Google Scholar Profile

Publications since Arrival at Illinois

Submitted Publications

[62] Daniel T. Bregante, Jun Zhi Tan, Rebecca L. Schultz, Ece Z. Ayla, David S. Potts, Chris Torres, and David W. Flaherty, “Catalytic Consequences of Oxidant, Alkene, and Pore Structure on Alkene Epoxidations within Titanium Silicates” Submitted.

[61] SiWei A. Chang, Abinaya Sampath, and David W. Flaherty, “The Effects of P-Atoms on the Selective Dehydrogenation of C6H10 over Model Ru Surfaces” Submitted.

[60] Jason S. Adams, Ashwin Chemburkar, Pranjali Priyadarshini, Tomas Ricciurdulli, Yubing Lu, Ayman M. Karim, Stuart Winikoff, Matthew Neurock, and David W. Flaherty, “Solvent Molecules Form Surface Redox Mediators In Situ and Cocatalyze O2 Reduction on Pd” Submitted.

[59] Alex Ardagh, Daniel T. Bregante, David W. Flaherty, and Justin M. Notestein, “Controlled Deposition of Silica on Titania-silica to Impart Transport Limitation-free Confinement Effects on Epoxidation Catalysts” Submitted.

2020 Publications

[58] Zhongyao Zhang, and David W. Flaherty, “Modified Potentiometric Titration Method to Distinguish and Quantify Oxygenated Functional Groups on Carbon Materials by pKa and Chemical Reactivity” Carbon 2020, Accepted.

[57] Abinaya Sampath and David W. Flaherty, “Effects of Phosphorus Addition on Selectivity and Stability of Pd Model Catalysts during Cyclohexene DehydrogenationCatal. Sci. Tech. 2020, 10, 993-1005.

[56] Daniel T. Bregante, Jun Zhi Tan, Andre Sutrisno, and David W. Flaherty, “Heteroatom Substituted Zeolite FAU with Ultralow Al Contents for Liquid-Phase Oxidation Catalysis” Catal. Sci. Tech. 2020, 10, 635 – 647.

*Featured in the cover of the Catalysis Science & Technology.

[55] Yu-Tong Hong, Daniel T. Bregante, Johnny Ching-Wei Lee, Yongbeom Seo, Lawrence Schook, David W. Flaherty, Simon Rogers, Hyunjoon Kong, “Catalytic Microgelators for Decoupled Control of Gelation Rate and Rigidity of the Biological GelsJ. Control. Release 2020, 317, 166-180

2019 Publications

[54] Daniel T. Bregante and David W. Flaherty, “Impact of Specific Interactions Among Reactive Surface Intermediates and Confined Water on Epoxidation Catalysis and Adsorption in Lewis Acid ZeolitesACS Catal., 20199, 10951-10962.

[53] Pranjali Priyadarshini and David W. Flaherty, “Form of the Catalytically Active Pd Species during the Direct Synthesis of Hydrogen PeroxideAIChE J. 2019, 65:e16829.

[52] Megan E. Witzke,  Abdulrahman Almithn, Christian Coonrod, Mark Triezenberg, David Hibbitts, and David W. Flaherty, “In situ Spectroscopic Methods for Identifying Reactive Surface Intermediates during Hydrogenolysis Reactions: C-O Bond Cleavage on Nanoparticles of Nickel and Nickel PhosphidesJ. Am. Chem. Soc., 2019, 141, 16671-16684.

[51] Anda Sulce, David Flaherty, Sebastian Kunz, “Kinetic Analysis of the Asymmetric Hydrogenation of ß-Keto Esters over a-Amino Acid-Functionalized Pt Nanoparticles“, J. Catal., 2019374, 82-92.

[50] Daniel T. Bregante, Alayna M. Johnson, Ami Y. Patel, E. Zeynep Ayla, Michael J. Cordon, Brandon C. Bukowski, Jeffrey Greeley, Rajamani Gounder, David W. Flaherty, “Cooperative Effects between Hydrophilic Pores and Solvents: Catalytic Consequences of Hydrogen Bonding on Alkene Epoxidation in Zeolites J. Am. Chem. Soc., 2019, 141, 7302-7319.

