Web Appendix of

"Conditional Inference Functions for Mixed-Effects Models with Unspecified Random-Effects Distribution"

A.1. Notation

We denote the estimate of the random effects as $\hat{\mathbf{b}}$, and let $Q(\boldsymbol{\beta}|\mathbf{b}_0)$ be the quadratic inference function defined in (4) conditional on the true random effects \mathbf{b}_0 ,

$$\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0}) = \frac{\partial}{\partial \boldsymbol{\beta}} Q(\boldsymbol{\beta}|\mathbf{b}_{0}) \bigg|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}_{0}},$$

and $\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_0|\hat{\mathbf{b}})$, $\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_1|\mathbf{b}_0)$, and $\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_1|\hat{\mathbf{b}})$ can be defined similarly. In addition, let

$$\ddot{Q}_{\beta\beta}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) = \frac{\partial^2}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}} Q(\boldsymbol{\beta}|\mathbf{b}_0) \Big|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}_0},$$

$$\ddot{Q}_{\beta \mathbf{b}}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) = \frac{\partial^2}{\partial \boldsymbol{\beta} \partial \mathbf{b}} Q(\boldsymbol{\beta}|\mathbf{b}_0) \bigg|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}_0, \ \mathbf{b} = \mathbf{b}_0},$$

and $\ddot{Q}_{\beta\beta}(\hat{\boldsymbol{\beta}}_1|\mathbf{b}_0)$ and $\ddot{Q}_{\beta\mathbf{b}}(\hat{\boldsymbol{\beta}}_1|\mathbf{b}_0)$ are defined similarly. Let $\mathbf{G}_N(\boldsymbol{\beta}|\mathbf{b}) = \frac{1}{N}\sum_{i=1}^N \mathbf{g}_i(\boldsymbol{\beta}|\mathbf{b}_i)$. We can define

$$\dot{\mathbf{G}}_{N,\boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0}) = \frac{\partial}{\partial\boldsymbol{\beta}}\mathbf{G}_{N,\boldsymbol{\beta}}(\boldsymbol{\beta}|\mathbf{b}_{0})\Big|_{\boldsymbol{\beta}=\hat{\boldsymbol{\beta}}_{1}},$$

$$\dot{\mathbf{G}}_{N,\mathbf{b}}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0}) = \frac{\partial}{\partial\mathbf{b}}\mathbf{G}_{N,b}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0})\Big|_{\mathbf{b}=\mathbf{b}_{0}},$$

and
$$\dot{\mathbf{G}}_{N,\mathbf{b}}(\hat{\boldsymbol{\beta}}_1|\mathbf{b}_0) = \frac{\partial}{\partial \mathbf{b}} \mathbf{G}_{N,b}(\hat{\boldsymbol{\beta}}_1|\mathbf{b}_0)\Big|_{\mathbf{b}=\mathbf{b}_0}$$
.

The other second derivatives associated with the different parameters are defined in the same fashion. Let

$$\hat{\boldsymbol{\beta}}_0 = \arg\min Q(\boldsymbol{\beta}|\mathbf{b}); \ \hat{\boldsymbol{\beta}}_1 = \arg\min Q(\boldsymbol{\beta}|\hat{\mathbf{b}}).$$

Both $\hat{\boldsymbol{\beta}}_0$ and $\hat{\boldsymbol{\beta}}_1$ are in S, that is,

$$\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0}) = 0, \quad \dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_{1}|\hat{\mathbf{b}}) = 0.$$

Also let $A_N(\beta|\mathbf{b})$ be the weighting matrix such that

$$C_N^{-1}(\boldsymbol{\beta}|\mathbf{b}) = A_N(\boldsymbol{\beta}|\mathbf{b})'A_N(\boldsymbol{\beta}|\mathbf{b})$$

and $Q(\boldsymbol{\beta}|\mathbf{b}) = |\mathbf{A}_N(\boldsymbol{\beta}|\mathbf{b})\mathbf{G}_N(\boldsymbol{\beta}|\mathbf{b})|^2$.

