Web Appendix of
""Conditional Inference Functions for Mixed-Effects
Models with Unspecified Random-Effects
Distribution"

A.l. Notation

We denote the estimate of the random effects as b, and let Q(B|by) be the quadratic inference

function defined in (4) conditional on the true random effects b,

o b
3526l

and Qﬁ(ﬁo|l3), Qﬁ (B,Iby), and Qﬁ (3,/b) can be defined similarly. In addition, let

Q[j(fsoﬂ)o) = B=By>

2

.o 0
Qpp(Balbo) = 5555Q(BIby)

2
2Bab
and Qgg(fB;Iby) and Qp,(B;|b,) are defined similarly. Let Gy(B|b) = %Zi\]ﬂ g.(B|b;). We can

B= /30’

Qpb(Bolbo) = 52=—-Q(BIb,)

B=B,, b=by>
define
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Gy p(B1Ibo) = 56~ »(B1Ibo)

GN,ﬁ(BllbO) = B=B,>

b= bo’

3
~+-Gu 5 (B11bo)

and GN b(ﬁ1|bo) b

b=b,

The other second derivatives associated with the different parameters are defined in the same fashion.

Let
Bo=argminQ(B[b); B, = argminQ(B|b).

Both B, and f3, are in S, that is,

Qﬁ(fso“)o) =0, Qﬁ(ﬁﬂB) =0
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Also let Ay (8|b) be the weighting matrix such that

C,'(BIb) = Ay(BIb)Ay(BIb)
and Q(B|b) = |Ay(BIb)Gy(BIb)I.
A.2. Regularity conditions and assumptions

Here we prove consistency and asymptotic normality for the fixed-effect estimator under the follow-

ing assumptions.

1. Define n; as the cluster size for subject i, let n = min(n;), then n; = O,(n) uniformly for

i=1,...,N.
2. The parameter space S is compact.

3. Conditional on the true random effects b, the parameter f8 is identifiable; that is, there is a

unique 3, € S which satisfies E{g(8,|b,)} = 0.

4. The derivative of the score function with respect to the random effects gi,b(fa |by) is uniformly

bounded in probability, i.e. gi,b(fs |by) = O,(1).
5. We require that E[g(f3|b)] be continuous and differentiable in both 8 and b.

6. The expectation of gi([iolﬁ), the estimating functions conditional on the estimated random

effects, converges to 0 in probability, i.e.

E[E{g(B,ID)}] >0 asN — oo.

7. The weighting matrix Cy(f|b) converges almost surely to a constant matrix C,(f3|b), while

Ay(3|b) converges almost surely to a constant matrix Ay(f3|b) where G L(BIb) =A,(BIb)A,(B|b).

Web-App.2



A.3. Proofs of Lemmas and Theorem 1

Proof of Lemma 1. Define By(r, B,) = {BIIIB — Boll < r/v/N} for a fixed constant r. Then by

Taylor expansion, we have

S )lm{czﬁ(mﬁ) —Qp(BolD)} = S )lmdﬁ,j(ﬂolﬁ)(ﬁ — Bo)l+0,(2).
Since Q4(B1b) = Qz(BIb) — Qp(BoIb) + Q5 (B,Ib), we have
jSup )lWQﬁ(ﬂlé) — VNQggs(BolD)(B — Bo) — VNQg(BoD) = 0,(1).  (A-1)

Further, when f3 is on the boundary of By(r, B,), i.e. B € {BllIB — B,ll=r/VN},

N(B — Bo)Qpp(BolD)B — Bo) =0(r*) >0

since Q P ﬁ(ﬁ0|l5) is positive-definite and uniformly bounded.

In addition, by the weak law of large numbers and Condition 3, v N Qﬁ(ﬁ 0/Po) = 0,(1), since
VNQg(Bolb) = VNGy 5(Bob)Cy ! (B)Gy 5(B,[b) +0,(1).
It can be concluded by Conditions 4 and 6 that
VN{Qp(B,Ib) — Qp(Bolbe)} = O,(1).
Hence it follows from the above that
VNQg(Bolb) = VN{Qg(BoIb) — Q(Bolbo)} + VNQg(B,lby) = 0,(1),

which leads to N(f3 — ﬁo)’Qﬁ(ﬂolﬁ) = 0,(r). Therefore for any € > 0, there exists an M, such that

whenr > M,

P{N(B — ﬁo)/éﬁﬁ(ﬁolﬁ)(ﬁ —Bo) +N(B - ﬁo)/Qﬁ(ﬁo|B) >0}>1-¢ (A-2)

for all B on the boundary of By (r, B,). Therefore (A-2) certainly holds for all B & By(r, B,).
It follows from (A-2) and (A-1) that

(B—Bo)Qs(BIb)>0 (A-3)
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for B & By(r,B,) and some sufficiently large but finite r. Since the left-hand side of (A-3) is
continuous for f3, by theorem (6.3.4) of Ortega and Rheinboldt (1973, p. 163), there must be a
solution in By (r, B,) satisfying

Qp(BIb)=0.

Proof of Lemma 2. Since B, = argminQ(3|by),

QB Ibo)I* < 1Q(B,Ibo) .

That is,

X 1S . 1<
A (Bolbo)— D ,8:(Bolbo)l” < Av(Bolbo)~ > &i(Bolbo)l’.

By the law of large numbers, we know that the right side of the above converges to 0 as E[g(f8,|b,)] =
0. Further, by Assumption 8, the uniform law of large numbers and the continuity mapping theorem,

we can prove that

) 1 & ; . .
|AN(ﬁ0|b0)]v Z g:(Bo) — Ao(Bolbo)E[g(Bolbo)]| =45, O.
i=1

It follows that
|A0(Bo|b0)E[g(Bo|bo)] |2 —4s. 0.

