Computational Design Innovation Laboratory

Official homepage of Prof. Kai A. James' research group

Congratulations to Alex Jessee!

Posted on by

The CDI Lab congratulates Alex Jessee on the successful completion of his MS degree in aerospace engineering.  Alex joined us in the Fall of 2017, after having previously worked as a mechanical engineer at Eaton, where he designed clutches for commercial vehicle applications.  Alex wrote his master’s thesis on Simultaneous Packing and Routing Optimization of Thermal-Fluid Systems.  Beginning in August, Alex will be working as a structures and dynamics engineer at Aerojet Rocketdyne in Huntsville, Alabama.  There he will work on structural analysis of solid rocket motors.  We wish Alex the best of luck as he embarks on the next chapter of his career!

Anurag and Troy present their research at WCCM 2018 in NYC

Posted on by

On Thursday, July 26, Anurag Bhattacharyya and Ziliang “Troy” Kang each presented their latest research on structural topology optimization of self-actuating mechanisms containing active materials.  The talks were presented at the 13th World Congress on Computational Mechanics in New York, NY.  Both talks were part of the mini-symposium “Computational Materials Design: Emerging Multiscale, Optimization and Reconstruction Techniques”, which was co-organized by Prof. Kai James along with his colleagues Dr. Masoud Safdari (UIUC), Dr. Ahmad Najafi (Drexel), and Dr. Majid Baniassadi, (U. Tehran).  Anurag presented his research on transient finite element analysis and design sensitivity analysis of shape memory polymers, while Troy presented his most recent results on topology optimization of shape memory alloys.

From Left to right: Masoud Safdari, Anurag Bhattacharyya, Kai James, Ahmad Najafi, Ziliang Kang

Prof. James Wins NSF CAREER Award!

Posted on by

(Originally published on March 13th, 2018 at https://aerospace.illinois.edu)

When designing mechanisms that move and work together, the variables may seem unlimited. But in fact, there is likely a design that optimizes the efficiency of the mechanism, like finding the sweet spot for the fulcrum on a pair of plyers to get maximum force. Kai James, professor in the Department of Aerospace Engineering at the University of Illinois, is working to design a computer algorithm to find that point of greatest efficiency. And, he is using the science to attract more underserved students to STEM.

Topology optimized multi-body gripper mechanism

James’ project was recently funded through the National Science Foundation Faculty Early Career Development (CAREER) Program. Proposals that are selected are from a single early-career investigator that include research and education activities that are integrated, innovative, and ambitious.

“I want to create a framework where algorithms could, starting with the black box, generate an entire design concept for compound machines that contain multiple components,” James says. “In addition to optimizing the structure of each component—it’s shape, geometry, and material layout—the algorithm can also optimize the connectivity between the components. So the algorithm, for example, will tell us where a hinge should be placed to maximize mechanical advantage”

James explains that the algorithm will generate a series of numbers, resulting in a mathematical description of the design. After it is interpreted, a corresponding computer aided design file, or CAD, is created that contains a 3D representation of the design.

“What’s new about this project is that the types of algorithms we’re using have previously only been applied to the designs of structures—meaning that the system you’re creating contains a single part,” James says. “It moves, but all of the motion is purely due to elastic deflection—bending, twisting, and basically straining the material.

“In the real world, mechanisms have multiple components. Motion isn’t due to elasticity, but rather through what’s called rigid body motion. In a pair of plyers, for example, the two lever arms are undergoing rigid body motion. There may be some elastic compliance, but we’re not relying on that compliance to generate the transfer of force from the input to the output. If you apply force of 100 Newtons at the input, we want to maximize the output force at the jaws of the particular device. In this case, because of the geometry and where the fulcrum is placed, we’ll get a mechanical advantage magnification of this force by about 10 times. The output will be 10 times stronger than the input force.”

In order to generate the design, James says the algorithm has to know how the design behaves mathematically.

“Within the algorithm there will be a module that simulates the mechanical response of the system. And it will do that repeatedly,” James says. “You start out with an initial baseline, a guess, for what we think the design should look like. The algorithm will determine how good the design is and where the design can be improved. It will iteratively generate new designs, test the design, and then systematically modify it. It’s all automated. We tell it what an optimal design should be, what criteria needs to be satisfied, and the algorithm searches the virtual space of potential designs to determine how effective the current design is, then it determines how sensitive that effectiveness is to small changes in the design. This is called sensitivity analysis. It’s a form of calculus.”

What does this have to do with aerospace? James says aerospace engineers may want to describe the efficiency or the performance of a mechanism such as drag in the case of an aircraft design.

“We have an algorithm that evaluates drag as a function of the design features,” James says. “They are represented mathematically as a set of parameters. The algorithm has to know the physics of the system that you’re trying to design, then it can evaluate the design, perform a sensitivity analysis. Based on those sensitivities, it will determine how it should update the design to improve it. And those improvements will happen incrementally. We perform that successively until the algorithm converges to a design that satisfies our optimality criteria. Once you have that, that’s the best possible design or at the very least, a mathematical optimum within the design space that you’ve provided for the algorithm to search.”

