Region-Based Representations Revisited
Michal Shlapentokh-Rothman, Ansel Blume, Yao Xiao, Yuqun Wu, Sethuraman T V, Heyi Tao, Jae Yong Lee, Wilfredo Torres-Calderon, Yu-Xiong Wang, Derek Hoiem
We investigate whether region-based representations are effective for recognition. Regions were once a mainstay in recognition approaches, but pixel and patch-based features are now used almost exclusively. We show that recent class-agnostic segmenters like SAM can be effectively combined with strong unsupervised representations like DINOv2 and used for a wide variety of tasks, including semantic segmentation, object-based image retrieval, and multi-image analysis. Once the masks and features are extracted, these representations, even with linear decoders, enable competitive performance, making them well suited to applications that require custom queries. The compactness of the representation also makes it well-suited to video analysis and other problems requiring inference across many images.
Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action
Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem, Aniruddha Kembhavi
We present Unified-IO 2, the first autoregressive multimodal model that is capable of understanding and generating image, text, audio, and action. To unify different modalities, we tokenize inputs and outputs — images, text, audio, action, bounding boxes, etc., into a shared semantic space and then process them with a single encoder-decoder transformer model. Since training with such diverse modalities is challenging, we propose various architectural improvements to stabilize model training. We train our model from scratch on a large multimodal pre-training corpus from diverse sources with a multimodal mixture of denoisers objective. To learn an expansive set of skills, such as following multimodal instructions, we construct and finetune on an ensemble of 120 datasets with prompts and augmentations. With a single unified model, Unified-IO 2 achieves state-of-the-art performance on the GRIT benchmark and strong results in more than 35 benchmarks, including image generation and understanding, natural language understanding, video and audio understanding, and robotic manipulation. We release all our models to the research community.
StyLitGAN: Prompting StyleGAN to Produce New Illumination Conditions
Anand Bhattad, D.A. Forsyth
We propose a novel method, StyLitGAN, for relighting and resurfacing generated images in the absence of labeled data. Our approach generates images with realistic lighting effects, including cast shadows, soft shadows, inter-reflections, and glossy effects, without the need for paired or CGI data.
StyLitGAN uses an intrinsic image method to decompose an image, followed by a search of the latent space of a pre-trained StyleGAN to identify a set of directions. By prompting the model to fix one component (e.g., albedo) and vary another (e.g., shading), we generate relighted images by adding the identified directions to the latent style codes. Quantitative metrics of change in albedo and lighting diversity allow us to choose effective directions using a forward selection process. Qualitative evaluation confirms the effectiveness of our method.
Shadows Don’t Lie and Lines Can’t Bend! Generative Models don’t know Projective Geometry…for now
Ayush Sarkar, Hanlin Mai, Amitabh Mahapatra, Svetlana Lazebnik, D.A. Forsyth, Anand Bhattad
Generative models can produce impressively realistic images. This paper demonstrates that generated images have geometric features different from those of real images. We build a set of collections of generated images, prequalified to fool simple, signal-based classifiers into believing they are real. We then show that prequalified generated images can be identified reliably by classifiers that only look at geometric properties. We use three such classifiers. All three classifiers are denied access to image pixels, and look only at derived geometric features. The first classifier looks at the perspective field of the image, the second looks at lines detected in the image, and the third looks at relations between detected objects and shadows. Our procedure detects generated images more reliably than SOTA local signal based detectors, for images from a number of distinct generators. Saliency maps suggest that the classifiers can identify geometric problems reliably. We conclude that current generators cannot reliably reproduce geometric properties of real images.
Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video
Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, Shenlong Wang
Creating high-quality and interactive virtual environments, such as games and simulators, often involves complex and costly manual modeling processes. In this paper, we present Video2Game, a novel approach that automatically converts videos of real-world scenes into realistic and interactive game environments. At the heart of our system are three core components:(i) a neural radiance fields (NeRF) module that effectively captures the geometry and visual appearance of the scene; (ii) a mesh module that distills the knowledge from NeRF for faster rendering; and (iii) a physics module that models the interactions and physical dynamics among the objects. By following the carefully designed pipeline, one can construct an interactable and actionable digital replica of the real world. We benchmark our system on both indoor and large-scale outdoor scenes. We show that we can not only produce highly-realistic renderings in real-time, but also build interactive games on top.
Physical Property Understanding from Language-Embedded Feature Fields
Albert J. Zhai, Yuan Shen, Emily Y. Chen, Gloria X. Wang, Xinlei Wang, Sheng Wang, Kaiyu Guan, Shenlong Wang
Can computers perceive the physical properties of objects solely through vision? Research in cognitive science and vision science has shown that humans excel at identifying materials and estimating their physical properties based purely on visual appearance. In this paper, we present a novel approach for dense prediction of the physical properties of objects using a collection of images. Inspired by how humans reason about physics through vision, we leverage large language models to propose candidate materials for each object. We then construct a language-embedded point cloud and estimate the physical properties of each 3D point using a zero-shot kernel regression approach. Our method is accurate, annotation-free, and applicable to any object in the open world. Experiments demonstrate the effectiveness of the proposed approach in various physical property reasoning tasks, such as estimating the mass of common objects, as well as other properties like friction and hardness.
GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh
Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alexander G. Schwing, Shenlong Wang
We introduce GoMAvatar, a novel approach for real-time, memory-efficient, high-quality animatable human modeling. GoMAvatar takes as input a single monocular video to create a digital avatar capable of re-articulation in new poses and real-time rendering from novel viewpoints, while seamlessly integrating with rasterization-based graphics pipelines. Central to our method is the Gaussians-on-Mesh representation, a hybrid 3D model combining rendering quality and speed of Gaussian splatting with geometry modeling and compatibility of deformable meshes. We assess GoMAvatar on ZJU-MoCap data and various YouTube videos. GoMAvatar matches or surpasses current monocular human modeling algorithms in rendering quality and significantly outperforms them in computational efficiency (43 FPS) while being memory-efficient (3.63 MB per subject).
