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Informative Estimation and Selection of Correlation
Structure for Longitudinal Data

Jianhui ZHouU and Annie Qu

Identifying an informative correlation structure is important in improving estimation efficiency for longitudinal data. We approximate the
empirical estimator of the correlation matrix by groups of known basis matrices that represent different correlation structures, and transform
the correlation structure selection problem to a covariate selection problem. To address both the complexity and the informativeness of the
correlation matrix, we minimize an objective function that consists of two parts: the difference between the empirical information and a
model approximation of the correlation matrix, and a penalty that penalizes models with too many basis matrices. The unique feature of
the proposed estimation and selection of correlation structure is that it does not require the specification of the likelihood function, and
therefore it is applicable for discrete longitudinal data. We carry out the proposed method through a groupwise penalty strategy, which
is able to identify more complex structures. The proposed method possesses the oracle property and selects the true correlation structure
consistently. In addition, the estimator of the correlation parameters follows a normal distribution asymptotically. Simulation studies and
a data example confirm that the proposed method works effectively in estimating and selecting the true structure in finite samples, and it
enables improvement in estimation efficiency by selecting the true structures.

KEY WORDS: Correlation structure; Longitudinal data; Oracle property; Quadratic inference function.

1. INTRODUCTION

For longitudinal data it is essential to estimate and select an
informative correlation structure since correctly modeling cor-
relation structure will increase the efficiency of the regression
parameter estimator, increase statistical power for hypothesis
testing, and reduce the bias of the estimator in nonparametric
modeling for longitudinal data (Wang 2003; Lin et al. 2004;
Wang, Carroll, and Lin 2005). In addition, estimation of the
correlation itself can provide additional information on the asso-
ciation among observations measured over time for longitudinal
studies.

Although the empirical estimator of the correlation structure
might be the closest to the true correlation, it is often not practical
to use it directly since it involves high-dimensional correlation
parameter estimation when the cluster size is large. In addition,
the estimation of correlation parameters could be unstable if the
sample size is relatively small compared with the cluster size. In
our simulation provided in Section 5, it is rather surprising that
the regression parameter estimator using unstructured correla-
tion has a much lower efficiency than the estimator assuming
independence structure, even when the cluster size is moderate.

Estimation and model selection of correlation structure re-
main a challenging problem since a higher order of moments
is likely involved compared with model selection of covariates.
Existing work mainly focuses on the estimation of the covari-
ance matrix rather than on the selection of correlation struc-
ture, including the Cholesky decomposition approach (Huang
et al. 2006; Huang, Liu, and Liu 2007), the factor modeling ap-
proach (Fan, Fan, and Lv 2008), and the spectrum random ma-
trix approach (El Karoui 2008). These approaches are mainly
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suitable for continuous data. Other estimation approaches for
high-dimensional covariance matrices include the nested least
absolute shrinkage and selection operator (LASSO) approach
(Levina, Rothman, and Zhu 2008) and thresholding approaches
(Bickel and Levina 2008; Rothman, Levina, and Zhu 2009).
These regularized covariance estimation approaches mainly fo-
cus on distinguishing nonzero components from zero compo-
nents, but do not address the selection of correlation structure
in general.

We propose an alternative strategy that approximates the em-
pirical estimator of the correlation matrix by a linear combi-
nation of candidate basis matrices that contain either 0 or 1
as components. The linear combination of basis matrices can
represent common correlation structures as well as mixtures of
several correlation structures. We minimize the Euclidean norm
of the difference between two estimating functions based on the
empirical correlation information and the model-based approx-
imation, in conjunction with a groupwise penalty on the basis
matrices in the model approximation. Through the penalization,
we can capture correlation information from longitudinal data
sufficiently well, yet not be burdened by the high dimension of
nuisance parameter estimation if it contains little information
for the correlation structure.

The advantage of the proposed approach is that it allows the
flexibility of modeling the correlation without requiring the es-
timation of each entry of the correlation matrix individually.
Another advantage is that the specification of the likelihood
function is not required, and therefore it is applicable for non-
normal responses that occur frequently for longitudinal data.
More importantly, it is not restricted by large cluster size, since
the number of basis matrices needed to represent a structured
correlation matrix usually is not associated with the dimension
of the correlation matrix. In addition, groupwise basis matrices
model selection has the advantage of selecting and estimating a
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group of correlation parameters associated with the same cor-
relation structure simultaneously, which enables one to select
and estimate the true correlation structure sufficiently well. The
proposed approach also ensures a positive definite correlation
matrix asymptotically.