A.2. Regularity conditions and assumptions

Here we prove consistency and asymptotic normality for the fixed-effect estimator under the following assumptions.

- 1. Define n_i as the cluster size for subject i, let $n = \min(n_i)$, then $n_i = O_p(n)$ uniformly for i = 1, ..., N.
- 2. The parameter space *S* is compact.
- 3. Conditional on the true random effects \mathbf{b}_0 , the parameter $\boldsymbol{\beta}$ is identifiable; that is, there is a unique $\boldsymbol{\beta}_0 \in S$ which satisfies $E\{\mathbf{g}(\boldsymbol{\beta}_0|\mathbf{b}_0)\} = 0$.
- 4. The derivative of the score function with respect to the random effects $\dot{\mathbf{g}}_{i,\mathbf{b}}(\hat{\boldsymbol{\beta}}|\mathbf{b}_0)$ is uniformly bounded in probability, i.e. $\dot{\mathbf{g}}_{i,\mathbf{b}}(\hat{\boldsymbol{\beta}}|\mathbf{b}_0) = O_p(1)$.
- 5. We require that $E[g(\beta|b)]$ be continuous and differentiable in both β and b.
- 6. The expectation of $\mathbf{g}_i(\boldsymbol{\beta}_0|\hat{\mathbf{b}})$, the estimating functions conditional on the estimated random effects, converges to 0 in probability, i.e.

$$E[E\{\mathbf{g}_i(\boldsymbol{\beta}_0|\hat{\mathbf{b}})\}] \xrightarrow{p} 0 \quad \text{as } N \to \infty.$$

7. The weighting matrix $C_N(\beta|\mathbf{b})$ converges almost surely to a constant matrix $C_0(\beta|\mathbf{b})$, while $A_N(\beta|\mathbf{b})$ converges almost surely to a constant matrix $A_0(\beta|\mathbf{b})$ where $C_0^{-1}(\beta|\mathbf{b}) = A_0(\beta|\mathbf{b})A_0(\beta|\mathbf{b})'$.

A.3. Proofs of Lemmas and Theorem 1

Proof of Lemma 1. Define $B_N(r, \boldsymbol{\beta}_0) = \{\boldsymbol{\beta} | \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\| < r/\sqrt{N}\}$ for a fixed constant r. Then by Taylor expansion, we have

$$\sup_{\boldsymbol{\beta} \in B_N(r,\boldsymbol{\beta}_0)} |\sqrt{N} \{ \dot{Q}_{\boldsymbol{\beta}}(\boldsymbol{\beta}|\hat{\mathbf{b}}) - \dot{Q}_{\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\hat{\mathbf{b}}) \} | = \sup_{\boldsymbol{\beta} \in B_N(r,\boldsymbol{\beta}_0)} |\sqrt{N} \ddot{Q}_{\boldsymbol{\beta}\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\hat{\mathbf{b}})(\boldsymbol{\beta} - \boldsymbol{\beta}_0)| + o_p(1).$$

Since $\dot{Q}_{\beta}(\beta|\hat{\mathbf{b}}) = \dot{Q}_{\beta}(\beta|\hat{\mathbf{b}}) - \dot{Q}_{\beta}(\beta_{0}|\hat{\mathbf{b}}) + \dot{Q}_{\beta}(\beta_{0}|\hat{\mathbf{b}})$, we have

$$\sup_{\boldsymbol{\beta} \in B_N(r, \boldsymbol{\beta}_0)} |\sqrt{N} \dot{Q}_{\boldsymbol{\beta}}(\boldsymbol{\beta}|\hat{b}) - \sqrt{N} \ddot{Q}_{\boldsymbol{\beta}\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\hat{\mathbf{b}})(\boldsymbol{\beta} - \boldsymbol{\beta}_0) - \sqrt{N} \dot{Q}_{\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\hat{\mathbf{b}})| = o_p(1). \quad (A-1)$$

Further, when β is on the boundary of $B_N(r, \beta_0)$, i.e. $\beta \in {\{\beta | || \beta - \beta_0 || = r/\sqrt{N}\}}$,

$$N(\boldsymbol{\beta} - \boldsymbol{\beta}_0)'\ddot{Q}_{\boldsymbol{\beta}\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\hat{b})(\boldsymbol{\beta} - \boldsymbol{\beta}_0) = O(r^2) > 0$$

since $\ddot{Q}_{\beta\beta}(\beta_0|\hat{\mathbf{b}})$ is positive-definite and uniformly bounded.