DRESS: Instructing Large Vision-Language Models to Align and Interact with Humans via Natural Language Feedback
Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, Ajay Divakaran
We present DRESS, a large vision language model (LVLM) that innovatively exploits Natural Language feedback (NLF) from Large Language Models to enhance its alignment and interactions by addressing two key limitations in the state-of-the-art LVLMs. First, prior LVLMs generally rely only on the instruction finetuning stage to enhance alignment with human preferences. Without incorporating extra feedback, they are still prone to generate unhelpful, hallucinated, or harmful responses. Second, while the visual instruction tuning data is generally structured in a multi-turn dialogue format, the connections and dependencies among consecutive conversational turns are weak. This reduces the capacity for effective multi-turn interactions. To tackle these, we propose a novel categorization of the NLF into two key types: critique and refinement. The critique NLF identifies the strengths and weaknesses of the responses and is used to align the LVLMs with human preferences. The refinement NLF offers concrete suggestions for improvement and is adopted to improve the interaction ability of the LVLMs– which focuses on LVLMs’ ability to refine responses by incorporating feedback in multi-turn interactions. To address the non-differentiable nature of NLF, we generalize conditional reinforcement learning for training. Our experimental results demonstrate that DRESS can generate more helpful (9.76%), honest (11.52%), and harmless (21.03%) responses, and more effectively learn from feedback during multi-turn interactions compared to SOTA LVMLs.
Putting the Object Back into Video Object Segmentation
Ho Kei Cheng, Seoung Wug Oh, Brian Price, Joon-Young Lee, Alexander Schwing
We present Cutie, a video object segmentation (VOS) network with object-level memory reading, which puts the object representation from memory back into the video object segmentation result. Recent works on VOS employ bottom-up pixel-level memory reading which struggles due to matching noise, especially in the presence of distractors, resulting in lower performance in more challenging data. In contrast, Cutie performs top-down object-level memory reading by adapting a small set of object queries. Via those, it interacts with the bottom-up pixel features iteratively with a query-based object transformer (qt, hence Cutie). The object queries act as a high-level summary of the target object, while high-resolution feature maps are retained for accurate segmentation. Together with foreground-background masked attention, Cutie cleanly separates the semantics of the foreground object from the background. On the challenging MOSE dataset, Cutie improves by 8.7 J&F over XMem with a similar running time and improves by 4.2 J&F over DeAOT while being three times faster. Code is available at: hkchengrex.github.io/Cutie.
NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows
Zhenggang Tang, Jason Ren, Xiaoming Zhao, Bowen Wen, Jonathan Tremblay, Stan Birchfield, Alexander Schwing
We present a method for automatically modifying a NeRF representation based on a single observation of a non-rigid transformed version of the original scene.Our method defines the transformation as a 3D flow,specifically as a weighted linear blending of rigid transformations of 3D anchor points that are defined on the surface of the scene.In order to identify anchor points, we introduce a novel correspondence algorithm that first matches RGB-based pairs,then leverages multi-view information and 3D reprojection to robustly filter false positives in two steps. We also introduce a new dataset for exploring the problem of modifying a NeRF scene through a single observation. Our dataset contains 113 scenes leveraging 47 3D assets. We show that our proposed method outperforms NeRF editing methods as well as diffusion-based methods, and we also explore different methods for filtering correspondences.
BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation
Yunhao Ge, Yihe Tang, Jiashu Xu, Cem Gokmen, Chengshu Li, Wensi Ai, Benjamin Jose Martinez, Arman Aydin, Mona Anvari, Ayush K Chakravarthy, Hong-Xing Yu, Josiah Wong, Sanjana Srivastava, Sharon Lee, Shengxin Zha, Laurent Itti, Yunzhu Li, Roberto Martín-Martín, Miao Liu, Pengchuan Zhang, Ruohan Zhang, Li Fei-Fei, Jiajun Wu
The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. While current synthetic data generators offer a promising alternative, particularly for embodied AI tasks, they often fall short for computer vision tasks due to low asset and rendering quality, limited diversity, and unrealistic physical properties. We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K. BVS supports a large number of adjustable parameters at the scene level (e.g., lighting, object placement), the object level (e.g., joint configuration, attributes such as “filled” and “folded”), and the camera level (e.g., field of view, focal length). Researchers can arbitrarily vary these parameters during data generation to perform controlled experiments. We showcase three example application scenarios: systematically evaluating the robustness of models across different continuous axes of domain shift, evaluating scene understanding models on the same set of images, and training and evaluating simulation-to-real transfer for a novel vision task: unary and binary state prediction. Project website: https://behavior-vision-suite.github.io/
Making Vision Transformers Truly Shift-Equivariant
Renan A. Rojas-Gomez, Teck-Yian Lim, Minh N. Do, Raymond A. Yeh
For computer vision, Vision Transformers (ViTs) have become one of the go-to deep net architectures. Despite being inspired by Convolutional Neural Networks (CNNs), ViTs’ output remains sensitive to small spatial shifts in the input, i.e., not shift invariant. To address this shortcoming, we introduce novel data-adaptive designs for each of the modules in ViTs, such as tokenization, self-attention, patch merging, and positional encoding. With our proposed modules, we achieve true shift-equivariance on four well-established ViTs, namely, Swin, SwinV2, CvT, and MViTv2. Empirically, we evaluate the proposed adaptive models on image classification and semantic segmentation tasks. These models achieve competitive performance across three different datasets while maintaining 100% shift consistency.
