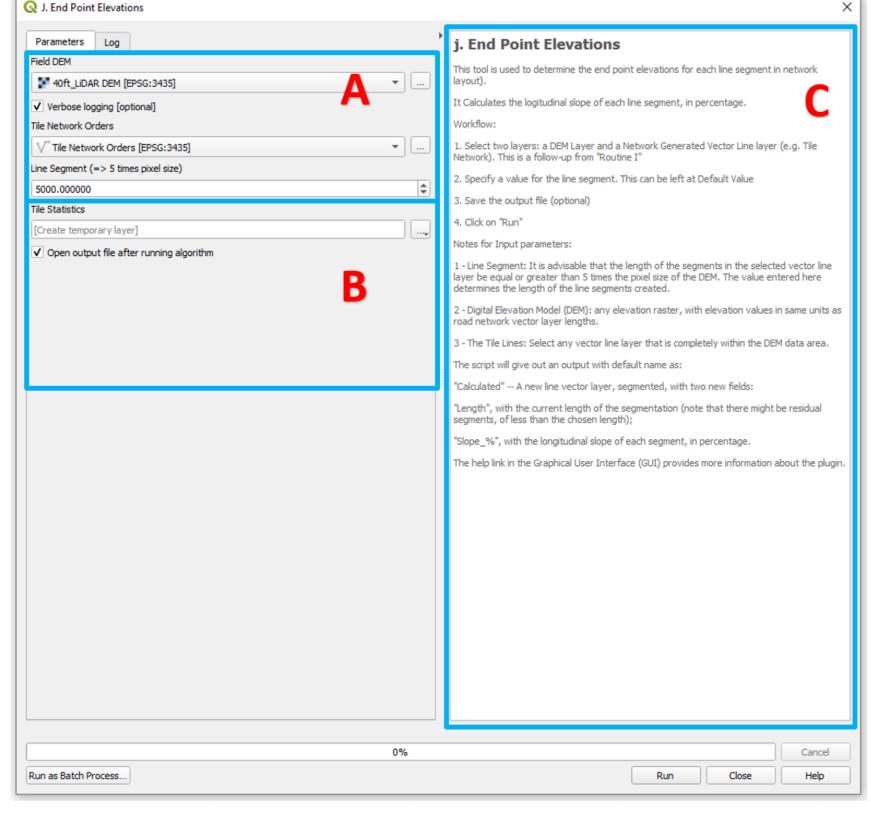



Figure 23. Graphical User Interface of the "End Point Elevations" Routine

| Elev_last      | LENGTH                                                                                                                                                                                                                                                                                                                                                                                 | Seg_Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 694.0092163100 | 142.8766218800                                                                                                                                                                                                                                                                                                                                                                         | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 696.9258422900 | 138.5440168200                                                                                                                                                                                                                                                                                                                                                                         | 0.0211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 705.2492065400 | 742.4822643700                                                                                                                                                                                                                                                                                                                                                                         | 0.0151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 706.1771850600 | 730.4726272100                                                                                                                                                                                                                                                                                                                                                                         | 0.0127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 700.4616088900 | 142.8773866900                                                                                                                                                                                                                                                                                                                                                                         | 0.0247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 699.2117309600 | 143.0582213900                                                                                                                                                                                                                                                                                                                                                                         | 0.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 707.2774658200 | 503.1237499400                                                                                                                                                                                                                                                                                                                                                                         | 0.0221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 702.6737060500 | 142.8758656900                                                                                                                                                                                                                                                                                                                                                                         | 0.0155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 707.2675170900 | 651.0281864700                                                                                                                                                                                                                                                                                                                                                                         | 0.0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 707.9921875000 | 374.3810990300                                                                                                                                                                                                                                                                                                                                                                         | 0.0235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 701.2834472700 | 138.7231237700                                                                                                                                                                                                                                                                                                                                                                         | 0.0149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 702.4991455100 | 140.8906725800                                                                                                                                                                                                                                                                                                                                                                         | 0.00863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 705.7767944300 | 106.1574384500                                                                                                                                                                                                                                                                                                                                                                         | 0.0309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 707.4672241200 | 250.2349434200                                                                                                                                                                                                                                                                                                                                                                         | 0.0247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 704.0334472700 | 140.7098671500                                                                                                                                                                                                                                                                                                                                                                         | 0.00966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 707.0338745100 | 557.7922450100                                                                                                                                                                                                                                                                                                                                                                         | 0.00782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 690.8399047900 | 103.0920615300                                                                                                                                                                                                                                                                                                                                                                         | 0.0116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 707.1461181600 | 456.8924040600                                                                                                                                                                                                                                                                                                                                                                         | 0.00681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 692.0083618200 | 101.1574384500                                                                                                                                                                                                                                                                                                                                                                         | 0.0116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 704.4528198200 | 140.7122925500                                                                                                                                                                                                                                                                                                                                                                         | 0.00298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 694.0092163100<br>696.9258422900<br>705.2492065400<br>706.1771850600<br>700.4616088900<br>699.2117309600<br>707.2774658200<br>702.6737060500<br>707.2675170900<br>707.9921875000<br>707.9921875000<br>701.2834472700<br>702.4991455100<br>705.7767944300<br>705.7767944300<br>707.4672241200<br>704.0334472700<br>707.0338745100<br>690.8399047900<br>707.1461181600<br>692.0083618200 | 694.0092163100         142.8766218800           696.9258422900         138.5440168200           705.2492065400         742.4822643700           706.1771850600         730.4726272100           700.4616088900         142.8773866900           699.2117309600         143.0582213900           707.2774658200         503.1237499400           707.26737060500         142.8758656900           707.9921875000         374.3810990300           701.2834472700         138.7231237700           702.4991455100         140.8906725800           705.7767944300         106.1574384500           707.4672241200         250.2349434200           704.0334472700         140.7098671500           707.0338745100         557.7922450100           690.8399047900         103.0920615300           707.1461181600         456.8924040600           692.0083618200         101.1574384500 |

Figure 24. Attribute Table from after running the End Point Elevation Routine

# k. Network Flow Lengths:

The routine, **Network Flow Lengths**, with interface shown in Figure 25, was developed to determine the cumulative flow lengths for all connected adjoining line segments, upstream to downstream, of the network in the tile layout. It adds an additional field called FLOW\_LENGTH, in the attribute table for the tile network (Figure 26).

### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Tile Network Statistics Line data)
- b. Select the named Fields ("LENGTH", "TILE\_ID", "TILE\_TO", & "TILE\_FROM")

### Output Datafiles (Optional):

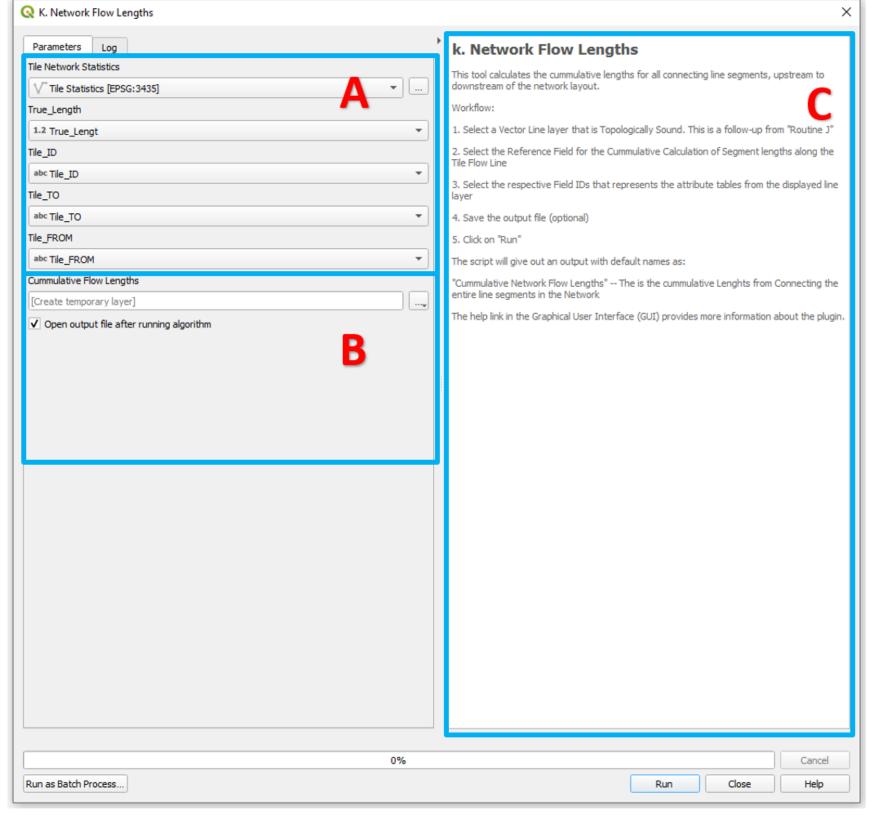



Figure 25. Graphical User Interface of the "Network Flow Lengths" Routine

| Elev_first   | Elev_last    | LENGTH       | Seg_Slope      | FLOW_LENGTH    |
|--------------|--------------|--------------|----------------|----------------|
| 692.00836182 | 694.00921631 | 142.87662188 | 0.014004071930 | 4349.3801894   |
| 694.00921631 | 696.92584229 | 138.54401682 | 0.021051980785 | 3464.02130315  |
| 694.00921631 | 705.24920654 | 742.48226437 | 0.015138395581 | 742.48226437   |
| 696.92584229 | 706.17718506 | 730.47262721 | 0.012664872611 | 730.47262721   |
| 696.92584229 | 700.46160889 | 142.87738669 | 0.024746859401 | 2595.00465912  |
| 696.14587402 | 699.21173096 | 143.05822139 | 0.021430833615 | 1153.445498639 |
| 696.14587402 | 707.27746582 | 503.12374994 | 0.022124957927 | 503.12374994   |
| 700.46160889 | 702.67370605 | 142.87586569 | 0.015482650966 | 1801.099085960 |
| 700.46160889 | 707.26751709 | 651.02818647 | 0.010454091453 | 651.02818647   |
| 699.21173096 | 707.9921875  | 374.38109903 | 0.023453258091 | 374.38109903   |
| 699.21173096 | 701.28344727 | 138.72312377 | 0.014934181509 | 636.00617822   |
| 701.28344727 | 702.49914551 | 140.89067258 | 0.008628663755 | 247.04811103   |
| 702.49914551 | 705.77679443 | 106.15743845 | 0.030875358032 | 106.15743845   |
| 701.28344727 | 707.46722412 | 250.23494342 | 0.024711883822 | 250.23494342   |
| 702.67370605 | 704.03344727 | 140.70986715 | 0.009663439014 | 1100.430975260 |
| 702.67370605 | 707.03387451 | 557.79224501 | 0.007816832340 | 557.79224501   |
| 689.64544678 | 690.83990479 | 103.09206153 | 0.011586323837 | 13392.15757497 |
| 704.03344727 | 707.14611816 | 456.89240406 | 0.006812700019 | 456.89240406   |
| 690.83990479 | 692.00836182 | 101.15743845 | 0.011550876019 | 6307.889064869 |
| 704.03344727 | 704.45281982 | 140.71229255 | 0.002980354753 | 502.8287040500 |
|              |              |              |                |                |

Figure 26. Attribute Table from after running the Network Flow Lengths Routine

# I. Network Elevation Exports:

The routine, **Network Elevation Points**, with interface shown in Figure 27, was developed to generate elevation points for each line segment of the tile network. The outputs from this routine as shown in Figure 28 are used by the **Tile Burying System** and the **Network Pipe Sizing** routines.