In addition, by the weak law of large numbers and Condition 3, $\sqrt{N}\dot{Q}_{\beta}(\beta_0|\mathbf{b}_0) = O_p(1)$, since

$$\sqrt{N}\dot{Q}_{\beta}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}}) = \sqrt{N}\dot{\mathbf{G}}_{N,\beta}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}})\mathbf{C}_{N}^{-1}(\hat{\mathbf{b}})\mathbf{G}_{N,\beta}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}}) + o_{p}(1).$$

It can be concluded by Conditions 4 and 6 that

$$\sqrt{N}\{\dot{Q}_{\beta}(\boldsymbol{\beta}_0|\hat{\mathbf{b}}) - \dot{Q}_{\beta}(\boldsymbol{\beta}_0|\mathbf{b}_0)\} = O_p(1).$$

Hence it follows from the above that

$$\sqrt{N}\dot{Q}_{\beta}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}}) = \sqrt{N}\{\dot{Q}_{\beta}(\boldsymbol{\beta}_{0}|\hat{\mathbf{b}}) - \dot{Q}_{\beta}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\} + \sqrt{N}\dot{Q}_{\beta}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0}) = O_{p}(1),$$

which leads to $N(\boldsymbol{\beta} - \boldsymbol{\beta}_0)'\dot{Q}_{\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\hat{\mathbf{b}}) = O_p(r)$. Therefore for any $\epsilon > 0$, there exists an M, such that when r > M,

$$P\{N(\boldsymbol{\beta} - \boldsymbol{\beta}_0)'\ddot{Q}_{\beta\beta}(\boldsymbol{\beta}_0|\hat{\mathbf{b}})(\boldsymbol{\beta} - \boldsymbol{\beta}_0) + N(\boldsymbol{\beta} - \boldsymbol{\beta}_0)'\dot{Q}_{\beta}(\boldsymbol{\beta}_0|\hat{\mathbf{b}}) > 0\} > 1 - \epsilon$$
 (A-2)

for all β on the boundary of $B_N(r, \beta_0)$. Therefore (A-2) certainly holds for all $\beta \notin B_N(r, \beta_0)$.

It follows from (A-2) and (A-1) that

$$(\boldsymbol{\beta} - \boldsymbol{\beta}_0)' \dot{Q}_{\boldsymbol{\beta}}(\boldsymbol{\beta} | \hat{\mathbf{b}}) > 0 \tag{A-3}$$

for $\beta \notin B_N(r, \beta_0)$ and some sufficiently large but finite r. Since the left-hand side of (A-3) is continuous for β , by theorem (6.3.4) of Ortega and Rheinboldt (1973, p. 163), there must be a solution in $B_N(r, \beta_0)$ satisfying

$$\dot{Q}_{\beta}(\boldsymbol{\beta}|\hat{\mathbf{b}}) = 0.$$

Proof of Lemma 2. Since $\hat{\boldsymbol{\beta}}_0 = \arg \min Q(\boldsymbol{\beta} | \mathbf{b}_0)$,

$$|Q(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)|^2 < |Q(\boldsymbol{\beta}_0|\mathbf{b}_0)|^2.$$

That is,

$$|\mathbf{A}_{N}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0})\frac{1}{N}\sum_{i=1}^{N}\mathbf{g}_{i}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0})|^{2} < |\mathbf{A}_{N}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\frac{1}{N}\sum_{i=1}^{N}\mathbf{g}_{i}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})|^{2}.$$

