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We want to solve the Landau-Zener problem [1], which consists in solving the
two-level problem when the frequency of the external field ω(t) varies across the
resonant frequency ω0. This is known as a chirped pulse

1 Analytical Solution

The two-level hamiltonian is

H = ~
(

ω1 Ω∗ cosωt
Ω cosωt ω2

)
(1)

Under the unitary transformation

Û ≡
(
e−iω1t 0

0 e−iω2t

)
(2)

and the rotating-wave approximation, the system becomes1

i~
d

dt

(
cg
ce

)
=

~
2

(
0 Ω∗eiδt

Ωe−iδt 0

)(
cg
ce

)
(3)

where the parameter δ(t) ≡ ω(t) − ω0 is defined as the detuning from the resonant
frequency.

We are interested in the the situation where the system is initially in the ground
state

|cg(ti)|2 = 1; |ce(ti)|2 = 0 (4)

1The hamiltonian transforms as Ĥ ′ = Û†(Ĥ − i~∂t)Û
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THERE IS AN ERROR IN THE FOLLOWING EQUATION (I HAVE ER-
RONEOUSLY ASSUMED A CONSTANT DELTA IN THE DERIVATION). THE
CORRECT RESULT HAS A SIMILAR FORM THOUGH

Solving the eq.(3) for ce leads

d2ce
dt2

+ iδ(t)
dce
dt

+
|Ω|2

4
ce = 0 (5)

with the initial conditions

ce(ti) = 0;
dce
dt

(ti) = −iΩ
2
eiδticg(ti) =

Ω

2
(6)

The eq.(5) can be easily solved numerically. However, there is an analytical
solution when the frequency varies linearly in time. Let us consider δ(t) ≡ αt, and

the change of variable c̃e ≡ ei
δt
4 ce. The equation becomes

d2c̃e
dt2

+

(
|Ω|2

4
− iα

2
+
α2t2

4

)
c̃e = 0 (7)

This equation can be written in a standard form via the change of variables z ≡√
αe−iπ/4t and ν ≡ i|Ω|2

4α
[1]

d2c̃e
dz2

+

(
ν +

1

2
− z2

4

)
c̃e = 0 (8)

This is the Weber differential equation [2, 3], which has two independent solutions,
c̃e = D−ν−1(−iz) and c̃e = Dν(z), where Dν(z) is the parabolic cylinder function.

We conclude that the solution to eq.(5) is

ce(t) =
(
aD−ν−1(−i

√
αe−iπ/4t) + bDν(

√
αe−iπ/4t)

)
e−iδt/4 (9)

where a and b are constants determined by the initial conditions.
When ti = −∞, there is an explicit solution for the asymptotic value of the

excitation probability

|ce(t→∞)|2 → 1− e−
π|Ω|2

2α (10)

This result is called the Landau-Zener formula [1] (Recall that Ω is an angular
frequency, and α is a rate of change in angular frequency)
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2 Other forms

Experimentally, it is more convenient to work with linear frequencies. Let us define
∆f ≡ f(t)− f0 ≡ δ/2π and fR ≡ Ω/2π, then the eq.(5) becomes

d2ce
dt2

+ 2π (f(t)− f0)
dce
dt

+ π2f 2
Rce = 0 (11)

ce(ti) = 0;
dce
df

(ti) = πfR (12)

Also, we could use frequency as the independent variable instead of time. Let us
assume a linear dependency in time f ≡ rt+ fi, where r is the linear frequency rate
of change. Then

d2ce
df 2

+ 2πi
f − f0

r

dce
df

+

(
πfR
r

)2

ce = 0 (13)

ce(fi) = 0;
dce
df

(fi) =
πfR
r

(14)

and the Landau-Zener formula becomes

|ce(f →∞)|2 → 1− e−
π2f2

R
r (15)

3 Numerical Calculation
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Figure 1: Excitation probability versus detuning for different sweep rates: r = 3f 2
R

(blue), r = 9f 2
R (red). The initial detuning is ∆fi = −5fR. The dashed line is the

Landau-Zener limit (∆fi = −∞)
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Figure 2: Asymptotic value of the excitation probability for different initial detun-
ings: ∆fi = −fR (blue), ∆fi = −2fR (red) and the Landau-Zener limit ∆fi = −∞
(dashed)

4 Chirped pulse vs fixed frequency pulse

See ‘20131016 Raman sweep vs pulse.nb’

5 Conclusions

• Most of the excitation occurs in the frequency range δ ∈ [−Ω,Ω]

• The sweep speed controls the excitation probability. A rule of thumb would be
‘a sweep rate α smaller than Ω2 gives an excitation level higher than 70%’

6 Beyond Simple Models

Other works explore analytical [4–8] and numerical [9,10] solutions for different sweep
functions. The reference [11, 12] explores Landau-Zener transitions in three-level
systems.
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