Introductions: What is Digital Scholarship, anyways?

This is the beginning of a new series where we introduce you to the various topics that we cover in the Scholarly Commons. Maybe you’re new to the field or you’re just to the point where you’re just too afraid to ask… Fear not! We are here to take it back to the basics!

What is digital scholarship, anyways?

Digital scholarship is an all-encompassing term and it can be used very broadly. Digital scholarship refers to the use of digital tools, methods, evidence, or any other digital materials to complete a scholarly project. So, if you are using digital means to construct, analyze, or present your research, you’re doing digital scholarship!

It seems really basic to say that digital scholarship is any project that uses digital means because nowadays, isn’t that every project? Yes and No. We use the term digital quite liberally…If you used Microsoft Word to just write your essay about a lab you did during class – that is not digital scholarship however if you used specialized software to analyze the results from a survey you used to gather data then you wrote about it in an essay that you then typed in Microsoft Word, then that is digital scholarship! If you then wanted to get this essay published and hosted in an online repository so that other researchers can find your essay, then that is digital scholarship too!

Many higher education institutions have digital scholarship centers at their campus that focus on providing specialized support for these types of projects. The Scholarly Commons is a digital scholarship space in the University Main Library! Digital scholarship centers are often pushing for new and innovative means of discovery. They have access to specialized software and hardware and provide a space for collaboration and consultations with subject experts that can help you achieve your project goals.

At the Scholarly Commons, we support a wide array of topics that support digital and data-driven scholarship that this series will cover in the future. We have established partners throughout the library and across the wider University campus to support students, staff, and faculty in their digital scholarship endeavors.

Here is a list of the digital scholarship service points we support:

You can find a list of all the software the Scholarly Commons has to support digital scholarship here and a list of the Scholarly Commons hardware here. If you’re interested in learning more about the foundations of digital scholarship follow along to our Introductions series as we got back to the basics.

As always, if you’re interested in learning more about digital scholarship and how to  support your own projects you can fill out a consultation request form, attend a Savvy Researcher Workshop, Live Chat with us on Ask a Librarian, or send us an email. We are always happy to help!

Simple NetInt: A New Data Visualization Tool from Illinois Assistant Professor, Juan Salamanca

Juan Salamanca Ph.D, Assistant Professor in the School of Art and Design at the University of Illinois Urbana-Champaign recently created a new data visualization tool called Simple NetInt. Though developed from a tool he created a few years ago, this tool brings entirely new opportunities to digital scholarship! This week we had the chance to talk to Juan about this new tool in data visualization. Here’s what he said…

Simple NetInt is a JavaScript version of NetInt, a Java-based node-link visualization prototype designed to support the visual discovery of patterns across large dataset by displaying disjoint clusters of vertices that could be filtered, zoomed in or drilled down interactively. The visualization strategy used in Simple NetInt is to place clustered nodes in independent 3D spaces and draw links between nodes across multiple spaces. The result is a simple graphic user interface that enables visual depth as an intuitive dimension for data exploration.

Simple NetInt InterfaceCheck out the Simple NetInt tool here!

In collaboration with Professor Eric Benson, Salamanca tested a prototype of Simple NetInt with a dataset about academic publications, episodes, and story locations of the Sci-Fi TV series Firefly. The tool shows a network of research relationships between these three sets of entities similar to a citation map but on a timeline following the episodes chronology.

What inspired you to create this new tool?

This tool is an extension of a prototype I built five years ago for the visualization of financial transactions between bank clients. It is a software to visualize networks based on the representation of entities and their relationships and nodes and edges. This new version is used for the visualization of a totally different dataset:  scholarly work published in papers, episodes of a TV Series, and the narrative of the series itself. So, the network representation portrays relationships between journal articles, episode scripts, and fictional characters. I am also using it to design a large mural for the Siebel Center for Design.

What are your hopes for the future use of this project?

