Exploring Data Visualization #5 – R edition

In this monthly series, I share a combination of cool data visualizations, useful tools and resources, and other visualization miscellany. The field of data visualization is full of experts who publish insights in books and on blogs, and I’ll be using this series to introduce you to a few of them. You can find previous posts by looking at the Exploring Data Visualization tag.

This month, I wanted to share some resources specifically for learning to visualize data using R.

1) R is a free, open source programming language that is heavily used for statistical analysis, but has also expanded to encompass nearly any kind of data analysis you would want to do. In the Scholarly Commons, we have R and RStudio (a user-friendly R development environment) installed on all of our lab computers. RStudio’s website provides links to a lot of ways for you to get started with R.

2) R guru Hadley Wickham gave a public lecture at the University of Notre Dame last August. (Note that his talk starts about 37 minutes into the video.) In the lecture, he walks through a simple example of the iterative process of data visualization in R, and gives additional related advice for doing data science. You can learn from his lecture without knowing any R, but you will find it easier to understand if you have basic experience with programming in general.

3) If you want a book to help you learn more in depth, Wickham and a colleague wrote R for data science: Import, tidy, transform, visualize, and model data. You can read R for data science online, or you can come in to the Scholarly Commons to read the physical book while practicing on one of our lab computers.

4) You can also find a number of specific R courses at Lynda.com, such as “Data Visualization in R with ggplot2.” Just make sure to log in with your U of I credentials so you can access the courses for free.

I hope you enjoyed this data visualization news! If you have any data visualization questions, please feel free to email me and set up an appointment at the Scholarly Commons.

Exploring Data Visualization #2

In this monthly series, I share a combination of cool data visualizations, useful tools and resources, and other visualization miscellany. The field of data visualization is full of experts who publish insights in books and on blogs, and I’ll be using this series to introduce you to a few of them. You can find previous posts by looking at the Exploring Data Visualization tag.

Welcome back to this blog series! Here are some of the things I read in March:

Chart showing that the sons of black families from the top 1 percent had about the same chance of being incarcerated on a given day as the sons of white families earning $36,000

From The New York Times, “Extensive Data Shows Punishing Reach of Racism for Black Boys”

1) The New York Times took data from a recent study about income inequality and designed a variety of compelling data visualizations. The article text and the visualizations complement each other to convey the pervasive insidiousness of racism, especially for black boys.

A chart legend with the categories

From Elijah Meeks, “Color Advice for Data Visualization with D3.js”

2) D3.js is an open JavaScript library that you can use to visualize data. A data visualization engineer at Netflix (what an interesting job!), Elijah Meeks provides some great advice when picking your colors in D3. More importantly, these tips are helpful no matter what visualization tool you use.

A demonstration of selecting bins for histograms, showing too few, too many, and just the right number

From Mikhail Popov, “Plotting the Course Through Charted Waters”

3) Want to learn some data visualization basics? Mikhail Popov from Wikimedia conducted a data visualization literacy workshop for Wikimedia Foundation’s All Hands 2018 staff conference, and he made the entire workshop available online.

I hope you enjoyed this data visualization news! If you have any data visualization questions, please feel free to email me and set up an appointment at the Scholarly Commons.