By the law of large numbers, we know that the right side of the above converges to 0 as $E[\mathbf{g}(\boldsymbol{\beta}_0|\mathbf{b}_0)] = 0$. Further, by Assumption 8, the uniform law of large numbers and the continuity mapping theorem, we can prove that

$$|\mathbf{A}_{N}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0})\frac{1}{N}\sum_{i=1}^{N}\mathbf{g}_{i}(\hat{\boldsymbol{\beta}}_{0})-\mathbf{A}_{0}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0})E[\mathbf{g}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0})]|\rightarrow_{a.s.}0.$$

It follows that

$$|A_0(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)E[\mathbf{g}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)]|^2 \rightarrow_{a.s.} 0.$$

Hence $\hat{\boldsymbol{\beta}}_0$ converges to $\boldsymbol{\beta}_0$ almost surely.

Proof of Lemma 3. Since $\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) = \dot{\mathbf{G}}_{N,\beta}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)'\mathbf{C}_N^{-1}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)\mathbf{G}_N(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0)$, by Taylor's Expansion,

$$0 = \dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_{0}|\mathbf{b}_{0}) = \dot{Q}_{\beta}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0}) + \ddot{Q}_{\beta\beta}(\tilde{\boldsymbol{\beta}}|\mathbf{b}_{0})(\hat{\boldsymbol{\beta}}_{0} - \boldsymbol{\beta}_{0})$$
$$= \dot{\mathbf{G}}_{N,\beta}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})'\mathbf{C}_{N}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\mathbf{G}_{N}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0}) + \ddot{Q}_{\beta\beta}(\tilde{\boldsymbol{\beta}}|\mathbf{b}_{0})(\hat{\boldsymbol{\beta}}_{0} - \boldsymbol{\beta}_{0}),$$

where $\tilde{\boldsymbol{\beta}}$ is between $\hat{\boldsymbol{\beta}}_0$ and $\boldsymbol{\beta}_0$. Then we have

$$\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0 = -\ddot{\boldsymbol{Q}}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\tilde{\boldsymbol{\beta}}|\mathbf{b}_0)\dot{\mathbf{G}}_{N,\boldsymbol{\beta}}(\boldsymbol{\beta}_0|\mathbf{b}_0)'\mathbf{C}_N^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0)\mathbf{G}_N(\boldsymbol{\beta}_0|\mathbf{b}_0).$$

Since $\hat{\boldsymbol{\beta}}_0 \rightarrow_{a.s.} \boldsymbol{\beta}_0$, it follows immediately that

$$\tilde{oldsymbol{eta}}
ightarrow_{a.s.} oldsymbol{eta}_0$$
, and $\dot{\mathbf{G}}_{N,oldsymbol{eta}}(\tilde{oldsymbol{eta}}|\mathbf{b}_0)
ightarrow_{a.s.} \mathbf{d}_0$.

Web-App.4

By the Central Limit Theorem and Assumption 3, $\sqrt{N}\mathbf{G}_N(\boldsymbol{\beta}_0|\mathbf{b}_0) \stackrel{d}{\to} N(0,\boldsymbol{\Sigma})$ and $\mathbf{C}_N(\boldsymbol{\beta}_0|\mathbf{b}_0) \to_p$ $\boldsymbol{\Sigma} = N\boldsymbol{\Sigma}_N$. Therefore $\sqrt{N}(\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0)$ converges to a normal distribution of mean 0 with asymptotic covariance matrix

$$\begin{aligned} &\operatorname{COV}(\sqrt{N}(\hat{\boldsymbol{\beta}}_{0}-\boldsymbol{\beta}_{0})) \\ &= \ddot{\boldsymbol{Q}}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\dot{\mathbf{G}}_{N,\boldsymbol{\beta}}'(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\mathbf{C}_{N}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\boldsymbol{\Sigma}\mathbf{C}_{N}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\dot{\mathbf{G}}_{N,\boldsymbol{\beta}}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\ddot{\boldsymbol{Q}}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0}) \\ &\rightarrow (\mathbf{d}_{0}'\boldsymbol{\Sigma}^{-1}\mathbf{d}_{0})^{-1}\mathbf{d}_{0}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\mathbf{d}_{0}(\mathbf{d}_{0}'\boldsymbol{\Sigma}^{-1}\mathbf{d}_{0})^{-1} = (\mathbf{d}_{0}\boldsymbol{\Sigma}\mathbf{d}_{0})^{-1} = \boldsymbol{\Omega}_{0}. \end{aligned} \tag{A-4}$$