LaMPilot: An Open Benchmark Dataset for Autonomous Driving with Language Model Programs
Yunsheng Ma, Can Cui, Xu Cao, Wenqian Ye, Peiran Liu, Juanwu Lu, Amr Abdelraouf, Rohit Gupta, Kyungtae Han, Aniket Bera, James M. Rehg, Ziran Wang
Autonomous driving (AD) has made significant strides in recent years. However, existing frameworks struggle to interpret and execute spontaneous user instructions, such as “overtake the car ahead.” Large Language Models (LLMs) have demonstrated impressive reasoning capabilities showing potential to bridge this gap. In this paper, we present LaMPilot, a novel framework that integrates LLMs into AD systems, enabling them to follow user instructions by generating code that leverages established functional primitives. We also introduce LaMPilot-Bench, the first benchmark dataset specifically designed to quantitatively evaluate the efficacy of language model programs in AD. Adopting the LaMPilot framework, we conduct extensive experiments to assess the performance of off-the-shelf LLMs on LaMPilot-Bench. Our results demonstrate the potential of LLMs in handling diverse driving scenarios and following user instructions in driving. To facilitate further research in this area, we release our code and data at GitHub.com/PurdueDigitalTwin/LaMPilot.
MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding
Xu Cao, Tong Zhou, Yunsheng Ma, Wenqian Ye, Can Cui, Kun Tang, Zhipeng Cao, Kaizhao Liang, Ziran Wang, James M. Rehg, chao zheng
Vision-language generative Al has demonstrated remarkable promise for empowering cross-modal scene understanding of autonomous driving and high-definition (HD) map systems. However, current benchmark datasets lack multi-modal point cloud, image, and language data pairs. Recent approaches utilize visual instruction learning and cross-modal prompt engineering to expand vision-language models into this domain. In this paper, we propose a new vision- language benchmark that can be used to finetune traffic and HD map domain-specific foundation models. Specifically, we annotate and leverage large-scale, broad-coverage traffic and map data extracted from huge HD map annotations, and use CLIP and LLaMA-2 / Vicuna to finetune a baseline model with instruction-following data. Our experimental results across various algorithms reveal that while visual instruction-tuning large language models (LLMs) can effectively learn meaningful representations from MAPLM-QA, there remains significant room for further advancements. To facilitate applying LLMs and multi-modal data into self-driving research, we will release our visual-language QA data, and the baseline models at GitHub.com/LLVM-AD/MAPLM.
ZeroShape: Regression-based Zero-shot Shape Reconstruction
Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, James M. Rehg
We study the problem of single-image zero-shot 3D shape reconstruction. Recent works learn zero-shot shape reconstruction through generative modeling of 3D assets, but these models are computationally expensive at train and inference time. In contrast, the traditional approach to this problem is regression-based, where deterministic models are trained to directly regress the object shape. Such regression methods possess much higher computational efficiency than generative methods. This raises a natural question: is generative modeling necessary for high performance, or conversely, are regression-based approaches still competitive? To answer this, we design a strong regression-based model, called ZeroShape, based on the converging findings in this field and a novel insight. We also curate a large real-world evaluation benchmark, with objects from three different real-world 3D datasets. This evaluation benchmark is more diverse and an order of magnitude larger than what prior works use to quantitatively evaluate their models, aiming at reducing the evaluation variance in our field. We show that ZeroShape not only achieves superior performance over state-of-the-art methods, but also demonstrates significantly higher computational and data efficiency.
PointInfinity: Resolution-Invariant Point Diffusion Models
Zixuan Huang, Justin Johnson, Shoubhik Debnath, James M. Rehg, Chao-Yuan Wu
We present PointInfinity, an efficient family of point cloud diffusion models. Our core idea is to use a transformer-based architecture with a fixed-size, resolution-invariant latent representation. This enables efficient training with low-resolution point clouds, while allowing high-resolution point clouds to be generated during inference. More importantly, we show that scaling the test-time resolution beyond the training resolution improves the fidelity of generated point clouds and surfaces. We analyze this phenomenon and draw a link to classifier-free guidance commonly used in diffusion models, demonstrating that both allow trading off fidelity and variability during inference. Experiments on CO3D show that PointInfinity can efficiently generate high-resolution point clouds (up to 131k points, 31 times more than Point-E) with state-of-the-art quality.
Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives
Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, Eugene Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean Crane, Avijit Dasgupta, Jing Dong, Maria Escobar, Cristhian Forigua, Abrham Gebreselasie, Sanjay Haresh, Jing Huang, Md Mohaiminul Islam, Suyog Jain, Rawal Khirodkar, Devansh Kukreja, Kevin J Liang, Jia-Wei Liu, Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni Mavroudi, Tushar Nagarajan, Francesco Ragusa, Santhosh Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu, Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang, Angela Castillo, Changan Chen, Xinzhu Fu, Ryosuke Furuta, Cristina Gonzalez, Prince Gupta, Jiabo Hu, Yifei Huang, Yiming Huang, Weslie Khoo, Anush Kumar, Robert Kuo, Sach Lakhavani, Miao Liu, Mi Luo, Zhengyi Luo, Brighid Meredith, Austin Miller, Oluwatumininu Oguntola, Xiaqing Pan, Penny Peng, Shraman Pramanick, Merey Ramazanova, Fiona Ryan, Wei Shan, Kiran Somasundaram, Chenan Song, Audrey Southerland, Masatoshi Tateno, Huiyu Wang, Yuchen Wang, Takuma Yagi, Mingfei Yan, Xitong Yang, Zecheng Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao, Zhifan Zhu, Jeff Zhuo, Pablo Arbelaez, Gedas Bertasius, David Crandall, Dima Damen, Jakob Engel, Giovanni Maria Farinella, Antonino Furnari, Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard Newcombe, Hyun Soo Park, James M. Rehg, Yoichi Sato, Manolis Savva, Jianbo Shi, Mike Zheng Shou, Michael Wray
We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). 740 participants from 13 cities worldwide performed these activities in 123 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,286 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions — including a novel “expert commentary” done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources are open sourced to fuel new research in the community.