The final goal of this project is to develop an augmented reality visualization of networks to be used in the field of digital humanities. This proof of concept shows that scholars in the humanities come across datasets with different dimensional systems that might not be compatible across them. For instance, a timeline of scholarly publications may encompass 10 or 15 years, but the content of what is been discussed in that body of work may encompass centuries of history. Therefore, these two different temporal dimensions need to be represented in such a way that helps scholars in their interpretations. I believe that an immersive visualization may drive new questions for researchers or convey new findings to the public.

What were the major challenges that came with creating this tool?

The major challenge was to find a way to represent three different systems of coordinates in the same space. The tool has a universal space that contains relative subspaces for each dataset loaded. So, the nodes instantiated from each dataset are positioned in their own coordinate system, which could be a timeline, a position relative to a map, or just clusters by proximities. But the edges that connect nodes jump from one coordinate system to the other. This creates the idea of a system of nested spaces that works well with few subspaces, but I am still figuring out what is the most intuitive way to navigate larger multidimensional spaces.

What are your own research interests and how does this project support those?

My research focuses on understanding how designed artifacts affect the viscosity of social action. What I do is to investigate how the design of artifacts facilitates or hinders the cooperation of collaboration between people. I use visual analytics methods to conduct my research so the analysis of networks is an essential tool. I have built several custom-made tools for the observation of the interaction between people and things, and this is one of them.

If you would like to learn more about Simple NetInt you can find contact information for Professor Juan Salamanca here and more information on his research!

If you’re interested in learning more about data visualizations for your own projects, check out our guide on visualizing your data, attend a Savvy Researcher Workshop, Live Chat with us on Ask a Librarian, or send us an email. We are always happy to help!

The Art Institute of Chicago Launches Public API

Application Programming Interfaces, or APIs, are a major feature of the web today. Almost every major website has one, including Google Maps, Facebook, Twitter, Spotify, Wikipedia, and Netflix. If you Google the name of your favorite website and API, chances are you will find an API for it.

Last week, another institution joined the millions of public APIs available today: The Art Institute of Chicago. While they are not the first museum to release a public API, their blog article announcing the release of the API states that it holds the largest amount of data released to the public through an API from a museum. It is also the first museum API to hold all of their public data in one location, including data about their art collection, every exhibition ever held by the Institute since 1879, blog articles, full publication texts, and more than 1,000 gift shop products.

But what exactly is an API, and why should we be excited that we can now interact with the Art Institute of Chicago in this way? An API is basically a particular way to interact with a software application, usually a website. Normally when you visit a website in a browser, such as wikipedia.org, the browser requests an HTML document in order to render the images, fonts, text, and many other bits of data related to the appearance of the web page. This is a useful way to interact as a human consuming information, but if you wanted to perform some sort of data analysis on the data it would be much more difficult to do it this way. For example, if you wanted to answer even a simple question like “Which US president has the longest Wikipedia article?” it would be time consuming to do it the traditional way of viewing webpages.

Instead, an API allows you or other programs to request just the data from a web server. Using a programming language, you could use the Wikipedia API to request the text of each US President’s Wikipedia page and then simply calculate which text is the longest. API responses usually come in the form of data objects with various attributes. The format of these objects vary between websites.

“A Sunday on La Grande Jatte” by Georges Seurat, the data for which is now publicly available from the Art Institute of Chicago’s API.

The same is now true for the vast collections of the Art Institute of Chicago. As a human user you can view the web page for the work “A Sunday on La Grande Jatte” by Georges Seurat at this URL:

 https://www.artic.edu/artworks/27992/a-sunday-on-la-grande-jatte-1884

If you wanted to get the data for this work through an API to do data analysis though, you could make an API request at this URL:

https://api.artic.edu/api/v1/artworks/27992

Notice how both URLs contain “27992”, which is the unique ID for that artwork.

If you open that link in a browser, you will get a bunch of formatted text (if you’re interested, it’s formatted as JSON, a format that is designed to be manipulated by a programming language). If you were to request this data in a program, you could then perform all sorts of analysis on it.

