You can’t analyze data if you ain’t cute: Data Visualization

Meme from Reno 911 with the original text stating "You can't fight crime if you ain't cute" but the "fight crime" is crossed out and above is written "analyze Data"

Humans are highly visual creatures, even more so in our hyper-graphic world of ultra-filtered images and short aesthetic videos. Great ideas are ignored into oblivion in favor of shiny graphics and slick illustrations, so even data analysts need to be aware of how they present their findings. A well-designed infographic will be much more impactful, widely shared, and remembered than columns and rows of numbers. Even a simple graph can help people better come to conclusions and absorb information than they ever would with just numbers alone. People who can not only crunch numbers but also create stunning communications about those numbers are a real asset on the job market, so it behooves any hopeful data analyst to at least learn the basics of visualization.

LinkedIn Learning 

  1. Learning Data Visualization 
    1. This course clocks in at just under two hours and aims to give learners the scaffolding for a strong understanding of data visualization. Geared towards true beginners, this course challenges learners to think about their data, audience, and goals to create visuals that maximize impact. Learners will also learn about visual perception and chart selection strategies, which in turn can set users up for a deep understanding of visualization. 
  1. Data Visualization: Best Practices 
    1. A poorly designed visualization can be criminally misleading, causing viewers to come to biased and inaccurate conclusions that can negatively affect everything from their investment choices to their health practices. This 98-minute course will give learners the tools to avoid common visualization missteps and the tricks to make their visualizations better fit their data, audience, and goals. This course uses Adobe Illustrator, so those who are unfamiliar with the program should first check out this quick start introduction to the program on LinkedIn Learning. Remember, UIUC students have free access many Adobe products, including Adobe Illustrator!  
  2. Excel Data Visualization: Mastering 20+ Charts and Graphs 
    1. Once again, we will focus on this data skillset within the context of a familiar software, Excel. While it is not the first software that comes to mind when thinking about visualization, Excel has surprisingly powerful visualization functions that will certainly come in handy when analyzing data. This course covers the humble pie chart to the complex geospatial heat maps and 3D power maps. In just two hours, learners will be able to quickly take their data from tables to graphics.  

O’Reilly Books and Videos

Make sure you are logged into O’Reilly before clicking these links. The best way to login is to go to the library catalog’s record for a book offered through O’Reilly (Like this book on Python) and then follow the instructions on this Libguide to log in.

  1. Fundamentals of Data Visualization 
    1. This handy book goes deep into the technical aspects of data visualizations. Learners will learn basic concepts like color theory along side more complex practices like redundant coding. This eBook also provides a helpful directory of visualizations so users can quickly find visualizations that fit their needs.
  2. The Data Visualization Lifecycle 
    1. This 4-hour course covers the basics of data visualization but looks at the actual process of professional data visualization that the other resources on this list do not address. Learners will gain technical skills in building visualization and a broader understanding of data visualization as a collaborative process based on external and internal stakeholders and audiences. This course teaches users how to interact with different data cultures, collaborate with colleagues, and how to treat visualization as a product.
  3. Interactive Data Visualization for the Web 
    1. Interactive data visualization is a trending skill in almost all fields that rely on data analysis and visualization of any kind. Allowing others to interact with your data and its visualization can make the data more accessible and memorable than ever before. This book gives users the skills to make interactive visuals with the fundamental concepts and methods of D3, the most powerful JavaScript library for expressing data visually in a web browser. Even those who are new to web programming will learn the basics of HTML, CSS, JavaScript, and SVG alongside the data visualization skills.

In the Catalog 

  1. #MakeoverMonday : improving how we visualize and analyze data, one chart at a time by Andrew Michael Kriebel and Eva Katharina Murray 
    1. Hashtags can be the start of beautiful movements, as those in the data analysis field learned as their #MakeoverMonday tag sparked a complete reimagining of how professionals approach data visualization. Readers will learn concepts of data visualization while viewing the real-life results of these concepts as shown by the hashtag-inspired graphics. #MakeoverMonday shows readers the “many ways to walk the line between simple reporting and design artistry to create exactly the visualization the situation requires”.  
  2. The functional art : an introduction to information graphics and visualization by Alberto Cairo 
    1. If there are data visualization celebrities, then Alberto Cairo is an A-lister. Known for his visualization journalism, he is a self-described information designer who has become famous for his gripping visualizations that stand as both formal art and excellent communication of data. This book allows users to learn the ins and outs of design all while strolling through a gallery of amazing visualization examples. This resource leans heavily on the theory of art and design, which makes it stand out from the other resources on this list. Alberto Cairo’s other works, The Truthful Art: data, charts, and maps for communication and How Charts Lie : getting smarter about visual information  are also worthwhile and insightful reads!  
  3. Data visualisation : a handbook for data driven design by Andy Kirk 
    1. Pivoting back to the more practical side of things, this handbook offers clear and useful processes for data driven designing. Readers will learn more about the visualization workflow, formulating briefs, working with data in the context of visualization, representing data accurately, integrating interactivity, and visualization literacy. 