Modeling Multimodal Social Interactions: New Challenges and Baselines with Densely Aligned Representations
Sangmin Lee, Bolin Lai, Fiona Ryan, Bikram Boote, James M. Rehg
Understanding social interactions involving both verbal and non-verbal cues is essential for effectively interpreting social situations. However, most prior works on multimodal social cues focus predominantly on single-person behaviors or rely on holistic visual representations that are not aligned to utterances in multi-party environments. Consequently, they are limited in modeling the intricate dynamics of multi-party interactions. In this paper, we introduce three new challenging tasks to model the fine-grained dynamics between multiple people: speaking target identification, pronoun coreference resolution, and mentioned player prediction. We contribute extensive data annotations to curate these new challenges in social deduction game settings. Furthermore, we propose a novel multimodal baseline that leverages densely aligned language-visual representations by synchronizing visual features with their corresponding utterances. This facilitates concurrently capturing verbal and non-verbal cues pertinent to social reasoning. Experiments demonstrate the effectiveness of the proposed approach with densely aligned multimodal representations in modeling fine-grained social interactions. Project website: https://sangmin-git.github.io/projects/MMSI.
RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion Models
Ozgur Kara, Bariscan Kurtkaya, Hidir Yesiltepe, James M. Rehg, Pinar Yanardag
Recent advancements in diffusion-based models have demonstrated significant success in generating images from text. However, video editing models have not yet reached the same level of visual quality and user control. To address this, we introduce RAVE, a zero-shot video editing method that leverages pre-trained text-to-image diffusion models without additional training. RAVE takes an input video and a text prompt to produce high-quality videos while preserving the original motion and semantic structure. It employs a novel noise shuffling strategy, leveraging spatio-temporal interactions between frames, to produce temporally consistent videos faster than existing methods. It is also efficient in terms of memory requirements, allowing it to handle longer videos. RAVE is capable of a wide range of edits, from local attribute modifications to shape transformations. In order to demonstrate the versatility of RAVE, we create a comprehensive video evaluation dataset ranging from object-focused scenes to complex human activities like dancing and typing, and dynamic scenes featuring swimming fish and boats. Our qualitative and quantitative experiments highlight the effectiveness of RAVE in diverse video editing scenarios compared to existing methods.
The Audio-Visual Conversational Graph: From an Egocentric-Exocentric Perspective
Wenqi Jia, Miao Liu, Hao Jiang, Ishwarya Ananthabhotla, James M. Rehg, Vamsi Krishna Ithapu, Ruohan Gao
In recent years, the thriving development of research related to egocentric videos has provided a unique perspective for the study of conversational interactions, where both visual and audio signals play a crucial role. While most prior work focus on learning about behaviors that directly involve the camera wearer, we introduce the Ego-Exocentric Conversational Graph Prediction problem, marking the first attempt to infer exocentric conversational interactions from egocentric videos. We propose a unified multi-modal framework — Audio-Visual Conversational Attention (AV-CONV), for the joint prediction of conversation behaviors — speaking and listening — for both the camera wearer as well as all other social partners present in the egocentric video. Specifically, we adopt the self-attention mechanism to model the representations across-time, across-subjects, and across-modalities. To validate our method, we conduct experiments on a challenging egocentric video dataset that includes multi-speaker and multi-conversation scenarios. Our results demonstrate the superior performance of our method compared to a series of baselines. We also present detailed ablation studies to assess the contribution of each component in our model. Check our project page at https://vjwq.github.io/AV-CONV
Situational Awareness Matters in 3D Vision Language Reasoning
Yunze Man, Liang-Yan Gui, Yu-Xiong Wang
Being able to carry out complicated vision language reasoning tasks in 3D space represents a significant milestone in developing household robots and human-centered embodied AI. In this work, we demonstrate that a critical and distinct challenge in 3D vision language reasoning is the situational awareness, which incorporates two key components: (1) The autonomous agent grounds its self-location based on a language prompt. (2) The agent answers open-ended questions from the perspective of its calculated position. To address this challenge, we introduce SIG3D, an end-to-end Situation-Grounded model for 3D vision language reasoning. We tokenize the 3D scene into sparse voxel representation, and propose a languagegrounded situation estimator, followed by a situated question answering module. Experiments on the SQA3D and ScanQA datasets show that SIG3D outperforms state-ofthe-art models in situational estimation and question answering by a large margin (e.g., an enhancement of over 30% on situation accuracy). Subsequent analysis corroborates our architectural design choices, explores the distinct functions of visual and textual tokens, and highlights the importance of situational awareness in the domain of 3D question-answering. Project page is available at https://yunzeman.github.io/situation3d.
TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding
Zhihao Zhang, Shengcao Cao, Yu-Xiong Wang
The limited scale of current 3D shape datasets hinders the advancements in 3D shape understanding, and motivates multi-modal learning approaches which transfer learned knowledge from data-abundant 2D image and language modalities to 3D shapes. However, even though the image and language representations have been aligned by cross-modal models like CLIP, we find that the image modality fails to contribute as much as the language in existing multi-modal 3D representation learning methods. This is attributed to the domain shift in the 2D images and the distinct focus of each modality. To more effectively leverage both modalities in the pre-training, we introduce TriAdapter Multi-Modal Learning (TAMM) — a novel two-stage learning approach based on three synergistic adapters. First, our CLIP Image Adapter mitigates the domain gap between 3D-rendered images and natural images, by adapting the visual representations of CLIP for synthetic image-text pairs. Subsequently, our Dual Adapters decouple the 3D shape representation space into two complementary sub-spaces: one focusing on visual attributes and the other for semantic understanding, which ensure a more comprehensive and effective multi-modal pre-training. Extensive experiments demonstrate that TAMM consistently enhances 3D representations for a wide range of 3D encoder architectures, pre-training datasets, and downstream tasks. Notably, we boost the zero-shot classification accuracy on Objaverse-LVIS from 46.8% to 50.7%, and improve the 5-way 10-shot linear probing classification accuracy on ModelNet40 from 96.1% to 99.0%. Project page: https://alanzhangcs.github.io/tamm-page.