#### Input Data Requirements:

- a. Select the Original Raster DEM (LiDAR) Layer (e.g., 4 x 4-pixel size)
- b. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Tile Cumulative flow Lengths Line data)
- c. Select the named Field: "TILE\_ID."
- d. Select Targeted CRS (Coordinate Reference System)

### Output Datafiles (Optional):

- a. New Line Vector Shapefile Layer (e.g., Line data)
- b. Two New Node Vector Shapefile Layers (e.g., Point datasets)
- c. New CSV Spreadsheet Files into a Folder

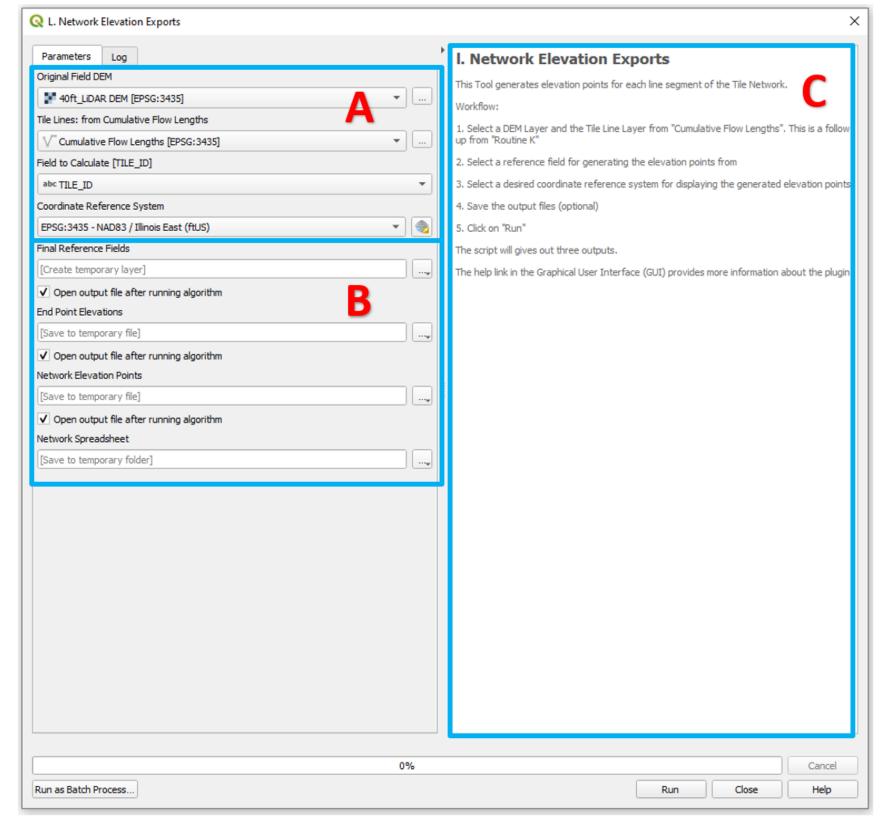



Figure 27. Graphical User Interface of the "Network Elevation Exports" Routine

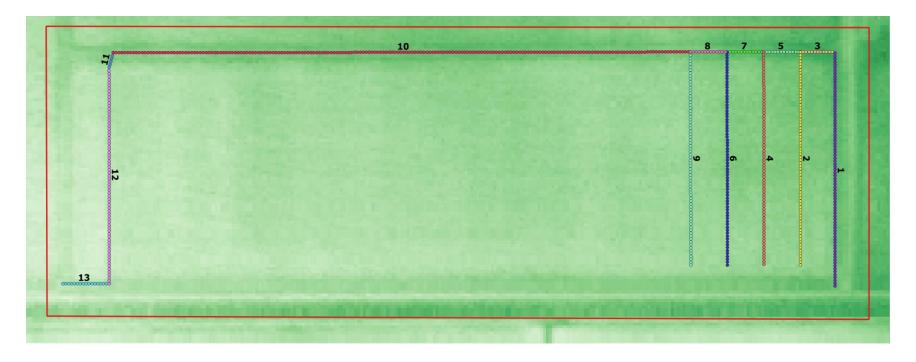



Figure 28. Results from after running the Network Elevation Exports Routine

## m. Tile Burying System:

A new routine, **Tile Burying System [TBS]**, was developed for subsurface drainage systems to bury a distribution of tile networks. The routine has minimal input requirements; a line layer of tile network with its routing fields, and the specification of maximum and minimum required buried depths and slopes (Figure 29). The output includes fields for the buried elevations, slope points, and buried depths of points along the main(s) and laterals, in the attribute table for the tile network (Figure 30). Also, a significant part of the tool is highlighted in B, an optional input parameter section for the field terrain. The default option is left unchecked as most fields have some measure of steepness. When checked, the tool determines the tile elevation buried depth for fields with flat terrains. The routine is intended for use for both simple and complex systems by inexperienced designers or do-it-yourself producers.

#### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Tile Network with Referenced Fields Line data)
- b. Select the named Fields ("BURY\_ORDER", "LENGTH", "Elev\_first", & "Elev\_last")
- c. Specify the Burying Parameters (Note: Default value can be left)
- d. Decide on Constant Slope based on Field Topography (Optional)

#### Output Datafiles (Optional):

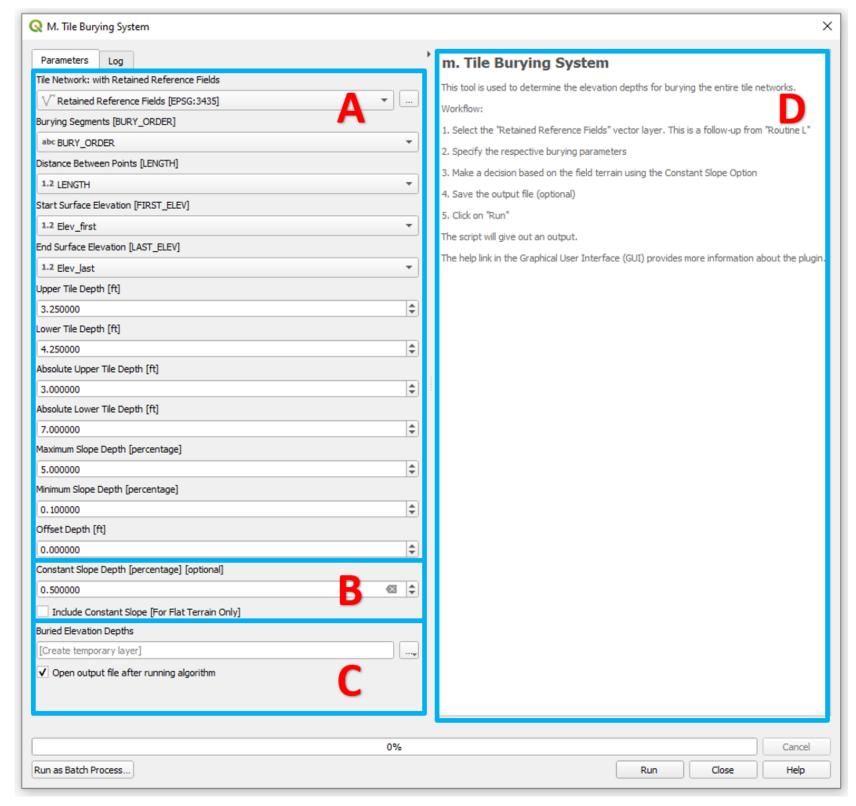



Figure 29. Graphical User Interface of the "Tile Burying System" Routine

Figures 30 and 31 show the attribute tables and the corresponding screen display illustrating the different outputs after running the *Tile Burying System* [TBS] tool. The two Figures (30 and 31) compare the values of the elevation depths, for different field terrain as indicated with whether a constant slope is applied when burying or not. When buried with a constant slope, the tile layout follows a relatively straight line as shown in Figure 30 but follows the shape of the terrain when applied without a constant slope as shown in Figure 31.

| Elev_first | Elev_last | ElevDepth1 | BuryDepth1 | ElevDepth2 | BuryDepth2 | InSlope |
|------------|-----------|------------|------------|------------|------------|---------|
| 689.6454   | 690.84    | 685.89545  | 3.75       | 687.0899   | 3.75       | 0.0116  |
| 690.8399   | 692.008   | 687.0899   | 3.75       | 692.51415  | 0.50578719 | 0.005   |
| 690.8399   | 690.975   | 687.0899   | 3.75       | 691.4787   | 0.50323945 | 0.005   |
| 691.0134   | 690.84    | 691.51212  | 0.49875071 | 687.0899   | 3.75       | 0.005   |
| 692.0084   | 694.009   | 692.51415  | 0.50578719 | 694.7236   | 0.71438311 | 0.005   |
| 692.0084   | 696.146   | 692.51415  | 0.50578719 | 697.14978  | 1.00391094 | 0.005   |
| 690.9755   | 691.005   | 691.4787   | 0.50323945 | 691.51652  | 0.51108683 | 0.005   |
| 690.9755   | 693.278   | 691.4787   | 0.50323945 | 694.00513  | 0.72711843 | 0.005   |
| 691.3951   | 691.013   | 691.90104  | 0.50589732 | 691.51212  | 0.49875071 | 0.005   |
| 691.0134   | 696.28    | 691.51212  | 0.49875071 | 697.63288  | 1.35278519 | 0.005   |
| 694.0092   | 696.926   | 694.7236   | 0.71438311 | 697.61856  | 0.69272008 | 0.005   |
| 694.0092   | 705.249   | 694.7236   | 0.71438311 | 708.96162  | 3.71241132 | 0.005   |
| 696.1459   | 699.212   | 697.14978  | 1.00391094 | 699.92702  | 0.71529111 | 0.005   |
| 696.1459   | 707.277   | 697.14978  | 1.00391094 | 709.79308  | 2.51561875 | 0.005   |
| 691.0054   | 692.152   | 691.51652  | 0.51108683 | 692.65503  | 0.50329167 | 0.005   |
| 691.0054   | 696.175   | 691.51652  | 0.51108683 | 697.30427  | 1.12915615 | 0.005   |
| 691.3951   | 699.642   | 691.90104  | 0.50589732 | 701.43177  | 1.78961828 | 0.005   |
| 691.9793   | 691.395   | 692.47747  | 0.49815789 | 691.90104  | 0.50589732 | 0.005   |
| 696.9258   | 706.177   | 697.61856  | 0.69272008 | 709.82955  | 3.65236314 | 0.005   |
| 696.9258   | 700.462   | 697.61856  | 0.69272008 | 701.176    | 0.71438693 | 0.005   |
| 699.2117   | 707.992   | 699.92702  | 0.71529111 | 709.86409  | 1.8719055  | 0.005   |
| 699.2117   | 701.283   | 699.92702  | 0.71529111 | 701.97706  | 0.69361562 | 0.005   |
| 692.1517   | 700.424   | 692.65503  | 0.50329167 | 702.02491  | 1.60132145 | 0.005   |
| 692.1517   | 693.438   | 692.65503  | 0.50329167 | 693.94951  | 0.51103462 | 0.005   |
| 691.9793   | 700.239   | 692.47747  | 0.49815789 | 702.53411  | 2.29540167 | 0.005   |