To get an idea of what’s possible with an art museum API, check out this FiveThirtyEight article about the collections of New York’s Metropolitan Museum of Art, which includes charts of which countries are most represented at the Met and which artistic mediums are most popular.

It is possible now to ask the same questions about the Art Institute of Chicago’s collections, along with many others, such as “what is the average size of an impressionist painting?” or “which years was surrealist art most popular?” The possibilities are endless.

To get started with their API, check out their documentation. If you’re familiar with Python and possibly python’s data analysis library pandas, you could check out this article about using APIs in python to perform data analysis to start playing with the Art Institute’s API. You may also want to look at our LibGuide about qualitative data analysis to see what you could do with the data once you have it.

Mapping Native Land

Fall break is fast approaching and with it will be Thanksgiving! No matter what your traditions are, we all know that this year’s holiday season will look a little bit different. As we move into the Thanksgiving holiday, I wanted to share a mapping project to give thanks and recognize the native lands we live on.

Native Land is an open-source mapping project that shows the indigenous territories across the world. This interactive map allows you to input your address or click and explore to determine what indigenous land you reside on. Not only that but Native Land shares educational information about these nations, their languages, or treaties.  They also include a Teacher’s Guide for various wide age range from children to adults. Users are able to export images of their map, too!

Native Land Map

NativeLand.ca Map Interface

Canadian based and indigenous-led, Native Land Digital aims to educate and bring awareness to the complex histories of the land we inhibit. This platform strives to create conversations about indigenous communities between those with native heritage as well as those without. Native Land Digital values the sacredness of land and they use this platform to honor the history of where we reside. Learn more about their mission and impact on their “Why It Matters” page.

Native Land uses MapBox and WordPress to generate their interactive map. MapBox is an open source mapping platform for custom designed maps. Native Land is available as an App for iOS and Android and they have a texting service, as well. You can find more information about how it works here.

If you’d like to learn more about mapping software, the Scholarly Commons has Geographic Information Systems (GIS) software, consultations, and workshops available. The Scholarly Commons webpage on GIS is a great place to get started.

 The University of Illinois is a land-grant institution and resides on Kickapoo territory. Where do you stand?

University of Illinois Urbana-Champaign Land Acknowledgement Statement

As a land-grant institution, the University of Illinois at Urbana-Champaign has a responsibility to acknowledge the historical context in which it exists. In order to remind ourselves and our community, we will begin this event with the following statement. We are currently on the lands of the Peoria, Kaskaskia, Piankashaw, Wea, Miami, Mascoutin, Odawa, Sauk, Mesquaki, Kickapoo, Potawatomi, Ojibwe, and Chickasaw Nations. It is necessary for us to acknowledge these Native Nations and for us to work with them as we move forward as an institution. Over the next 150 years, we will be a vibrant community inclusive of all our differences, with Native peoples at the core of our efforts.

Free, Open Source Optical Character Recognition with gImageReader

Optical Character Recognition (OCR) is a powerful tool to transform scanned, static images of text into machine-readable data, making it possible to search, edit, and analyze text. If you’re using OCR, chances are you’re working with either ABBYY FineReader or Adobe Acrobat Pro. However, both ABBYY and Acrobat are propriety software with a steep price tag, and while they are both available in the Scholarly Commons, you may want to perform OCR beyond your time at the University of Illinois.

Thankfully, there’s a free, open source alternative for OCR: Tesseract. By itself, Tesseract only works through the command line, which creates a steep learning curve for those unaccustomed to working with a command-line interface (CLI). Additionally, it is fairly difficult to transform a jpg into a searchable PDF with Tesseract.

Thankfully, there are many free, open source programs that provide Tesseract with a graphical user interface (GUI), which not only makes Tesseract much easier to use, some of them come with layout editors that make it possible to create searchable PDFs. You can see the full list of programs on this page.