RMem: Restricted Memory Banks Improve Video Object Segmentation
Junbao Zhou, Ziqi Pang, Yu-Xiong Wang
With recent video object segmentation (VOS) benchmarks evolving to challenging scenarios, we revisit a simple but overlooked strategy: restricting the size of memory banks. This diverges from the prevalent practice of expanding memory banks to accommodate extensive historical information. Our specially designed “memory deciphering” study offers a pivotal insight underpinning such a strategy: expanding memory banks, while seemingly beneficial, actually increases the difficulty for VOS modules to decode relevant features due to the confusion from redundant information. By restricting memory banks to a limited number of essential frames, we achieve a notable improvement in VOS accuracy. This process balances the importance and freshness of frames to maintain an informative memory bank within a bounded capacity. Additionally, restricted memory banks reduce the training-inference discrepancy in memory lengths compared with continuous expansion. This fosters new opportunities in temporal reasoning and enables us to introduce the previously overlooked “temporal positional embedding.” Finally, our insights are embodied in RMem (“R” for restricted), a simple yet effective VOS modification that excels at challenging VOS scenarios and establishes new state of the art for object state changes (on the VOST dataset) and long videos (on the Long Videos dataset). Our code and demos are available at https://restricted-memory.github.io/.
Instruct 4D-to-4D: Editing 4D Scenes as Pseudo-3D Scenes Using 2D Diffusion
Linzhan Mou, Jun-Kun Chen, Yu-Xiong Wang
This paper proposes Instruct 4D-to-4D that achieves 4D awareness and spatial-temporal consistency for 2D diffusion models to generate high-quality instruction-guided dynamic scene editing results. Traditional applications of 2D diffusion models in dynamic scene editing often result in inconsistency, primarily due to their inherent frame-by-frame editing methodology. Addressing the complexities of extending instruction-guided editing to 4D, our key insight is to treat a 4D scene as a pseudo-3D scene, decoupled into two sub-problems: achieving temporal consistency in video editing and applying these edits to the pseudo-3D scene. Following this, we first enhance the Instruct-Pix2Pix (IP2P) model with an anchor-aware attention module for batch processing and consistent editing. Additionally, we integrate optical flow-guided appearance propagation in a sliding window fashion for more precise frame-to-frame editing and incorporate depth-based projection to manage the extensive data of pseudo-3D scenes, followed by iterative editing to achieve convergence. We extensively evaluate our approach in various scenes and editing instructions, and demonstrate that it achieves spatially and temporally consistent editing results, with significantly enhanced detail and sharpness over the prior art. Notably, Instruct 4D-to-4D is general and applicable to both monocular and challenging multi-camera scenes. Code and more results are available at immortalco.github.io/Instruct-4D-to-4D.
ConsistDreamer: 3D-Consistent 2D Diffusion for High-Fidelity Scene Editing
Jun-Kun Chen, Samuel Rota Bulò, Norman Müller, Lorenzo Porzi, Peter Kontschieder, Yu-Xiong Wang
This paper proposes ConsistDreamer – a novel framework that lifts 2D diffusion models with 3D awareness and 3D consistency, thus enabling high-fidelity instruction-guided scene editing. To overcome the fundamental limitation of missing 3D consistency in 2D diffusion models, our key insight is to introduce three synergetic strategies that augment the input of the 2D diffusion model to become 3D-aware and to explicitly enforce 3D consistency during the training process. Specifically, we design surrounding views as context-rich input for the 2D diffusion model, and generate 3D-consistent, structured noise instead of image-independent noise. Moreover, we introduce self-supervised consistency-enforcing training within the per-scene editing procedure. Extensive evaluation shows that our ConsistDreamer achieves state-of-the-art performance for instruction-guided scene editing across various scenes and editing instructions, particularly in complicated large-scale indoor scenes from ScanNet++, with significantly improved sharpness and fine-grained textures. Notably, ConsistDreamer stands as the first work capable of successfully editing complex (e.g., plaid/checkered) patterns. Our project page is at immortalco.github.io/ConsistDreamer.
Bootstrapping Autonomous Driving Radars with Self-Supervised Learning
Yiduo Hao, Sohrab Madani, Junfeng Guan, Mohammed Alloulah, Saurabh Gupta, Haitham Hassanieh
The perception of autonomous vehicles using radars has attracted increased research interest due its ability to operate in fog and bad weather. However, training radar models is hindered by the cost and difficulty of annotating large-scale radar data. To overcome this bottleneck, we propose a self-supervised learning framework to leverage the large amount of unlabeled radar data to pre-train radar-only embeddings for self-driving perception tasks. The proposed method combines radar-to-radar and radar-to-vision contrastive losses to learn a general representation from unlabeled radar heatmaps paired with their corresponding camera images. When used for downstream object detection, we demonstrate that the proposed self-supervision framework can improve the accuracy of state-of-the-art supervised baselines by 5.8% in mAP. Code is available at https://github.com/yiduohao/Radical.