2018 Publications

[49] Michael J. Cordon, Jamie W. Harris, Juan-Carlos Vega-Vila, Sukhdeep Kaur, Mohit Gupta, Megan E. Witzke, Evan C. Wegener, Jeffrey T. Miller, David W. Flaherty, David D. Hibbitts, and Rajamani Gounder, “The Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores J. Am. Chem. Soc. 2018140, 14244-14266.

[48] Abinaya Sampath, Siwei A. Chang, David W. Flaherty “Catalytic Hydrogen Transfer and Decarbonylation of Aromatic Aldehydes on Ru and Ru Phosphide Model Catalysts J. Phys. Chem. C  2018122, 23600-23609.

[47] Neil M. Wilson, Johanna Shröder, Pranjali Priyadarshini, Daniel T. Bregante, Sebastian Kunz, and David W. Flaherty, “Direct Synthesis of H2O2­ on PdZn Nanoparticles: The Impact of Electronic Modifications and Heterogeneity of Active Sites J. Catal. 2018368, 261-274.

[46] Megan E. Witzke, Abdulrahman Almithn, Christian Coonrod, David Hibbitts, and David W. Flaherty, “Mechanisms and Active Sites for C-O Bond Rupture within 2-Methyltetrahydrofuran over Nickel Phosphide Catalysts ACS Catal. 20188, 7141-7157.

[45] Daniel T. Bregante, Ami Y. Patel, Alayna M. Johnson, and David W. Flaherty, “Catalytic Thiophene Oxidation by Groups 4 and 5 Framework-Substituted Zeolites with Hydrogen Peroxide: Mechanistic and Spectroscopic Evidence for the Effects of Metal Lewis Acidity and Solvent Lewis Basicity J. Catal. 2018364, 415-425.

[44] Hongbo Zhang, Malek Y. Ibrahim, and David W. Flaherty, “Aldol Condensation among Acetaldehyde and Ethanol Reactants on TiO2: Experimental Evidence for the Kinetically Relevant Nucleophilic Attack of Enolates J. Catal. 2018361, 290-302.

[43] Neil M. Wilson, Yung-Ting Pan, Yu-Tsun Shao, Jian-Min Zuo, Hong Yang, and David W. Flaherty, “Direct Synthesis of H2O2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H2O2 Selectivity ACS Catal. 20188, 2880-2889.

[42] Daniel T. Bregante, Nicholas E. Thornburg, Justin M. Notestein, and David W. Flaherty, “Consequences of Confinement for Alkene Epoxidation with Hydrogen Peroxide on Highly Dispersed Group 4 and 5 Metal Oxide Catalysts  ACS Catal. 20188, 2995-3010.

*Featured on the cover of ACS Catalysis and Mass Transfer

[41] David W. Flaherty, “Direct Synthesis of H2O2 from H2 and O2 on Pd Catalysts: Current Understanding, Outstanding Questions, and Research Needs ACS Catal. 20188, 1520-1527.

[40] Neil M. Wilson, Pranjali Priyadarshini, Sebastian Kunz, and David W. Flaherty, “Direct Synthesis of H2O2­ on Pd and AuPd Clusters: Understanding the Effects of Alloying Pd with Au,”  J. Catal. 2018357, 163-175.

2017 Publications

[39] SiWei A, Chang, Vivek Vermani, and David. W. Flaherty, “Effects of Phosphorus on Bond Rupture in Acetic Acid Decomposition over Ru (0001) and Px-Ru(0001),” J. Catal. 2017, 353, 181-191.

[38] SiWei A, Chang, Vivek Vermani, and David. W. Flaherty, “Effects of Phosphorus and Alkyl Substituents on C-H, C-C, and C-O Bond Rupture within Carboxylic Acids on Ru(0001) J. Vac. Sci. Tech. 2017, 35, 05C309.