Hence [30 converges to 3, almost surely. [
Proof of Lemma 3. Since Qﬁ (Bolby) = GN’ﬁ(B0|b0)’C;,1(f30|b0)GN(f50|b0), by Taylor’s Expansion,
0 = Qp(Bolby) = Qp(Bolbo) + Opp(BIb)(Bo — Bo)
= Gy p(Bolbo)' Cy (Bolbo)Gy (Bolbo) +Qpp(BIbo)(Bo — Bo);
where B is between B o and f,. Then we have
Bo— Bo=—055(Blbo)Gy 5 (Bolbo) Cy ' (Bolbo)G (o /bo):
Since f3 0 —as. Bo, it follows immediately that

B as. ﬁOJ and GN,ﬁ(BlbO) . dO'
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By the Central Limit Theorem and Assumption 3, vNGy(f3,|b,) 4 N(0,%) and Cy(B,|by) —,
% = N3,. Therefore v N (BO — B,) converges to a normal distribution of mean 0 with asymptotic

covariance matrix

cov(\/ﬁ(fio —Bo))
= Qpp(Bolbo)Gy 5 (Bolbo)Cy' (Bolbo)ZCy' (Bolbo)Gr 5 (Bo/bo)Q5(Bolbo)

— (d;%7'dy) ' E T ER T dy(d) = dy) ! = (do2d,) T = Q. (A-4)

This is because Qﬁﬁ(ﬁ0|b0) = GN,ﬁ(ﬁolbO)’Cg,l(ﬁo|b0)GN,,3(ﬁO|bO) +0,(1). Hence it follows im-
mediately that Q,‘i;}(fidbo) — s Do O

Proof of Theorem 1. Consistency of 3, follows immediately from Lemma 1. By Lemma 3, vN(f,—

B,) also converges to the normal distribution. Furthermore,
VN(B1 = Bo) = VN(B,—Bo)+ VN(B, — Bo)
= VNQp5(BIb))Qs(B11bo) — VNQ 5 (BIbo)Qps(Bolbo) +0,(1) (A-5)
= \/Nég}i(ﬂolbo)GN,ﬁ(ﬁolbo)C,‘Vl(bo)l/Ni[gi(ﬁllbo) — 8i(Bolby)] +0,(1).
Define * as _
%" = lim E[N{Gy(p1[bs) — Gy(Bolbo)HGy(B1Ibo) — Gy (Bolbe)} 1. (A-6)
Hence, the asymptotic variance of v N(f, — f8,) can be written as
Q, =(d;x=7'dy) 'd; T =" m T d,(d) = d,) (A-7)
When the estimate of the random effects is consistent, i.e. b— by as n — oo, it can be shown that
VNG (B11B)(b —by) = 0,(1)0,(1) = 0,(1).
Therefore,
VNQpy(B1ID)(b—by) = VN{Gy(B:1Ib)}'Cy'(B)Gy (B:[B)(b —by) +0,(1)
= VN{Gy 5(Bolby)} Cy' (by)Gy (B 11D)(b — b) +0,(1)
= 0,(1).
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Then by Taylor expansion, we have
VN{Qp(B116) — Qs (B11be)} = VNQp, (B11B)(D — by) = 0,(1).
It follows immediately from Qg4(f3,|b) = 0 that
VNQp(B11bo) = VNGy p(B11be) Cy' (bo)Gy (B Ibo) +0,(1) = 0, (1). (A-8)
Then by (A-5) and (A-8), we can conclude that
VN(B, = Bo) = VN(Bo— Bo)+0,(1).
Hence it follows from (A-4) that
0, =Qpp(Bolbo) +0,(1),

which can be approximated by Qﬁ}j(fil |b) since Qg}s(fil 6) 5 Ql_j}j(ﬁolbo). O

A.4. Conditions and proof of consistency of random-effect esti-
mator

We estimate b, ; by solving
g/ (B11b;)) = 11,(B11b,)(y; — w(B11b;)) = 0.
Therefore, by Taylor expansion we have
b, — by, = {gzbi(ﬁﬂﬁl’)}_l i‘aij,b(ﬁllbo)(yij - Mij(B1|bo))-
=1
Since fB, =R B, then
b, — by, — {gibi(ﬁo“;i)}_l i:llij,b(ﬁdboxyl‘j — i(Bolbo))-
=1

Since {g:"b,(ﬁollﬂai)}’l is bounded in probability, therefore if the law of large numbers holds for the
sequence (i1 5(Bolbo){yi1 — i1 (Bolbod}, - - -5 Bhin, b (BolPo){Yin, —tin, (Bolbo)}, we can conclude that
Bi —by = Op(ni_l/z)'

Web-App.6



That is, b is a consistent estimator of by. This is because E{t;;5(Bolbo)(yij — tij(Bolbg))} = 0.
Let Z;; = ;5 ,(Bolbo){yi; — 1ij(Bolbo)}. From Andrews (1988), if the sequence of random

variables satisfies the L, mixingale conditions:
(a) ”E(Zilei,j—m“l < ¢;Yp,, and

(b) 11Z; — E(Zij|Zi,j+m)||1 =< Cj¢m+l’

where {c; : 1 > 1} and {1, : m > 0} are some non-negative constants and 1), — 0 as m — oo, and
if HH_,OO% Z;l:l ¢; < oo or {c;} can be given by {||Z;;||;}, we have the law of large numbers for the
dependent sequence Z; = 1/n; Z;“:l Z;;—,0. Such conditions can be satisfied for sequences such as

autoregressive, stationary Gaussian, or M-dependent and other sequences with decaying a mixing

numbers.
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