James says, this level of physics is what a first-year graduate student would likely understand, but the science will be modified to be accessible to undergraduate students.

The $500,000 NSF funding will make possible a series of workshops every other week, beginning in August, 2018 and run through 2023. The workshops will be less formal than an actual course.

Undergraduate students who participate in the workshops don’t need to be majoring in math or science or even engineering. James will work with the university Office of Minority Student Affairs to market the program to attract students who wouldn’t normally gravitate toward STEM disciplines, that is, science, technology, engineering, and math. The outcome of the workshops will be activities for K-12 visitors to the Engineering Open House at the University of Illinois the following spring.

Rather than being theoretical, the information students receive will be focused on applications, taking a high-level look at optimal design. “It will look at some new breakthroughs in the research community to whet the students’ appetite for STEM,” James says. “There will be some technical instruction as well. They’ll learn to understand some of the mathematics that govern these algorithms and design strategies.”

Ziliang (Troy) Kang Wins Prestigious Yee Fellowship

Posted on by

Troy Kang, a second-year PhD student in the CDI Lab, has been awarded the prestigious Yee Fellowship for the 2018-2019 academic year.  The Yee Fellowship is awarded annually to engineering graduate students who are Chinese Nationals and who demonstrate excellence in research and teaching.

Troy’s research focuses on the area of structural topology optimization of shape memory alloy systems, with applications to soft robotics.

Prior to joining the CDI Lab at the University of Illinois, Troy completed his Master’s degree at China’s Harbin Institute of Technology, where he studied dynamics and control for the design of micro-electromechanical systems (MEMS).

In the future, Troy plans to become a professor and use his knowledge of science and engineering to improve the lives of people around the world.

Congratulations Troy!

Prof. James Presents Research at University of Michigan Graduate Seminar Series

Posted on by

Prof. Kai James was invited to be a speaker in the Graduate Seminar Series of the Department of Aerospace Engineering at The University of Michigan at Ann Arbor.  He presented his talk entitled “Computational Synthesis and Design of Structures Using Structural Topology Optimization” on December 8th, 2017.  In addition to giving his talk, Prof. James met and interacted with several faculty and graduate students from the department during his visit.

Prof. Kai James Named AIAA 2017 Teacher of the Year

Posted on by
2017-06-16

Aerospace Engineering at Illinois Assistant Prof. Kai James has received the American Institute of Aeronautics and Astronautics (AIAA) Illinois Chapter’s 2017 Teacher of the Year Award.

A member of Aerospace Engineering at Illinois faculty since Fall 2015, James taught AE 321 Mechanics of Aerospace Structures that semester and in Spring 2017; AE 598 Nonlinear Solid Mechanics Design in Spring 2016; and AE 420 Finite Element Analysis in Fall 2016.

“In and out of the classroom, (James) has proved to be a teacher that cares about his students’ performance and knows his subject matter well,” said AIAA student chapter President Joseph Billhart. “(James) strives to explain the material to students through derivations and examples and supplement that with assignments that challenge the best of his students. He also participates in extra-curricular activities within the AE department to support the students’ efforts.”

Interacting with the students has been a pleasure, James said. “I love teaching at Illinois because we have some of the brightest, most dynamic, and most enterprising students around. They always impress me with their curiosity and creativity, which is evidenced by all the really interesting projects they work on. I probably learn as much from them, as they do from me, so to be recognized by this group is a true honor.”

James earned three degrees from the University of Toronto: a PhD and master’s degree in aerospace engineering in 2012 and 2006, respectively, and a bachelor’s degree in engineering science in 2004. Prior to joining the AE faculty he was a postdoctoral research scientist at Columbia University.

Congratulations Cian and Anurag!

Posted on by

The CDI Lab extends sincere and enthusiastic congratulations to Cian Conlan-Smith and Anurag Bhattacharyya, who became the first students to graduate from the lab with their master’s degrees in aerospace engineering.  Cian spend a very successful two years with the CDI Lab from 2015 to 2017.  During that time he developed original topology optimization algorithms for the design of functionally graded compliant mechanisms,  and he co-authored two journal papers and four conference papers. Anurag’s project focused on the design of bi-stable airfoil mechanisms.  He has also been very productive, having co-authored two journal papers and four conference papers as well.  Cian plans to pursue his PhD in Europe in the Fall, and Anurag will be remaining with the CDI Lab for his PhD.  Congrats to both of scholars!

CDI Lab Welcomes New Student Alex Jessee

Posted on by

The CDI Lab is pleased to welcome our newest student, Alex Jessee.  Alex graduated from the University of Iowa in 2013, and then went on to work as a mechanical engineer at Eaton, where he designed clutches for medium and heavy duty commercial vehicle applications.  Alex will be starting his Master’s degree in the Fall of 2017, and will be investigating optimal design of aeroelastic structures.