And that’s it, folks!

With these visualization resources, the Winter Break Data Analysis series is ending on a pretty note. Hopefully, you have been able to keep your mind sharp and develop a new skill over the last month, but even if the timing was off, these resources and many more are available to students all year long! Did you enjoy one of these resources or posts? Do you have questions about any of these topics or suggestions for future series? Please tell us about it at sc@library.illinois.edu or on twitter at @ScholCommons. Thank you for joining this series and happy analyzing!  

Finding Digital Humanities Tools in 2017

Here at the Scholarly Commons we want to make sure our patrons know what options are out there for conducting and presenting their research. The digital humanities are becoming increasingly accepted and expected. In fact, you can even play an online game about creating a digital humanities center at a university. After a year of exploring a variety of digital humanities tools, one theme has emerged throughout: taking advantage of the capabilities of new technology to truly revolutionize scholarly communications is actually a really hard thing to do.  Please don’t lose sight of this.

Finding digital humanities tools can be quite challenging. To start, many of your options will be open source tools that you need a server and IT skills to run ($500+ per machine or a cloud with slightly less or comparable cost on the long term). Even when they aren’t expensive be prepared to find yourself in the command line or having to write code, even when a tool is advertised as beginner-friendly.

Mukurtu Help Page Screen Shot

I think this has been taken down because even they aren’t kidding themselves anymore.

There is also the issue of maintenance. While free and open source projects are where young computer nerds go to make a name for themselves, not every project is going to have the paid staff or organized and dedicated community to keep the project maintained over the years. What’s more, many digital humanities tool-building projects are often initiatives from humanists who don’t know what’s possible or what they are doing, with wildly vacillating amounts of grant money available at any given time. This is exacerbated by rapid technological changes, or the fact that many projects were created without sustainability or digital preservation in mind from the get-go. And finally, for digital humanists, failure is not considered a rite of passage to the extent it is in Silicon Valley, which is part of why sometimes you find projects that no longer work still listed as viable resources.

Finding Digital Humanities Tools Part 1: DiRT and TAPoR

Yes, we have talked about DiRT here on Commons Knowledge. Although the Digital Research Tools directory is an extensive resource full of useful reviews, over time it has increasingly become a graveyard of failed digital humanities projects (and sometimes randomly switches to Spanish). DiRT directory itself  comes from Project Bamboo, “… a  humanities cyber- infrastructure  initiative  funded  by  the  Andrew  W.  Mellon Foundation between 2008 and 2012, in order to enhance arts and humanities research through the development of infrastructure and support for shared technology services” (Dombrowski, 2014).  If you are confused about what that means, it’s okay, a lot of people were too, which led to many problems.

TAPoR 3, Text Analysis Portal for Research is DiRT’s Canadian counterpart, which also contains reviews of a variety of digital humanities tools, despite keeping text analysis in the name. Like DiRT, outdated sources are listed.

Part 2: Data Journalism, digital versions of your favorite disciplines, digital pedagogy, and other related fields.

A lot of data journalism tools crossover with digital humanities; in fact, there are even joint Digital Humanities and Data Journalism conferences! You may have even noticed how The Knight Foundation is to data journalism what the Mellon Foundation is to digital humanities. However, Journalism Tools and the list version on Medium from the Tow-Knight Center for Entrepreneurial Journalism at CUNY Graduate School of Journalism and the Resources page from Data Driven Journalism, an initiative from the European Journalism Centre and partially funded by the Dutch government, are both good places to look for resources. As with DiRT and TAPoR, there are similar issues with staying up-to-date. Also data journalism resources tend to list more proprietary tools.

Also, be sure to check out resources for “digital” + [insert humanities/social science discipline], such as digital archeology and digital history.  And of course, another subset of digital humanities is digital pedagogy, which focuses on using technology to augment educational experiences of both  K-12 and university students. A lot of tools and techniques developed for digital pedagogy can also be used outside the classroom for research and presentation purposes. However, even digital science resources can have a lot of useful tools if you are willing to scroll past an occasional plasmid sharing platform. Just remember to be creative and try to think of other disciplines tackling similar issues to what you are trying to do in their research!

Part 3: There is a lot of out-of-date advice out there.

There are librarians who write overviews of digital humanities tools and don’t bother test to see if they still work or are still updated. I am very aware of how hard things are to use and how quickly things change, and I’m not at all talking about the people who couldn’t keep their websites and curated lists updated. Rather, I’m talking about, how the “Top Tools for Digital Humanities Research” in the January/February 2017  issue of “Computers in Libraries” mentions Sophie, an interactive eBook creator  (Herther, 2017). However, Sophie has not updated since 2011 and the link for the fully open source version goes to “Watch King Kong 2 for Free”.

Screenshot of announcement for 2010 Sophie workshop at Scholarly Commons

Looks like we all missed the Scholarly Commons Sophie workshop by only 7 years.