Brush2Prompt: Contextual Prompt Generator for Object Inpainting
Mang Tik Chiu, Yuqian Zhou, Lingzhi Zhang, Zhe Lin, Connelly Barnes, Sohrab Amirghodsi, Eli Shechtman, Humphrey Shi
Object inpainting is a task that involves adding objects to real images and seamlessly compositing them. With the recent commercialization of products like Stable Diffusion and Generative Fill, inserting objects into images by using prompts has achieved impressive visual results. In this paper, we propose a prompt suggestion model to simplify the process of prompt input. When the user provides an image and a mask, our model predicts suitable prompts based on the partial contextual information in the masked image, and the shape and location of the mask. Specifically, we introduce a concept-diffusion in the CLIP space that predicts CLIP-text embeddings from a masked image. These diffused embeddings can be directly injected into open-source inpainting models like Stable Diffusion and its variants. Alternatively, they can be decoded into natural language for use in other publicly available applications such as Generative Fill. Our prompt suggestion model demonstrates a balanced accuracy and diversity, showing its capability to be both contextually aware and creatively adaptive.
OpenBias: Open-set Bias Detection in Text-to-Image Generative Models
Moreno D’Incà, Elia Peruzzo, Massimiliano Mancini, Dejia Xu, Vidit Goel, Xingqian Xu, Zhangyang Wang, Humphrey Shi, Nicu Sebe
Text-to-image generative models are becoming increasingly popular and accessible to the general public. As these models see large-scale deployments, it is necessary to deeply investigate their safety and fairness to not disseminate and perpetuate any kind of biases. However, existing works focus on detecting closed sets of biases defined a priori, limiting the studies to well-known concepts. In this paper, we tackle the challenge of open-set bias detection in text-to-image generative models presenting OpenBias, a new pipeline that identifies and quantifies the severity of biases agnostically, without access to any precompiled set. OpenBias has three stages. In the first phase, we leverage a Large Language Model (LLM) to propose biases given a set of captions. Secondly, the target generative model produces images using the same set of captions. Lastly, a Vision Question Answering model recognizes the presence and extent of the previously proposed biases. We study the behavior of Stable Diffusion 1.5, 2, and XL emphasizing new biases, never investigated before. Via quantitative experiments, we demonstrate that OpenBias agrees with current closed-set bias detection methods and human judgement.
PAIR-Diffusion: A Comprehensive Multimodal Object-Level Image Editor
Vidit Goel, Elia Peruzzo, Yifan Jiang, Dejia Xu, Xingqian Xu, Nicu Sebe, Trevor Darrell, Zhangyang Wang, Humphrey Shi
Generative image editing has recently witnessed extremely fast-paced growth. Some works use high-level conditioning such as text, while others use low-level conditioning. Nevertheless, most of them lack fine-grained control over the properties of the different objects present in the image, i.e. object-level image editing. In this work, we tackle the task by perceiving the images as an amalgamation of various objects and aim to control the properties of each object in a fine-grained manner. Out of these properties, we identify structure and appearance as the most intuitive to understand and useful for editing purposes. We propose PAIR Diffusion, a generic framework that can enable a diffusion model to control the structure and appearance properties of each object in the image. We show that having control over the properties of each object in an image leads to comprehensive editing capabilities. Our framework allows for various object-level editing operations on real images such as reference image-based appearance editing, free-form shape editing, adding objects, and variations. Thanks to our design, we do not require any inversion step. Additionally, we propose multimodal classifier-free guidance which enables editing images using both reference images and text when using our approach with foundational diffusion models. We validate the above claims by extensively evaluating our framework on both unconditional and foundational diffusion models.
Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models
Xingqian Xu, Jiayi Guo, Zhangyang Wang, Gao Huang, Irfan Essa, Humphrey Shi
Text-to-image (T2I) research has grown explosively in the past year, owing to the large-scale pre-trained diffusion models and many emerging personalization and editing approaches. Yet, one pain point persists: the text prompt engineering, and searching high-quality text prompts for customized results is more art than science. Moreover, as commonly argued: “an image is worth a thousand words” – the attempt to describe a desired image with texts often ends up being ambiguous and cannot comprehensively cover delicate visual details, hence necessitating more additional controls from the visual domain. In this paper, we take a bold step forward: taking “Text” out of a pre-trained T2I diffusion model, to reduce the burdensome prompt engineering efforts for users. Our proposed framework, Prompt-Free Diffusion, relies on only visual inputs to generate new images: it takes a reference image as “context”, an optional image structural conditioning, and an initial noise, with absolutely no text prompt. The core architecture behind the scene is Semantic Context Encoder (SeeCoder), substituting the commonly used CLIP-based or LLM-based text encoder. The reusability of SeeCoder also makes it a convenient drop-in component: one can also pre-train a SeeCoder in one T2I model and reuse it for another. Through extensive experiments, Prompt-Free Diffusion is experimentally found to (i) outperform prior exemplar-based image synthesis approaches; (ii) perform on par with state-of-the-art T2I models using prompts following the best practice; and (iii) be naturally extensible to other downstream applications such as anime figure generation and virtual try-on, with promising quality.
Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models
Jiayi Guo, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao Huang, Humphrey Shi
Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at https://github.com/SHI-Labs/Smooth-Diffusion.
Zero-Painter: Training-Free Layout Control for Text-to-Image Synthesis
Marianna Ohanyan, Hayk Manukyan, Zhangyang Wang, Shant Navasardyan, Humphrey Shi
We present Zero-Painter, a novel training-free framework for layout-conditional text-to-image synthesis that facilitates the creation of detailed and controlled imagery from textual prompts. Our method utilizes object masks and individual descriptions, coupled with a global text prompt, to generate images with high fidelity. Zero-Painter employs a two-stage process involving our novel Prompt-Adjusted Cross-Attention (PACA) and Region-Grouped Cross-Attention (ReGCA) blocks, ensuring precise alignment of generated objects with textual prompts and mask shapes. Our extensive experiments demonstrate that Zero-Painter surpasses current state-of-the-art methods in preserving textual details and adhering to mask shapes. We will make the codes and the models publicly available.