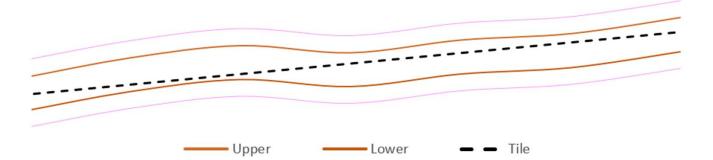



Figure 30. Attribute Table showing the Elevation Depths buried at Constant Slope

| Elev first | Elev last | ElevDepth1 | BuryDepth1 | ElevDepth2 | BuryDepth2 | InSlope |
|------------|-----------|------------|------------|------------|------------|---------|
| 689.645    | 690.84    | 685.89545  | 3.75       | 687.0899   | 3.75       | 0.01159 |
| 690.84     | 692.008   | 687.0899   | 3.75       | 688.25836  | 3.75       | 0.01155 |
| 690.84     | 690.975   | 687.0899   | 3.75       | 687.22546  | 3.75       | 0.00135 |
| 691.013    | 690.84    | 687.26337  | 3.75       | 687.0899   | 3.75       | 0.00174 |
| 692.008    | 694.009   | 688.25836  | 3.75       | 690.25922  | 3.75       | 0.014   |
| 692.008    | 696.146   | 688.25836  | 3.75       | 692.39587  | 3.75       | 0.02061 |
| 690.975    | 691.005   | 687.22546  | 3.75       | 691.10765  | 0.1022174  | 0.001   |
| 690.975    | 693.278   | 687.22546  | 3.75       | 689.52802  | 3.75       | 0.01583 |
| 691.395    | 691.013   | 687.64514  | 3.75       | 687.26337  | 3.75       | 0.00377 |
| 691.013    | 696.28    | 687.26337  | 3.75       | 692.53009  | 3.75       | 0.01947 |
| 694.009    | 696.926   | 690.25922  | 3.75       | 693.17584  | 3.75       | 0.02105 |
| 694.009    | 705.249   | 690.25922  | 3.75       | 701.49921  | 3.75       | 0.01514 |
| 696.146    | 699.212   | 692.39587  | 3.75       | 695.46173  | 3.75       | 0.02143 |
| 696.146    | 707.277   | 692.39587  | 3.75       | 703.52747  | 3.75       | 0.02212 |
| 691.005    | 692.152   | 691.10765  | 0.1022174  | 692.25239  | 0.1006583  | 0.001   |
| 691.005    | 696.175   | 691.10765  | 0.1022174  | 692.42511  | 3.75       | 0.00583 |
| 691.395    | 699.642   | 687.64514  | 3.75       | 695.89215  | 3.75       | 0.02304 |
| 691.979    | 691.395   | 688.22931  | 3.75       | 687.64514  | 3.75       | 0.00586 |
| 696.926    | 706.177   | 693.17584  | 3.75       | 702.42719  | 3.75       | 0.01266 |
| 696.926    | 700.462   | 693.17584  | 3.75       | 696.71161  | 3.75       | 0.02475 |
| 699.212    | 707.992   | 695.46173  | 3.75       | 704.24219  | 3.75       | 0.02345 |
| 699.212    | 701.283   | 695.46173  | 3.75       | 697.53345  | 3.75       | 0.01493 |
| 692.152    | 700.424   | 692.25239  | 0.1006583  | 696.67358  | 3.75       | 0.0138  |
| 692.152    | 693.438   | 692.25239  | 0.1006583  | 693.54068  | 0.1022069  | 0.001   |
| 691.979    | 700.239   | 688.22931  | 3.75       | 696.48871  | 3.75       | 0.01799 |

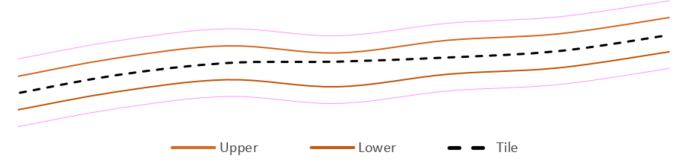



Figure 31. Attribute Table showing the Elevation Depths buried without Constant Slope

# n. Network Pipe Sizing:

The **Network Pipe Sizing** routine, with interface shown in Figure 32 was developed for estimating the pipe sizes for a tile network layout. The routine relies on the Tile Order, Cumulative Flow Length, and the Burying Slope (Inslope) for each line segment, for determining the pipe size. The output includes fields for the actual and nominal pipe sizes for each line segment in the attribute table of the tile network layout (Figure 34).

#### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Buried Elevation Depths Line data)
- $b. \ \ Select the named Fields ("Tile\_ID", "TILE\_TO", "TILE\_ORDER", "FLOW\_LENGTHS", \& "InSlope")\\$
- c. Specify the Drain Spacing and Type of Pipe Material
- d. Specify the Drainage Intensity
- e. Decide on How to Assign Value for the Drainage Coefficient: By System Assigned (A) By Line Segments, or (C) By Orders)