This is because $\ddot{Q}_{\beta\beta}(\boldsymbol{\beta}_0|\mathbf{b}_0) = \dot{\mathbf{G}}_{N,\beta}(\boldsymbol{\beta}_0|\mathbf{b}_0)'\mathbf{C}_N^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0)\dot{\mathbf{G}}_{N,\beta}(\boldsymbol{\beta}_0|\mathbf{b}_0) + o_p(1)$. Hence it follows immediately that $\ddot{Q}_{\beta\beta}^{-1}(\hat{\boldsymbol{\beta}}_0|\mathbf{b}_0) \rightarrow_{a.s.} \mathbf{\Omega}_0$.

Proof of Theorem 1. Consistency of $\hat{\boldsymbol{\beta}}_1$ follows immediately from Lemma 1. By Lemma 3, $\sqrt{N}(\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0)$ also converges to the normal distribution. Furthermore,

$$\begin{split} &\sqrt{N}(\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{0})=\sqrt{N}(\hat{\boldsymbol{\beta}}_{1}-\hat{\boldsymbol{\beta}}_{0})+\sqrt{N}(\hat{\boldsymbol{\beta}}_{0}-\boldsymbol{\beta}_{0})\\ &=\sqrt{N}\ddot{\boldsymbol{Q}}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\tilde{\boldsymbol{\beta}}|\mathbf{b}_{0})\dot{\boldsymbol{Q}}_{\boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0})-\sqrt{N}\ddot{\boldsymbol{Q}}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\dot{\boldsymbol{Q}}_{\boldsymbol{\beta}}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})+o_{p}(1)\\ &=\sqrt{N}\ddot{\boldsymbol{Q}}_{\boldsymbol{\beta}\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\dot{\mathbf{G}}_{N,\boldsymbol{\beta}}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\mathbf{C}_{N}^{-1}(\mathbf{b}_{0})1/N\sum_{i=1}^{N}[\mathbf{g}_{i}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0})-\mathbf{g}_{i}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})]+o_{p}(1). \end{split} \tag{A-5}$$

Define Σ^* as

$$\Sigma^* = \lim_{N \to \infty} E[N\{\mathbf{G}_N(\hat{\boldsymbol{\beta}}_1 | \mathbf{b}_0) - \mathbf{G}_N(\boldsymbol{\beta}_0 | \mathbf{b}_0)\}\{\mathbf{G}_N(\hat{\boldsymbol{\beta}}_1 | \mathbf{b}_0) - \mathbf{G}_N(\boldsymbol{\beta}_0 | \mathbf{b}_0)\}']. \tag{A-6}$$

Hence, the asymptotic variance of $\sqrt{N}(\hat{\beta}_1 - \beta_0)$ can be written as

$$\mathbf{\Omega}_{1} = (\mathbf{d}_{0}^{\prime} \mathbf{\Sigma}^{-1} \mathbf{d}_{0})^{-1} \mathbf{d}_{0}^{\prime} \mathbf{\Sigma}^{-1} \mathbf{\Sigma}^{*} \mathbf{\Sigma}^{-1} \mathbf{d}_{0} (\mathbf{d}_{0}^{\prime} \mathbf{\Sigma}^{-1} \mathbf{d}_{0})^{-1}. \tag{A-7}$$

When the estimate of the random effects is consistent, i.e. $\hat{\mathbf{b}} \rightarrow_p \mathbf{b}_0$ as $n \rightarrow \infty$, it can be shown that

$$\sqrt{N}\dot{\mathbf{G}}_{N,\mathbf{b}}(\hat{\boldsymbol{\beta}}_1|\tilde{\mathbf{b}})(\hat{\mathbf{b}}-\mathbf{b}_0) = O_p(1)o_p(1) = o_p(1).$$