VCoder: Versatile Vision Encoders for Multimodal Large Language Models
Jitesh Jain, Jianwei Yang, Humphrey Shi
Humans possess the remarkable skill of Visual Perception, the ability to see and understand the seen, helping them make sense of the visual world and, in turn, reason. Multimodal Large Language Models (MLLM) have recently achieved impressive performance on vision-language tasks ranging from visual question-answering and image captioning to visual reasoning and image generation. However, when prompted to identify or count (perceive) the entities in a given image, existing MLLM systems fail. Working towards developing an accurate MLLM system for perception and reasoning, we propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs. We feed the VCoder with perception modalities such as segmentation or depth maps, improving the MLLM’s perception abilities. Secondly, we leverage the images from COCO and outputs from off-the-shelf vision perception models to create our COCO Segmentation Text (COST) dataset for training and evaluating MLLMs on the object perception task. Thirdly, we introduce metrics to assess the object perception abilities in MLLMs on our COST dataset. Lastly, we provide extensive experimental evidence proving the VCoder’s improved object-level perception skills over existing Multimodal LLMs, including GPT-4V. We open-source our dataset, code, and models to promote research.
Learning to Visually Localize Sound Sources from Mixtures without Prior Source Knowledge
Dongjin Kim, Sung Jin Um, Sangmin Lee, Jung Uk Kim
The goal of the multi-sound source localization task is to localize sound sources from the mixture individually. While recent multi-sound source localization methods have shown improved performance, they face challenges due to their reliance on prior information about the number of objects to be separated. In this paper, to overcome this limitation, we present a novel multi-sound source localization method that can perform localization without prior knowledge of the number of sound sources. To achieve this goal, we propose an iterative object identification (IOI) module, which can recognize sound-making objects in an iterative manner. After finding the regions of sound-making objects, we devise object similarity-aware clustering (OSC) loss to guide the IOI module to effectively combine regions of the same object but also distinguish between different objects and backgrounds. It enables our method to perform accurate localization of sound-making objects without any prior knowledge. Extensive experimental results on the MUSIC and VGGSound benchmarks show the significant performance improvements of the proposed method over the existing methods for both single and multi-source. Our code is available at: https://github.com/VisualAIKHU/NoPrior_MultiSSL
ChatScene: Knowledge-Enabled Safety-Critical Scenario Generation for Autonomous Vehicles
Jiawei Zhang, Chejian Xu, Bo Li
We present ChatScene, a Large Language Model (LLM)-based agent that leverages the capabilities of LLMs to generate safety-critical scenarios for autonomous vehicles. Given unstructured language instructions, the agent first generates textually described traffic scenarios using LLMs. These scenario descriptions are subsequently broken down into several sub-descriptions for specified details such as behaviors and locations of vehicles. The agent then distinctively transforms the textually described sub-scenarios into domain-specific languages, which then generate actual code for prediction and control in simulators, facilitating the creation of diverse and complex scenarios within the CARLA simulation environment. A key part of our agent is a comprehensive knowledge retrieval component, which efficiently translates specific textual descriptions into corresponding domain-specific code snippets by training a knowledge database containing the scenario description and code pairs. Extensive experimental results underscore the efficacy of ChatScene in improving the safety of autonomous vehicles. For instance, the scenarios generated by ChatScene show a 15% increase in collision rates compared to state-of-the-art baselines when tested against different reinforcement learning-based ego vehicles. Furthermore, we show that by using our generated safety-critical scenarios to fine-tune different RL-based autonomous driving models, they can achieve a 9% reduction in collision rates, surpassing current SOTA methods. ChatScene effectively bridges the gap between textual descriptions of traffic scenarios and practical CARLA simulations, providing a unified way to conveniently generate safety-critical scenarios for safety testing and improvement for AVs.
FedSelect: Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning
Rishub Tamirisa, Chulin Xie, Wenxuan Bao, Andy Zhou, Ron Arel, Aviv Shamsian
Standard federated learning approaches suffer when client data distributions have sufficient heterogeneity. Recent methods addressed the client data heterogeneity issue via personalized federated learning (PFL) – a class of FL algorithms aiming to personalize learned global knowledge to better suit the clients’ local data distributions. Existing PFL methods usually decouple global updates in deep neural networks by performing personalization on particular layers (i.e. classifier heads) and global aggregation for the rest of the network. However, preselecting network layers for personalization may result in suboptimal storage of global knowledge. In this work, we propose FedSelect, a novel PFL algorithm inspired by the iterative subnetwork discovery procedure used for the Lottery Ticket Hypothesis. FedSelect incrementally expands subnetworks to personalize client parameters, concurrently conducting global aggregations on the remaining parameters. This approach enables the personalization of both client parameters and subnetwork structure during the training process. Finally, we show that FedSelect outperforms recent state-of-the-art PFL algorithms under challenging client data heterogeneity settings and demonstrates robustness to various real-world distributional shifts.
PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees
Chulin Xie, De-An Huang, Wenda Chu, Daguang Xu, Chaowei Xiao, Bo Li, Anima Anandkumar
Personalized Federated Learning (pFL) has emerged as a promising solution to tackle data heterogeneity across clients in FL. However, existing pFL methods either (1) introduce high communication and computation costs or (2) overfit to local data, which can be limited in scope, and are vulnerable to evolved test samples with natural shifts. In this paper, we propose PerAda, a parameter-efficient pFL framework that reduces communication and computational costs and exhibits superior generalization performance, especially under test-time distribution shifts. PerAda reduces the costs by leveraging the power of pretrained models and only updates and communicates a small number of additional parameters from adapters. PerAda has good generalization since it regularizes each client’s personalized adapter with a global adapter, while the global adapter uses knowledge distillation to aggregate generalized information from all clients. Theoretically, we provide generalization bounds to explain why PerAda improves generalization, and we prove its convergence to stationary points under non-convex settings. Empirically, PerAda demonstrates competitive personalized performance (+4.85% on CheXpert) and enables better out-of-distribution generalization (+5.23% on CIFAR-10-C) on different datasets across natural and medical domains compared with baselines, while only updating 12.6% of parameters per model based on the adapter.