[37] Daniel T. Bregante and David W. Flaherty, “Periodic Trends in Olefin Epoxidation over Group IV and V Framework Substituted Zeolite Catalysts: A Kinetic and Spectroscopic Study J. Am. Chem. Soc. 2017139, 6888-6898.

*Highlighted by Illinois News Bureau, Phys.orgEurekAlert! (AAAS), ChemEuropeetc.

[36] Takahiko Moteki, Andrew T. Rowley, Daniel T. Bregante and David W. Flaherty, “Formation Pathways toward 2- and 4-Methylbenzaldehyde via Sequential Reactions from Acetaldehyde over Hydroxyapatite Catalyst” ChemCatChem 20179, 1921-1929.


[35] Daniel T. Bregante, Pranjali Priyadarshini, and David W. Flaherty, “Kinetic and Spectroscopic Evidence for Reaction Pathways and Intermediates for Olefin Epoxidation on Nb in *BEA” J. Catal. 2017, 348, 75-89.

Unlabelled figure

[34] Megan E. Witzke, Paul Dietrich, Malek Y. S. Ibrahim, Kenan Al-Bardan, Mark D. Triezenberg, and David. W. Flaherty, “Spectroscopic Evidence for Origins of Size and Support Effects on Selectivity of Cu Nanoparticle Dehydrogenation Catalysts” Chem. Comm. 201753, 597-600.

Graphical abstract: Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts

[33] Neil M. Wilson, Daniel T. Bregante, Pranjali Priyadarshini, and David W. Flaherty, “Production and Use of H2Ofor Atom-Efficient Functionalization of Hydrocarbons and Small Molecules” Catalysis 2017, 29, 122-212.

Book cover

2016 Publications

[32] SiWei A, Chang and David. W. Flaherty, “Mechanistic Study of Formic Acid Decomposition over Ru(0001) and Px-Ru(0001): Effects of Phosphorous on C-H and C-O Bond Rupture J. Phys. Chem. C 2016120, 25425-25435.

[31] Takahiko Moteki, Andrew T. Rowley, and David W. Flaherty, “Self-Terminated Cascade Reactions that Produce Methylbenzaldehydes from Ethanol” ACS Catal. 20166, 7278-7282.

[30] Lipeng Wu, Takahiko Moteki, Amit A. Gokhale, David W. Flaherty and F. Dean Toste, “Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond” Chem 20161, 32-58.

Unlabelled figure

[29] Takahiko Moteki and David W. Flaherty, “Mechanistic Insight to C-C Bond Formation and Predictive Models for Cascade Reactions among Alcohols on Ca- and Sr-Hydroxyapatites ACS Catal. 20166, 4170-4183.  *ACS Editors’ Choice

[28] Neil M. Wilson and David W. Flaherty, “Mechanism for the Direct Synthesis of H2O2 on Pd Clusters: Heterolytic Reaction Pathways at the Liquid-Solid Interface” J. Am. Chem. Soc. 2016138, 574-586. *ACS Editors’ Choice

*Featured on the cover of J. Am. Chem. Soc., highlighted by C & E News, the College of Engineering at IllinoisEurekAlert! (AAAS)ChemEurope, etc.

[27] David D. Hibbitts, David W. Flaherty and Enrique Iglesia, “Effects of Chain Length and van der Waals Interactions on the Mechanism and Rates of Metal-Catalyzed Hydrogenolysis of n-Alkanes” J. Phys. Chem. C 2016120, 8125-8138.

[26] David D. Hibbitts, David W. Flaherty and Enrique Iglesia, “Role of Branching on the Rate and Mechanism of C-C Cleavage in Alkanes on Metal Surfaces” ACS Catal. 20166469-482.

2013 – 2015 Publications

[25] David W. Flaherty, Alper Uzun and Enrique Iglesia, “Catalytic Ring Opening of Cycloalkanes on Ir Clusters: Alkyl Substitution Effects on the Structure and Stability of C-C Bond Cleavage Transition States” J. Phys. Chem. C 2015119, 2597-2613.