Therefore,

$$\begin{split} \sqrt{N}\ddot{Q}_{\beta\mathbf{b}}(\hat{\boldsymbol{\beta}}_{1}|\tilde{\mathbf{b}})(\hat{\mathbf{b}}-\mathbf{b}_{0}) &= \sqrt{N}\{\dot{\mathbf{G}}_{N,\beta}(\hat{\boldsymbol{\beta}}_{1}|\tilde{\mathbf{b}})\}'\mathbf{C}_{N}^{-1}(\tilde{\mathbf{b}})\dot{\mathbf{G}}_{N,\mathbf{b}}(\hat{\boldsymbol{\beta}}_{1}|\tilde{\mathbf{b}})(\hat{\mathbf{b}}-\mathbf{b}_{0}) + o_{p}(1) \\ &= \sqrt{N}\{\dot{\mathbf{G}}_{N,\beta}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})\}'\mathbf{C}_{N}^{-1}(\mathbf{b}_{0})\dot{\mathbf{G}}_{N,\mathbf{b}}(\hat{\boldsymbol{\beta}}_{1}|\tilde{\mathbf{b}})(\hat{\mathbf{b}}-\mathbf{b}) + o_{p}(1) \\ &= o_{p}(1). \end{split}$$

Then by Taylor expansion, we have

$$\sqrt{N}\{\dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_{1}|\hat{\mathbf{b}}) - \dot{Q}_{\beta}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0})\} = \sqrt{N}\ddot{Q}_{\beta b}(\hat{\boldsymbol{\beta}}_{1}|\tilde{\mathbf{b}})(\hat{\mathbf{b}} - \mathbf{b}_{0}) = o_{p}(1).$$

It follows immediately from $\dot{Q}_{\beta}(\hat{\beta}_1|\hat{\mathbf{b}}) = 0$ that

$$\sqrt{N}\dot{Q}_{\beta}(\hat{\beta}_{1}|\mathbf{b}_{0}) = \sqrt{N}\dot{\mathbf{G}}_{N,\beta}(\hat{\beta}_{1}|\mathbf{b}_{0})'\mathbf{C}_{N}^{-1}(\mathbf{b}_{0})\mathbf{G}_{N}(\hat{\beta}_{1}|\mathbf{b}_{0}) + o_{p}(1) = o_{p}(1). \tag{A-8}$$

Then by (A-5) and (A-8), we can conclude that

$$\sqrt{N}(\hat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta}_0) = \sqrt{N}(\hat{\boldsymbol{\beta}}_0 - \boldsymbol{\beta}_0) + o_p(1).$$

Hence it follows from (A-4) that

$$\mathbf{\Omega}_1 = \ddot{Q}_{\beta\beta}^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0) + o_p(1),$$

which can be approximated by $\ddot{Q}_{\beta\beta}^{-1}(\hat{\boldsymbol{\beta}}_1|\hat{\mathbf{b}})$ since $\ddot{Q}_{\beta\beta}^{-1}(\hat{\boldsymbol{\beta}}_1|\hat{\mathbf{b}}) \stackrel{p}{\to} \ddot{Q}_{\beta\beta}^{-1}(\boldsymbol{\beta}_0|\mathbf{b}_0)$.