The program logo for gImageReader

The program logo for gImageReader

In this post, I will focus on one of these programs, gImageReader, but as you can see on that page, there are many options available on multiple operating systems. I tried all of the Windows-compatible programs and decided that gImageReader was the closest to what I was looking for, a free alternative to ABBYY FineReader that does a pretty good job of letting you correct OCR mistakes and exporting to a searchable PDF.

Installation

gImageReader is available for Windows and Linux. Though they do not include a Mac compatible version in the list of releases, it may be possible to get it to work if you use a package manager for Mac such as Homebrew. I have not tested this though, so I do not make any guarantees about how possible it is to get a working version of gImageReader on Mac.

To install gImageReader on Windows, go to the releases page on Windows. From there, go to the most recent release of the program at the top and click Assets to expand the list of files included with the release. Then select the file that has the .exe extension to download it. You can then run that file to install the program.

Manual

The installation of gImageReader comes with a manual as an HTML file that can be opened by any browser. As of the date of this post, the Fossies software archive is hosting the manual on its website.

Setting OCR Mode

gImageReader has two OCR modes: “Plain Text” and “hOCR, PDF”. Plain Text is the default mode and only recognizes the text itself without any formatting or layout detection. You can export this to a text file or copy and paste it into another program. This may be useful in some cases, but if you want to export a searchable PDF, you will need to use hOCR, PDF mode. hOCR is a standard for formatting OCR text using either XML or HTML and includes layout information, font, OCR result confidence, and other formatting information.

To set the recognition to hOCR, PDF mode, go to the toolbar at the top. It includes a section for “OCR mode” with a dropdown menu. From there, click the dropdown and select hOCR, PDF:

gImageReader Toolbar

This is the toolbar for gImageReader. You can set OCR mode by using the dropdown that is the third option from the right.

Adding Images, Performing Recognition, and Setting Language

If you have images already scanned, you can add them to be recognized by clicking the Add Images button on the left panel, which looks like a folder. You can then select multiple images if you want to create a multipage PDF. You can always add more images later by clicking that folder button again.

On that left panel, you can also click the Acquire tab button, which allows you to get images directly from a scanner, if the computer you’re using has a scanner connected.

Once you have the images you want, click the Recognize button to recognize the text on the page. Please note that if you have multiple images added, you’ll need to click this button for every page.

If you want to perform recognition on a language other than English, click the arrow next to Recognize. You’ll need to have that language installed, but you can install additional languages by clicking “Manage Languages” in the dropdown appears. If the language is already installed, you can go to the first option listed in the dropdown to select a different language.

Viewing the OCR Result

In this example, I will be performing OCR on this letter by Franklin D. Roosevelt:

Raw scanned image of a typewritten letter signed by Franklin Roosevelt

This 1928 letter from Franklin D. Roosevelt to D. H. Mudge Sr. is courtesy of Madison Historical: The Online Encyclopedia and Digital Archive for Madison County Illinois. https://madison-historical.siue.edu/archive/items/show/819

Once you’ve performed OCR, there will be an output panel on the right. There are a series of buttons above the result. Click the button on the far right to view the text result overlaid on top of the image:

The text result of performing OCR on the FDR letter overlaid on the original scan.

Here is the the text overlaid on an image of the original scan. Note how the scan is slightly transparent now to make the text easier to read.

Correcting OCR

The OCR process did a pretty good job with this example, but it there are a handful of errors. You can click on any of the words of text to show them on the right panel. I will click on the “eclnowledgment” at the end of the letter to correct it. It will then jump to that part of the hOCR “tree” on the right:

hOCR tree in gImageReader, which shows the recognition result of each word in a tree-like structure.

The hOCR tree in gImageReader, which also shows OCR result.

Note in this screenshot I have clicked the second button from the right to show the confidence values, where the higher the number, the higher the confidence Tesseract has with the result. In this case, it is 67% sure that eclnowledgement is correct. Since it obviously isn’t correct, we can type new text by double-clicking on the word in this panel and type “acknowledgement.” You can do this for any errors on the page.