### Output Datafiles (Optional):

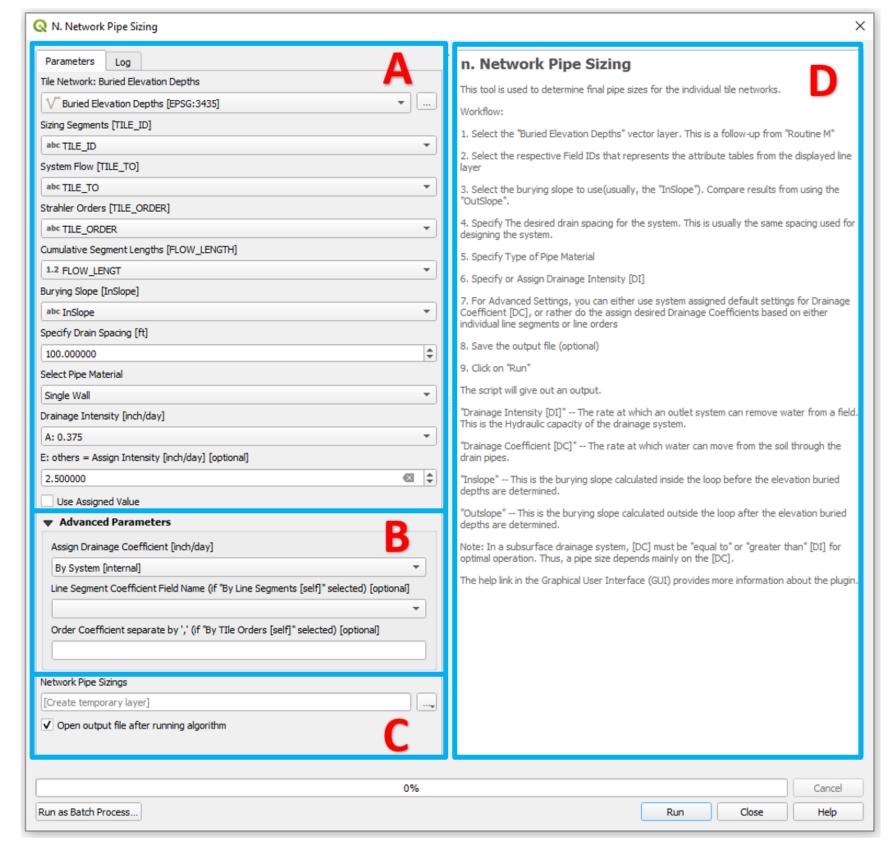



Figure 32. Graphical User Interface of the "Network Pipe Sizing" Routine

Figure 33 shows the other two options by which the Drainage Coefficient (DC) value can be determined and assigned. These two options require more painstaking efforts to assign the values by self. These advanced options by Routine P are for experienced designers and contractors.

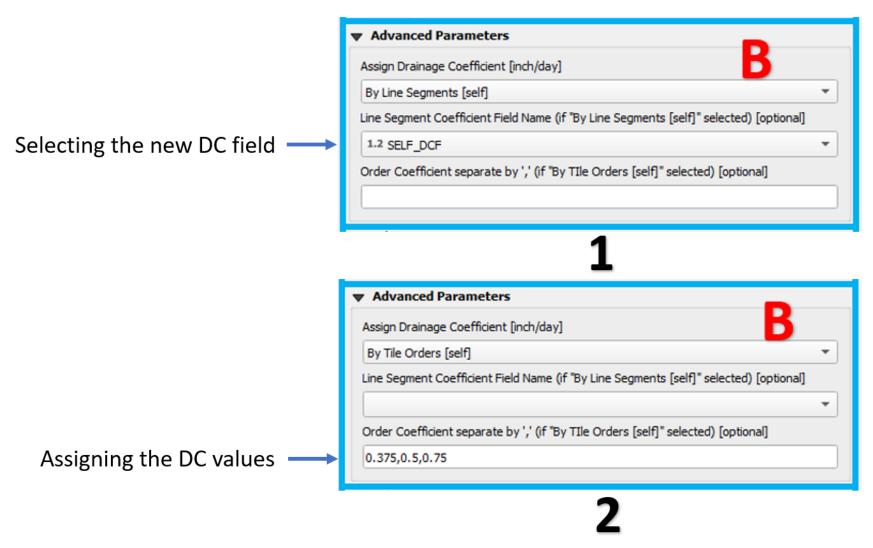



Figure 33. Advanced options for self-assigned DC values: (1) By Line Segments (2) By Tile Segment Orders

| InSlope        | OutSlope       | D_COEFF | SYSTEM_FLOW    | ACTUAL_SIZE      | NOMINAL | Upstream                   |
|----------------|----------------|---------|----------------|------------------|---------|----------------------------|
| 0.004686798633 | 0.001          | 0.46875 | 0.693023487271 | 7.890362783700   | 8       | Inlet Point                |
| 0.005          | 0.001          | 0.46875 | 0.563228996650 | 7.212001287510   | 8       |                            |
| 0.005          | 0.001          | 0.46875 | 0.436444328674 | 6.554238473428   | 8       | I                          |
| 0.005          | 0.001          | 0.46875 | 0.323000114616 | 5.854636314496   | 6       |                            |
| 0.005          | 0.001          | 0.375   | 0.010589808025 | 1.625106963490   | 4       |                            |
| 0.005          | 0.010589040562 | 0.46875 | 0.199986164567 | 4.891295493973   | 5       | •                          |
| 0.005          | 0.001          | 0.375   | 0.010589784386 | 1.625105603150   | 4       |                            |
| 0.005          | 0.001          | 0.46875 | 0.126145893608 | 4.115061570855   | 5       |                            |
| 0.005          | 0.001          | 0.375   | 0.010589757073 | 1.625104031357   | 4       |                            |
| 0.005          | 0.001          | 0.46875 | 0.067820146153 | 3.26068194754029 | 4       |                            |
| 0.005          | 0.001          | 0.375   | 0.010589726077 | 1.625102247587   | 4       |                            |
| 0.005          | 0.001          | 0.375   | 0.025009102688 | 2.243033240905   | 4       | Dougstrass                 |
| 0.005          | 0.003082398511 | 0.375   | 0.011643753981 | 1.683967871489   | 4       | Downstream<br>Outlet Point |