All Rivers Run to the Sea: Private Learning with Asymmetric Flows
Yue Niu, Ramy E. Ali, Saurav Prakash, Salman Avestimehr
Data privacy is of great concern in cloud machine-learning service platforms, when sensitive data are exposed to service providers. While private computing environments (e.g., secure enclaves), and cryptographic approaches (e.g., homomorphic encryption) provide strong privacy protection, their computing performance still falls short compared to cloud GPUs. To achieve privacy protection with high computing performance, we propose Delta, a new private training and inference framework, with comparable model performance as non-private centralized training. Delta features two asymmetric data flows: the main information-sensitive flow and the residual flow. The main part flows into a small model while the residuals are offloaded to a large model. Specifically, Delta embeds the information-sensitive representations into a low-dimensional space while pushing the information-insensitive part into high-dimension residuals. To ensure privacy protection, the low-dimensional information-sensitive part is secured and fed to a small model in a private environment. On the other hand, the residual part is sent to fast cloud GPUs, and processed by a large model. To further enhance privacy and reduce the communication cost, Delta applies a random binary quantization technique along with a DP-based technique to the residuals before sharing them with the public platform. We theoretically show that Delta guarantees differential privacy in the public environment and greatly reduces the complexity in the private environment. We conduct empirical analyses on CIFAR-10, CIFAR-100 and ImageNet datasets and ResNet-18 and ResNet-34, showing that Delta achieves strong privacy protection, fast training, and inference without significantly compromising the model utility.
GOAT-Bench: A Benchmark for Multi-Modal Lifelong Navigation
Mukul Khanna, Ram Ramrakhya, Gunjan Chhablani, Sriram Yenamandra, Theophile Gervet, Matthew Chang, Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, Roozbeh Mottaghi
The Embodied AI community has made significant strides in visual navigation tasks, exploring targets from 3D coordinates, objects, language descriptions, and images. However, these navigation models often handle only a single input modality as the target. With the progress achieved so far, it is time to move towards universal navigation models capable of handling various goal types, enabling more effective user interaction with robots. To facilitate this goal, we propose GOAT-Bench, a benchmark for the universal navigation task referred to as GO to AnyThing (GOAT). In this task, the agent is directed to navigate to a sequence of targets specified by the category name, language description, or image in an open-vocabulary fashion. We benchmark monolithic RL and modular methods on the GOAT task, analyzing their performance across modalities, the role of explicit and implicit scene memories, their robustness to noise in goal specifications, and the impact of memory in lifelong scenarios.
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
Junyi Zhang, Charles Herrmann, Junhwa Hur, Eric Chen, Varun Jampani, Deqing Sun, Ming-Hsuan Yang
While pre-trained large-scale vision models have shown significant promise for semantic correspondence, their features often struggle to grasp the geometry and orientation of instances.This paper identifies the importance of being geometry-aware for semantic correspondence and reveals a limitation of the features of current foundation models under simple post-processing.We show that incorporating this information can markedly enhance semantic correspondence performance with simple but effective solutions in both zero-shot and supervised settings. We also construct a new challenging benchmark for semantic correspondence built from an existing animal pose estimation dataset, for both pre-training validating models. Our method achieves a PCK@0.10 score of 65.4 (zero-shot) and 85.6 (supervised) on the challenging SPair-71k dataset, outperforming the state of the art by 5.5p and 11.0p absolute gains, respectively.Our code and datasets are publicly available at: https://telling-left-from-right.github.io.
Learning Discriminative Dynamics with Label Corruption for Noisy Label Detection
Suyeon Kim, Dongha Lee, SeongKu Kang, Sukang Chae, Sanghwan Jang, Hwanjo Yu
Label noise, commonly found in real-world datasets, has a detrimental impact on a model’s generalization. To effectively detect incorrectly labeled instances, previous works have mostly relied on distinguishable training signals, such as training loss, as indicators to differentiate between clean and noisy labels. However, they have limitations in that the training signals incompletely reveal the model’s behavior and are not effectively generalized to various noise types, resulting in limited detection accuracy. In this paper, we propose DynaCor framework that distinguishes incorrectly labeled instances from correctly labeled ones based on the dynamics of the training signals. To cope with the absence of supervision for clean and noisy labels, DynaCor first introduces a label corruption strategy that augments the original dataset with intentionally corrupted labels, enabling indirect simulation of the model’s behavior on noisy labels. Then, DynaCor learns to identify clean and noisy instances by inducing two clearly distinguishable clusters from the latent representations of training dynamics. Our comprehensive experiments show that DynaCor outperforms the state-of-the-art competitors and shows strong robustness to various noise types and noise rates.
Conference Activities
CVPR Organization
Conference Ombud
Derek Hoiem
Advisor to the Program Committee
David Forsyth
Senior PAMI-TC Ombud
David Forsyth
Senior Area Chair
Alex Schwing
Area Chair
Yunzhu Li, Saurabh Gupta, Yuxiong Wang
Workshop Organization
The 5th International Workshop on Agriculture-Vision – Humphrey Shi
The 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) – Yuxiong Wang
Invited Talks
1st Joint International Egocentric Vision (EgoVis) Workshop – James M. Rehg