Landau-Zener Transition

David Chen
June 1, 2013

We want to solve the Landau-Zener problem [1], which consists in solving the
two-level problem when the frequency of the external field w(t) varies across the
resonant frequency wy. This is known as a chirped pulse

1 Analytical Solution

The two-level hamiltonian is
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Under the unitary transformation

. 6—iwlt 0
U = ( O e—iwgt) (2)

and the rotating-wave approximation, the system becomef]
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where the parameter §(t) = w(t) — wp is defined as the detuning from the resonant
frequency.
We are interested in the the situation where the system is initially in the ground
state
leg(t)]* =13 Jee(ts)]” =0 (4)

IThe hamiltonian transforms as H' = UT(H — ihd,)U



THERE IS AN ERROR IN THE FOLLOWING EQUATION (I HAVE ER-
RONEOUSLY ASSUMED A CONSTANT DELTA IN THE DERIVATION). THE
CORRECT RESULT HAS A SIMILAR FORM THOUGH

Solving the eq.(3) for c. leads
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with the initial conditions
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The eq.(p]) can be easily solved numerically. However, there is an analytical
solution when the frequency varies linearly in time. Let us consider 6(t) = at, and
the change of variable ¢, = s c.. The equation becomes
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This equation can be written in a standard form via the change of variables z =
. ; 2
Vae ™t and v = 125 4]
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This is the Weber differential equation [2,|3], which has two independent solutions,
¢e =D_, 1(—iz) and é. = D,(z), where D,(z) is the parabolic cylinder function.
We conclude that the solution to eq. is
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where a and b are constants determined by the initial conditions.
When t; = —o0o, there is an explicit solution for the asymptotic value of the
excitation probability
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This result is called the Landau-Zener formula [1] (Recall that © is an angular
frequency, and « is a rate of change in angular frequency)



2 Other forms

Experimentally, it is more convenient to work with linear frequencies. Let us define
Af = f(t) — fo=6/2m and fr = Q/2, then the eq.(f]) becomes

2
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Also, we could use frequency as the independent variable instead of time. Let us
assume a linear dependency in time f = rt + f;, where r is the linear frequency rate
of change. Then
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and the Landau-Zener formula becomes
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3 Numerical Calculation

Excitation probability
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Figure 1: Excitation probability versus detuning for different sweep rates: r = 3f3
(blue), r = 9f% (red). The initial detuning is Af; = —5fz. The dashed line is the
Landau-Zener limit (Af; = —o0)
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Figure 2: Asymptotic value of the excitation probability for different initial detun-
ings: Af; = —fgr (blue), Af; = —2fr (red) and the Landau-Zener limit Af; = —o0
(dashed)

4 Chirped pulse vs fixed frequency pulse

See ‘20131016 Raman sweep vs pulse.nb’

5 Conclusions

e Most of the excitation occurs in the frequency range 6 € [—€, (]

e The sweep speed controls the excitation probability. A rule of thumb would be
‘a sweep rate o smaller than Q? gives an excitation level higher than 70%’

6 Beyond Simple Models

Other works explore analytical [4-§] and numerical [9}/10] solutions for different sweep
functions. The reference [11,/12] explores Landau-Zener transitions in three-level
systems.
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