The fact that no one caught that error either shows either how slowly magazines edit, or that no one else bothered check. If no one seems to have created any projects with the software in the past three years it’s probably best to assume it’s no longer happening; though, the best route is to always check for yourself.

Long term solutions:

Save your work in other formats for long term storage. Take your data management and digital preservation seriously. We have resources that can help you find the best options for saving your research.

If you are serious about digital humanities you should really consider learning to code. We have a lot of resources for teaching yourself these skills here at the Scholarly Commons, as well as a wide range of workshops during the school year. As far as coding languages, HTML/CSS, Javascript, Python are probably the most widely-used tools in the digital humanities, and the most helpful. Depending on how much time you put into this, learning to code can help you troubleshoot and customize your tools, as well as allow you contribute to and help maintain the open source projects that you care about.

Works Cited:

100 tools for investigative journalists. (2016). Retrieved May 18, 2017, from https://medium.com/@Journalism2ls/75-tools-for-investigative-journalists-7df8b151db35

Center for Digital Scholarship Portal Mukurtu CMS.  (2017). Support. Retrieved May 11, 2017 from http://support.mukurtu.org/?b_id=633

DiRT Directory. (2015). Retrieved May 18, 2017 from http://dirtdirectory.org/

Digital tools for researchers. (2012, November 18). Retrieved May 31, 2017, from http://connectedresearchers.com/online-tools-for-researchers/

Dombrowski, Q. (2014). What Ever Happened to Project Bamboo? Literary and Linguistic Computing. https://doi.org/10.1093/llc/fqu026

Herther, N.K. (2017). Top Tools for Digital Humanities Research. Retrieved May 18, 2017, from http://www.infotoday.com/cilmag/jan17/Herther–Top-Tools-for-Digital-Humanities-Research.shtml

Journalism Tools. (2016). Retrieved May 18, 2017 from http://journalismtools.io/

Lord, G., Nieves, A.D., and Simons, J. (2015). dhQuest. http://dhquest.com/

Resources Data Driven Journalism. (2017). Retrieved May 18, 2017, from http://datadrivenjournalism.net/resources
TAPoR 3. (2015). Retrieved May 18, 2017 from http://tapor.ca/home

Visel, D. (2010). Upcoming Sophie Workshops. Retrieved May 18, 2017, from http://sophie2.org/trac/blog/upcomingsophieworkshops

Scholarly Smackdown: StoryMap JS vs. Story Maps

In today’s very spatial Scholarly Smackdown post we are covering two popular mapping visualization products, Story Maps and StoryMap JS.Yes they both have “story” and “map” in the name and they both let you create interactive multimedia maps without needing a server. However, they are different products!

StoryMap JS

StoryMap JS, from the Knight Lab at Northwestern, is a simple tool for creating interactive maps and timelines for journalists and historians with limited technical experience.

One  example of a project on StoryMap JS is “Hockey, hip-hop, and other Green Line highlights” by Andy Sturdevant for the Minneapolis Post, which connects the stops of the Green Line train to historical and cultural sites of St. Paul and Minneapolis Minnesota.

StoryMap JS uses Google products and map software from OpenStreetMap.

Using the StoryMap JS editor, you create slides with uploaded or linked media within their template. You then search the map and select a location and the slide will connect with the selected point. You can embed your finished map into your website, but Google-based links can deteriorate over time! So save copies of all your files!

More advanced users will enjoy the Gigapixel mode which allows users to create exhibits around an uploaded image or a historic map.

Story Maps

Story maps is a custom map-based exhibit tool based on ArcGIS online.

My favorite example of a project on Story Maps is The Great New Zealand Road Trip by Andrew Douglas-Clifford, which makes me want to drop everything and go to New Zealand (and learn to drive). But honestly, I can spend all day looking at the different examples in the Story Maps Gallery.

Story Maps offers a greater number of ways to display stories than StoryMap JS, especially in the paid version. The paid version even includes a crowdsourced Story Map where you can incorporate content from respondents, such as their 2016 GIS Day Events map.

With a free non-commercial public ArcGIS Online account you can create a variety of types of maps. Although it does not appear there is to overlay a historical map, there is a comparison tool which could be used to show changes over time. In the free edition of this software you have to use images hosted elsewhere, such as in Google Photos. Story Maps are created through their wizard where you add links to photos/videos, followed by information about these objects, and then search and add the location. It is very easy to use and almost as easy as StoryMap JS. However, since this is a proprietary software there are limits to what you can do with the free account and perhaps worries about pricing and accessing materials at a later date.

Overall, can’t really say there’s a clear winner. If you need to tell a story with a map, both software do a fine job, StoryMap JS is in my totally unscientific opinion slightly easier to use, but we have workshops for Story Maps here at Scholarly Commons!  Either way you will be fine even with limited technical or map making experience.

If you are interested in learning more about data visualization, ArcGIS Story Maps, or geopatial data in general, check out these upcoming workshops here at Scholarly Commons, or contact our GIS expert, James Whitacre!