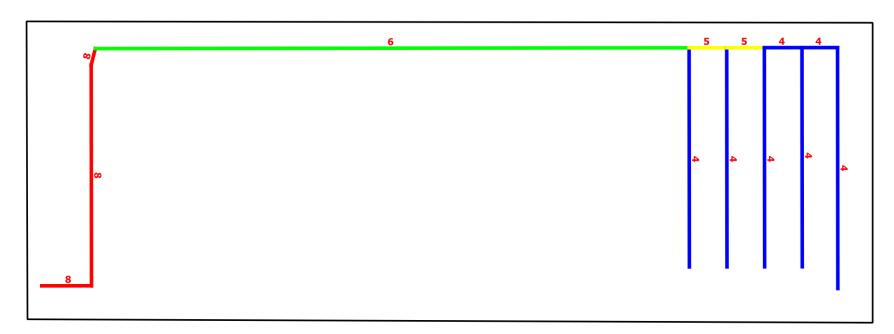



Figure 34. Layout pipe sizes from after running the Network Pipe Sizing

# o. Sized Pipe Estimations:

This new routine, **Sized Pipe Estimations**, with interface shown in Figure 35 was developed as a tool for generating possible pipe prices for the different sizes determined using their frequencies and total lengths. The tool also renders the vector line layer into different sized pipes and then estimates the cost based on the values in Figure 36. The estimations are done simultaneously across the entire drainage network for all four (4) types of pipe materials featured in the **Network Pipe Sizing** tool, namely: Single-Wall, Smooth-Wall, Clay-Wall, and Concrete-Wall. Figure 37 shows the attribute table after running the *Sized Pipe Estimations* tool. These estimations give insight on the possible economic implications of using different pipe material types. This tool is sequel to the **Network Pipe Sizing** tool since it uses its output as input layer.

#### Input Data Requirements:

- a. Select a Line Vector Shapefile Layer (e.g., Topologically-sound Buried Elevation Depths Line data)
- b. Select the named Fields ("NOMINAL\_SIZE" & "LENGTH")

### Output Datafiles (Optional):

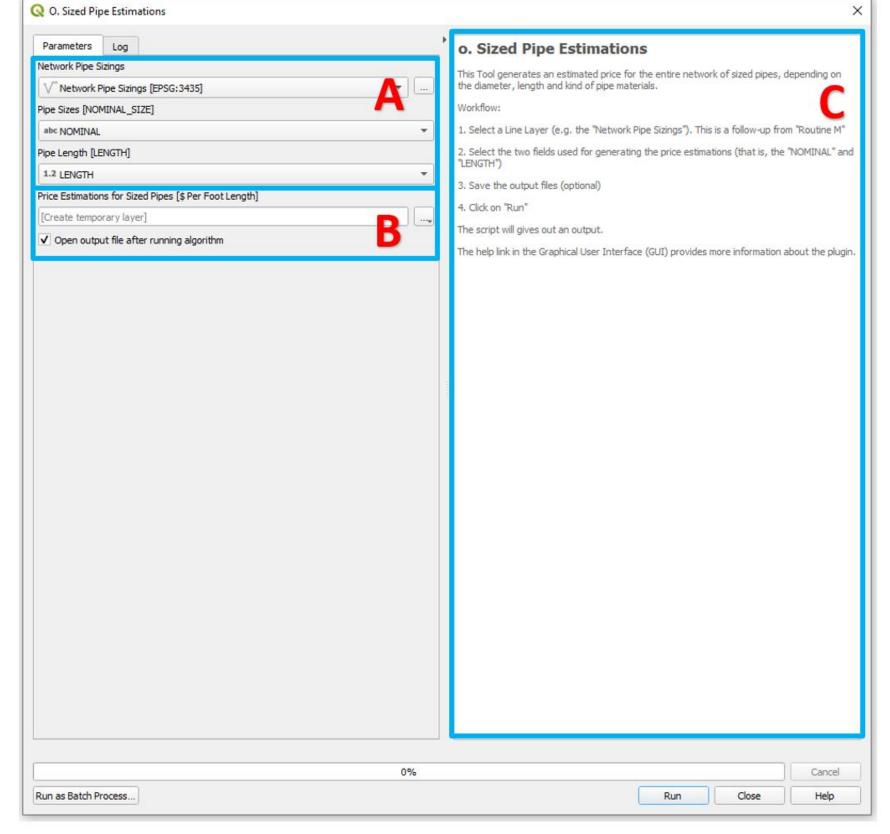



Figure 35. Graphical User Interface of the "Sized Pipe Estimations" Routine

| Naminal Dina Cigas | Pipe Types with Prices per Linear Foot [\$] |             |           |               |  |  |  |
|--------------------|---------------------------------------------|-------------|-----------|---------------|--|--|--|
| Nominal Pipe Sizes | Single-Wall                                 | Smooth-Wall | Clay-Wall | Concrete-Wall |  |  |  |
| 4                  | 2                                           | 3           | 12        | 15            |  |  |  |
| 5                  | 3                                           | 4           | 15        | 20            |  |  |  |
| 6                  | 4                                           | 5           | 18        | 25            |  |  |  |
| 8                  | 5                                           | 7           | 25        | 40            |  |  |  |
| 10                 | 8                                           | 10          | 30        | 50            |  |  |  |
| 12                 | 10                                          | 13          | 40        | 70            |  |  |  |
| 15                 | 20                                          | 20          | 55        | 100           |  |  |  |
| 18                 | 30                                          | 30          | 80        | 150           |  |  |  |
| 21                 | 40                                          | 45          | 110       | 200           |  |  |  |
| 24                 | 50                                          | 60          | 140       | 250           |  |  |  |
| 30                 | 80                                          | 90          | 250       | 400           |  |  |  |
| 36                 | 100                                         | 150         | 450       | 600           |  |  |  |
| 42                 | 150                                         | 250         | 600       | 800           |  |  |  |