[24] Wen-Yueh Yu, Gregory M. Mullen, David W. Flaherty, and C. Buddie Mullins, “Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces” J. Am. Chem. Soc. 2014136, 11070-11078.

[23] David W. Flaherty, David D. Hibbitts and Enrique Iglesia, “Metal-Catalyzed C-C Bond Cleavage in Alkanes: Effects of Methyl Substitution on Transition State Structures and Stability J. Am. Chem. Soc. 2014136, 9664-9676.

[22] David W. Flaherty, David Hibbitts, Elif Gurbuz and Enrique Iglesia, “Theoretical and Kinetic Assessment of the Mechanism of Ethane Hydrogenolysis on Metal Surfaces Saturated with Chemisorbed Hydrogen” J. Catal. 2014311, 350-356. 

Unlabelled figure

[21] David W. Flaherty and Enrique Iglesia, “Enthalpic and Entropic Contributions that Determine Rates and Positions of C-C Bond Cleavage in n-Alkanes” J. Am. Chem. Soc. 2013135, 18586-18599.

Graduate and Undergraduate Publications

[20] Jing Wu, Nellymar Membreno, Wen-Yueh Yu, Jaclyn D. Wiggins-Camacho, David W. Flaherty, C. Buddie Mullins, and Keith J. Stevenson, “Influence of hydrofluoric acid formation on lithium ion insertion in nanostructured V2O5” J. Phys. Chem. C. 2012116, 21208-21215.

[19] Ting Yan, Daniel W. Redman, Wen-Yueh Yu, David W. Flaherty, Jose A. Rodriguez, and C. Buddie Mullins, “CO oxidation on inverse Fe2O3/Au(111) model catalysts” J. Catal. 2012294, 216-222.

[18] David W. Flaherty, Nathan T. Hahn, R. Alan May, Sean P. Berglund, Yong-Mao Lin, Keith J. Stevenson, Zdenek Dohnalek, Bruce D. Kay, and C. Buddie Mullins, “Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage” Acc. Chem. Res. 201245, 434-443.

[17] David W. Flaherty, Wen-Yueh Yu, Zachary D. Pozun, Graeme Henkelman, and C. Buddie Mullins, “Mechanism for the water-gas shift reaction on monofunctional platinum and cause of catalyst deactivation” J. Catal. 2011282, 278-288.

[16] Ming Pan, David W. Flaherty, and C. Buddie Mullins, “Low-Temperature Hydrogenation of Acetaldehyde to Ethanol on H pre-covered Au(111)” J. Phys. Chem. Lett. 20112, 1363-1367.

[15] Sean P. Berglund, David W. Flaherty, Nathan T. Hahn, Allen J. Bard, and C. Buddie Mullins, “Photoelectrochemical Oxidation of Water using Nanostructured BiVO4 Films” J. Phys. Chem. C 2011, 115, 3794-3802.

[14] Yong-Mao Lin, Paul R. Abel, David W. Flaherty, J. Wu, Keith J. Stevenson, Adam Heller, and C. Buddie Mullins, “Morphology Dependence of the Lithium Storage Capability and Rate Performance of Amorphous TiO2Electrodes” J. Phys. Chem. C 2011115, 2585-2591.

[13] Ting Yan, Jinlong Gong, David W. Flaherty, and C. Buddie Mullins, “The effect of adsorbed water in CO oxidation on Au/TiO2(110)” J. Phys. Chem. C 2011115, 2057-2065.

[12] Nathan T. Hahn, H. Ye, David W. Flaherty, Allen J. Bard, and C. Buddie Mullins, “Reactive Ballistic Deposition of α-Fe2O3 Thin Films for Photoelectrochemical Water Oxidation” ACS Nano 20104, 1977-1986.