A.4. Conditions and proof of consistency of random-effect estimator

We estimate $b_{0,i}$ by solving

$$\mathbf{g}_{i}^{*}(\hat{\boldsymbol{\beta}}_{1}|\hat{\mathbf{b}}_{i}) = \dot{\mu}_{i,b}(\hat{\boldsymbol{\beta}}_{1}|\hat{\mathbf{b}}_{i})(\mathbf{y}_{i} - \mu_{i}(\hat{\boldsymbol{\beta}}_{1}|\hat{\mathbf{b}}_{i})) = 0.$$

Therefore, by Taylor expansion we have

$$\hat{\mathbf{b}}_{i} - \mathbf{b}_{0i} = \{\dot{\mathbf{g}}_{i,\mathbf{b}_{i}}^{*}(\hat{\boldsymbol{\beta}}_{1}|\tilde{\mathbf{b}}_{i})\}^{-1} \sum_{i=1}^{n_{i}} \dot{\mu}_{ij,b}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0})(y_{ij} - \mu_{ij}(\hat{\boldsymbol{\beta}}_{1}|\mathbf{b}_{0})).$$

Since $\hat{\boldsymbol{\beta}}_1 \stackrel{p}{\rightarrow} \boldsymbol{\beta}_0$, then

$$\hat{\mathbf{b}}_{i} - \mathbf{b}_{0i} \to \{\dot{\mathbf{g}}_{i,\mathbf{b}_{i}}^{*}(\boldsymbol{\beta}_{0}|\tilde{\mathbf{b}}_{i})\}^{-1} \sum_{i=1}^{n_{i}} \dot{\mu}_{ij,b}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})(y_{ij} - \mu_{ij}(\boldsymbol{\beta}_{0}|\mathbf{b}_{0})).$$

Since $\{\dot{\mathbf{g}}_{i,\mathbf{b}_i}^*(\boldsymbol{\beta}_0|\tilde{\mathbf{b}}_i)\}^{-1}$ is bounded in probability, therefore if the law of large numbers holds for the sequence $\dot{\mu}_{i1,b}(\boldsymbol{\beta}_0|\mathbf{b}_0)\{y_{i1}-\mu_{i1}(\boldsymbol{\beta}_0|\mathbf{b}_0)\},\ldots,\dot{\mu}_{in_i,b}(\boldsymbol{\beta}_0|\mathbf{b}_0)\{y_{in_i}-\mu_{in_i}(\boldsymbol{\beta}_0|\mathbf{b}_0)\}$, we can conclude that

$$\hat{\mathbf{b}}_i - \mathbf{b}_{0i} = O_p(n_i^{-1/2}).$$

That is, $\hat{\mathbf{b}}$ is a consistent estimator of \mathbf{b}_0 . This is because $E\{\dot{\mu}_{ij,b}(\boldsymbol{\beta}_0|\mathbf{b}_0)(y_{ij}-\mu_{ij}(\boldsymbol{\beta}_0|\mathbf{b}_0))\}=0$. Let $Z_{ij}=\dot{\mu}_{ij,b}(\boldsymbol{\beta}_0|\mathbf{b}_0)\{y_{ij}-\mu_{ij}(\boldsymbol{\beta}_0|\mathbf{b}_0)\}$. From Andrews (1988), if the sequence of random variables satisfies the L_1 mixingale conditions:

(a)
$$||E(Z_{ij}|Z_{i,j-m})||_1 \le c_i \psi_m$$
, and

(b)
$$||Z_i - E(Z_{ij}|Z_{i,j+m})||_1 \le c_j \psi_{m+1}$$
,

where $\{c_j: i \geq 1\}$ and $\{\psi_m: m \geq 0\}$ are some non-negative constants and $\psi_m \to 0$ as $m \to \infty$, and if $\overline{\lim}_{n \to \infty} \frac{1}{n} \sum_{j=1}^n c_j < \infty$ or $\{c_j\}$ can be given by $\{||Z_{ij}||_1\}$, we have the law of large numbers for the dependent sequence $\bar{Z}_i = 1/n_i \sum_{j=1}^{n_i} Z_{ij} \to_p 0$. Such conditions can be satisfied for sequences such as autoregressive, stationary Gaussian, or M-dependent and other sequences with decaying α mixing numbers.

References

Andrews, D.W.K. (1998), "Laws of large numbers for dependent non-identically distributed random variables," *Econometric Theory*, 4, 458-467.

Ortega, J. M. and Rheinboldt, W. C. (1973), *Iterative solution of nonlinear equations in several variables*, Academic Press.