Other correction tips:

  1. If there are any regions that are not text that it is still recognizing, you can right click them on the right and delete them.
  2. You can change the recognized font and its size by going to the bottom area labeled “Properties.” Font size is controlled by the x_fsize field, and x_font has a dropdown where you can select a font.
  3. It is also possible to change the area of the blue word box once it is selected, simply by clicking and dragging the edges and corners.
  4. If there is an area of text that was not captured by the recognition, you can also right click in the hOCR “tree” to add text blocks, paragraphs, textlines, and words to the document. This allows you to draw a box on image and then type what the text says.

Exporting to PDF

Once you are done making OCR corrections, you can export to a searchable PDF. To do so, click the Export button above the hOCR “tree,” which is the third button from the left. Then, select export to PDF. It then gives you several options to set the compression and quality of the PDF image, and once you click OK, it should export the PDF.

Conclusion

Unfortunately, there are some limitations to gImageViewer, as can often be the case with free, open source software. Here are some potential problems you may have with this program:

  1. While you can add new areas to recognize with OCR, there is not a way to change the order of these elements inside the hOCR “tree,” which could be an issue if you are trying to make the reading order clear for accessibility reasons. One potential workaround could be to use the Reading Order options on Adobe Acrobat, which you can read about in this libguide.
  2. You cannot show the areas of the document that are in a recognition box unless you click on a word, unlike ABBYY FineReader which shows all recognition areas at once on the original image.
  3. You cannot perform recognition on all pages at once. You have to click the recognition button individually for each page.
  4. Though there are some image correction options to improve OCR, such as brightness, contrast, and rotation, it does not have as many options as ABBYY FineReader.

gImageViewer is not nearly as user friendly or have all of the features that ABBYY FineReader has, so you will probably want to use ABBYY if it is available to you. However, I find gImageViewer a pretty good program that can meet most general OCR needs.

Statistical Analysis at the Scholarly Commons

The Scholarly Commons is a wonderful resource if you are working on a project that involves statistical analysis. In this post, I will highlight some of the great resources the Scholarly Commons has for our researchers. No matter what point you are at in your project, whether you need to find and analyze data or just need to figure out which software to use, the Scholarly Commons has what you need!

Continue reading

Blogs for All: Making Accessible Posts in WordPress

As blogs continue to provide a low barrier to entry for authors to distribute content in all avenues from academia to entertainment, it is important to make sure that blog posts are just as easy to access for readers. Here at Illinois, our blogs are run through publish.illinois.edu, a WordPress-based publishing service. As we try to improve our services for all, especially our remotely available services, I wanted to use this week’s Commons Knowledge post to discuss improving accessibility in WordPress. Within the platform, making more accessible blog posts isn’t difficult nor does it require much time; however, building these practices into our workflow allows for posts to be accessible—not just for some, but for all.

Wordpress logo - a gray W in a circle

Continue reading

Scholarly Commons Software: Open Source Alternatives

Hello from home to all my fellow (new) work-from-homers!

In light of measures taken to protect public health, it can feel as though our work schedules have been shaken up. However, we are here to help you get back on track and the first thing to do is make sure you have all the tools necessary to be successful at home.

Continue reading

Choosing an OCR Software: ABBYY FineReader vs. Adobe Acrobat Pro

What is OCR? OCR stands for Optical Character Recognition. This is the electronic identification and digital encoding of typed or printed text by means of an optical scanner or a specialized software. Performing OCR allows computers to read static images of text to convert them to readable, editable, and searchable data on a page. There are many applications of OCR including the creation of more accessible documents for the blind and visually-impaired, text/data mining projects, textual comparisons, and large-scale digitization projects.