[11] R. Alan May, David W. Flaherty, C. Buddie Mullins, and Keith J. Stevenson, “Hybrid generalized ellipsometry and quartz crystal microbalance nanogravimetry for the determination of adsorption isotherms on biaxial metal oxide films” J. Phys. Chem. Lett. 2010, 1, 1264-1268.

[10] David W. Flaherty, R. Alan May, Sean P. Berglund, Keith J. Stevenson, and C. Buddie Mullins, “Low temperature synthesis and characterization of nanocrystalline titanium carbide with tunable porous architectures” Chem. Mater. 201022, 319-329.

[9] David W. Flaherty, Sean P. Berglund, and C. Buddie Mullins, “Selective decomposition of formic acid on molybdenum carbide: A new reaction pathway” J. Catal. 2010269, 33-43.

[8] David W. Flaherty, Nathan T. Hahn, Todd R. Engstrom, Domingo Ferrer, Paul L. Tanaka, and C. Buddie Mullins, “Growth and characterization of high surface area titanium carbide” J. Phys. Chem. C 2009, 113, 12742-12752.

[7] Rotimi A. Ojifinni, Jinlong Gong, David W. Flaherty, Tae S. Kim, and C. Buddie Mullins, “The effect of annealing on reactivity of oxygen towards water, CO, and CO2 on Au(111)” J. Phys. Chem. C 2009113, 9820-9825.

[6] Jinlong Gong, David W. Flaherty, Ting Yan, and C. Buddie Mullins, “Selective oxidation of propanol on Au(111): Mechanistic insights into aerobic oxidation of alcohols” ChemPhysChem 20099, 2461-2466.

[5] Rotimi A. Ojifinni, Jinlong Gong, Nathan S. Froemming, David W. Flaherty, Ming Pan, Graeme Henkelman, and C. Buddie Mullins, “Carbonate formation and decomposition on atomic oxygen pre-covered Au(111)” J. Am. Chem. Soc. 2008130, 11250-11251.

[4] Jinlong Gong, David W. Flaherty, Rotimi A. Ojifinni, John M. White, and C. Buddie Mullins, “Surface chemistry of methanol on clean and atomic oxygen pre-covered Au(111)” J. Phys. Chem. C 2008, 112, 5501-5509.

[3] J. E. Baio, H. Yu, D. W. Flaherty, H. F. Winters, D. B. Graves, “Electron-impact dissociation cross sections for CHF3 and C3F8” J. Phys. D: Appl. Phys. 200740, 6969-6974.

[2] D. W. Flaherty, Z. Dohnalek, A. Dohnalkova, B. W. Arey, D. E. McCready, N. Pnnusamy, C. B. Mullins, and B. D. Kay, “Reactive ballistic deposition of porous TiO2 films: growth and characterization” J. Phys. Chem. C 2007, 111, 4765-4773.

[1] D. W. Flaherty, M. A. Kasper, J. E. Baio, D. B. Graves, H. F. Winters, C. Winstead, V. McKoy, “Electron Impact Cross Sections for C2F6” J. Phys. D: Appl. Phys. 200639, 4393-4399.


[1] David. W. Flaherty; Daniel T. Bregante; “Heteroatom Substituted Zeolites” U.S. Patent Application No. 62/944,412 (2019).


[4] Megan E. Witzke, University of Illinois at Urbana-Champaign (2018) “Mechanistic and Spectroscopic Methods for Identifying Reactive Intermediate Structures and Active Site Properties over Metals, Metal Oxides, and Metal Phosphides

[3] Neil M. Wilson, University of Illinois at Urbana-Champaign (2017) “Mechanistic Insights into the Direct Synthesis of H2O2 on Transition Metal Catalysts

[2] SiWei (Andy) Chang, University of Illinois at Urbana-Champaign (2017) “Effects of Phosphorous on Bond Rupture During Hydrodeoxygenation and Dehydrogenation Reactions on Ruthenium ”

[1] David W. Flaherty, University of Texas at Austin (2010) “Methods for Modifying the Physical and Catalytic Properties of Surfaces

Recent Posts