Figure 36. Estimated pipe prices Per Linear Foot

|  | N_SIZES | FREQUENCY | TOTAL_FEET | SING_EST | SING_POSB | SMOT_EST | SMOT_POSB  | CLAY_EST | CLAY_POSB | CONC_EST | CONC_POSB |
|--|---------|-----------|------------|----------|-----------|----------|------------|----------|-----------|----------|-----------|
|  | 8       | 3         | 384.20432  | 1921.02  | 1728.9194 | 2689.43  | 2420.48721 | 9605.11  | 8644.5972 | 15368.17 | 13831.355 |
|  | 6       | 1         | 794.85557  | 3179.42  | 2861.48   | 3974.278 | 3576.85006 | 14307.4  | 12876.66  | 19871.39 | 17884.25  |
|  | 5       | 2         | 100.74361  | 302.231  | 272.00776 | 402.9745 | 362.677008 | 1511.15  | 1360.0388 | 2014.872 | 1813.385  |
|  | 4       | 7         | 1591.043   | 3182.09  | 2863.8773 | 4773.129 | 4295.81599 | 19092.5  | 17183.264 | 23865.64 | 21479.08  |

Figure 37. Attribute table of result showing the possible estimated cost for all sized pipes distributed across the drainage network.

# p. Tile Spreadsheet ReadOut:

This new routine, **Tile Spreadsheet ReadOut**, with interface shown in Figure 38 was developed as a tool for splitting a vector layer according to its unique ID and likewise exporting them to separate spreadsheet files (Figure 39). This routine is sequel to the **Tile Burying System** routine since it uses its output as input layer. The output from the **Tile Spreadsheet ReadOut** routine in the excel format can be transferred to a drain installation machine.

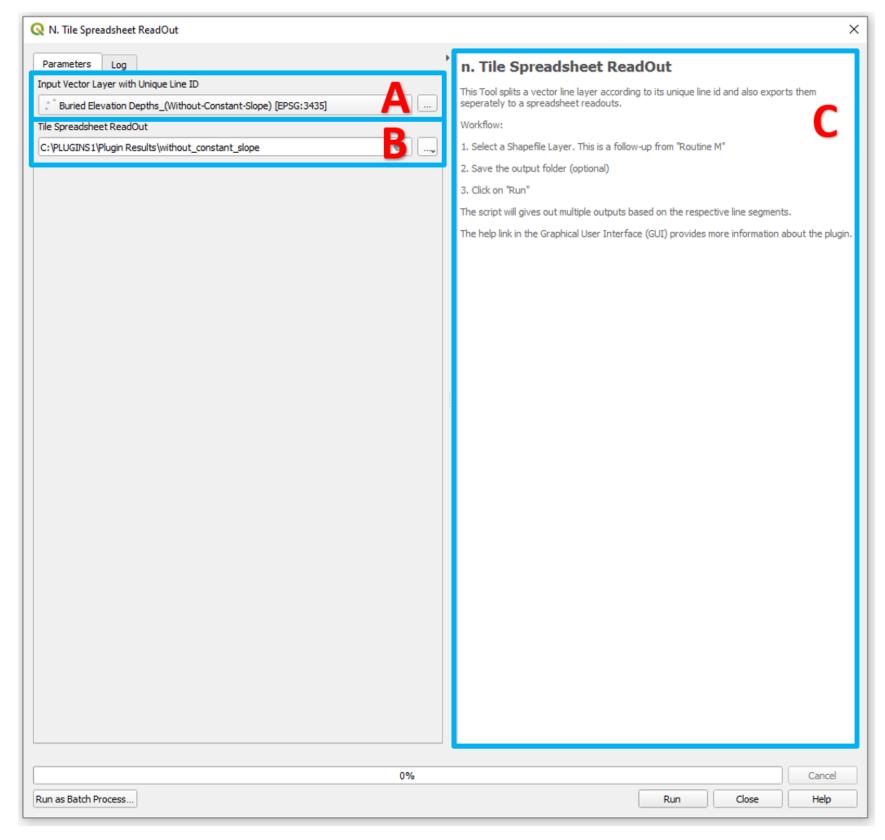



Figure 38. Graphical User Interface of the "Tile Spreadsheet ReadOut" Routine

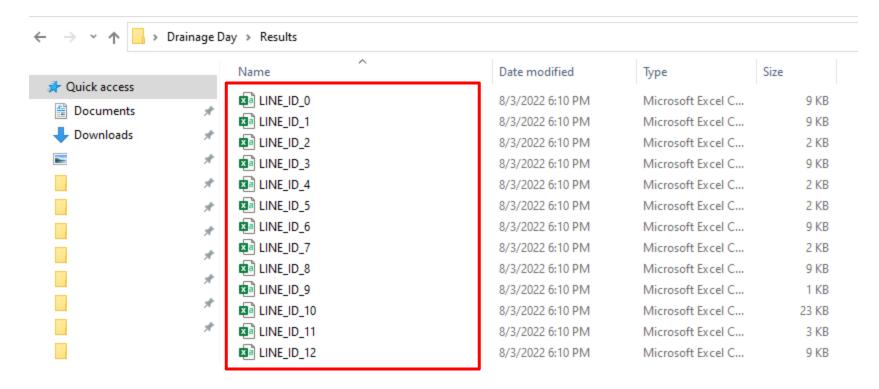



Figure 39. Folder Results from after running the Tile Spreadsheet ReadOut Routine