There are a different software options to consider when you are performing OCR on you documents and it can be challenging to understand which one is best for you. So let’s break it down. Continue reading

Stata vs. R vs. SPSS for Data Analysis

As you do research with larger amounts of data, it becomes necessary to graduate from doing your data analysis in Excel and find a more powerful software. It can seem like a really daunting task, especially if you have never attempted to analyze big data before. There are a number of data analysis software systems out there, but it is not always clear which one will work best for your research. The nature of your research data, your technological expertise, and your own personal preferences are all going to play a role in which software will work best for you. In this post I will explain the pros and cons of Stata, R, and SPSS with regards to quantitative data analysis and provide links to additional resources. Every data analysis software I talk about in this post is available for University of Illinois students, faculty, and staff through the Scholarly Commons computers and you can schedule a consultation with CITL if you have specific questions.

Short video loop of a kid sitting at a computer and putting on sun glasses

Rock your research with the right tools!


STATA

Stata logo. Blue block lettering spelling out Stata.

Among researchers, Stata is often credited as the most user-friendly data analysis software. Stata is popular in the social sciences, particularly economics and political science. It is a complete, integrated statistical software package, meaning it can accomplish pretty much any statistical task you need it to, including visualizations. It has both a point-and-click user interface and a command line function with easy-to-learn command syntax. Furthermore, it has a system for version-control in place, so you can save syntax from certain jobs into a “do-file” to refer to later. Stata is not free to have on your personal computer. Unlike an open-source program, you cannot program your own functions into Stata, so you are limited to the functions it already supports. Finally, its functions are limited to numeric or categorical data, it cannot analyze spatial data and certain other types.

 

Pros

Cons

User friendly and easy to learn An individual license can cost
between $125 and $425 annually
Version control Limited to certain types of data
Many free online resources for learning You cannot program new
functions into Stata

Additional resources:


R logo. Blue capital letter R wrapped with a gray oval.

R and its graphical user interface companion R Studio are incredibly popular software for a number of reasons. The first and probably most important is that it is a free open-source software that is compatible with any operating system. As such, there is a strong and loyal community of users who share their work and advice online. It has the same features as Stata such as a point-and-click user interface, a command line, savable files, and strong data analysis and visualization capabilities. It also has some capabilities Stata does not because users with more technical expertise can program new functions with R to use it for different types of data and projects. The problem a lot of people run into with R is that it is not easy to learn. The programming language it operates on is not intuitive and it is prone to errors. Despite this steep learning curve, there is an abundance of free online resources for learning R.

Pros

Cons

Free open-source software Steep learning curve
Strong online user community Can be slow
Programmable with more functions
for data analysis

Additional Resources:

  • Introduction to R Library Guide: Find valuable overviews and tutorials on this guide published by the University of Illinois Library.
  • Quick-R by DataCamp: This website offers tutorials and examples of syntax for a whole host of data analysis functions in R. Everything from installing the package to advanced data visualizations.
  • Learn R on Code Academy: A free self-paced online class for learning to use R for data science and beyond.
  • Nabble forum: A forum where individuals can ask specific questions about using R and get answers from the user community.

SPSS

SPSS logo. Red background with white block lettering spelling SPSS.

SPSS is an IBM product that is used for quantitative data analysis. It does not have a command line feature but rather has a user interface that is entirely point-and-click and somewhat resembles Microsoft Excel. Although it looks a lot like Excel, it can handle larger data sets faster and with more ease. One of the main complaints about SPSS is that it is prohibitively expensive to use, with individual packages ranging from $1,290 to $8,540 a year. To make up for how expensive it is, it is incredibly easy to learn. As a non-technical person I learned how to use it in under an hour by following an online tutorial from the University of Illinois Library. However, my take on this software is that unless you really need a more powerful tool just stick to Excel. They are too similar to justify seeking out this specialized software.

Pros

Cons

Quick and easy to learn By far the most expensive
Can handle large amounts of data Limited functionality
Great user interface Very similar to Excel

Additional Resources:

Gif of Kermit the frog dancing and flailing his arms with the words "Yay Statistics" in block letters above

Thanks for reading! Let us know in the comments if you have any thoughts or questions about any of these data analysis software programs. We love hearing from our readers!