In theory, we show that the correlation structure can be se-
lected consistently, assuming that the candidate basis matrices
are from a sufficiently rich class to represent the true structure.
Furthermore, we show that the proposed estimator of the cor-
relation parameters possesses the oracle property (Fan and Li
2001) and follows an asymptotic normal distribution as if the
true structure were known in advance.

The primary focus of this article is on the selection of corre-
lation structure. Once the true correlation structure is selected,
the efficiency of regression parameter estimation can be im-
proved in the generalized linear model setting for longitudinal
data using existing approaches such as the generalized estimat-
ing equation (GEE) (Liang and Zeger 1986) and the quadratic
inference function (QIF) method by Qu, Lindsay, and Li (2000).
The rest of the article is organized as follows. In Section 2, we
describe the basis matrices representation of correlation struc-
tures. In Section 3, the proposed method for estimating and
selecting correlation structure for longitudinal data is presented.
Section 4 provides the asymptotic properties of the proposed
estimator. In Section 5, we illustrate the performance of the pro-
posed method through simulation studies with both Gaussian
and binary responses. HIV data example is analyzed using the
proposed method in Section 6. Section 7 provides a concluding
discussion. Finally, the proofs are provided in the Appendix.

2. NOTATIONS AND MATRIX REPRESENTATION

For longitudinal data, the response variable y;; and the p-
dimensional covariate Xx;; are measured at time #;;, where the
subject i = 1,...,n and the time points j =1,...,m;. We
first assume balanced data with m; = m for all i, and present the
implementation of the proposed method for unbalanced data in
Section 3.3.

Let wij = E{y;j} = u{xiTjﬂ}, where 1(-) is a known inverse
link function and B is a p-dimensional parameter vector. The
quasi-likelihood equation (Wedderburn 1974) for estimating S is
S IV Ny — ) =0, where y; = ity -y i)' 1 =
Wity - s im)T, L, = 0p; /9B, and V; = var(y;). In practice,
V; is often unknown, and the empirical estimator of V; based
on the sample variance could be unstable, especially when the
sample size is relatively small compared with a large number
of variance components. Liang and Zeger (1986) introduced
GEE to simplify V; by assuming V; = A/”’RA!"*, where A,
is the diagonal marginal variance matrix and R is a working
correlation matrix.

The QIF method introduced by Qu, Lindsay, and Li (2000)
assumes that R~! can be approximated by a linear com-
bination of several basis matrices, I,,, By,..., B;, where
I, is the identity matrix and B;’s are symmetric matri-
ces. The GEE can be approximated by a linear combina-
tion of elements in the estimating functions g, = n! > g,
where g; = (i A (y; — ), i AT PBIAT Py — ),
[LiTAi_l/zBJAi_]/Z(yi — u;))T. However, the dimension of g,,
(J + 1)p, is greater than the number of unknown parameters
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p, and therefore B cannot be estimated by equating g, exactly
to zero. Instead, the QIF method minimizes the quadratic dis-
tance function (Hansen 1982): ﬁ = arg ming g,{sz"g,,, where
€ = var(g;) can be estimated by W, =n~'>""_ g;g]. The
quadratic function Q,(B) = ng!' W 'g, is called the QIF since
it provides an inference function for the regression parameters.
The QIF method does not estimate the basis matrices coeffi-
cients, but can still improve the efficiency of regression param-
eter estimation.

In contrast to Qu, Lindsay, and Li’s (2000) focus on the
estimation of regression parameters, the primary interest here
is to identify the correct correlation structure. In our method,
the inverse of the correlation matrix is linearly represented by
groups of basis matrices, where each group M; represents a
certain correlation structure. That is,

—1 ~

R, ... Mo +Mo + - +Mjay, (1
where m is the cluster size, M; = {M; 1, M, ..., M; 4} con-
sists of a group of basis matrices, a; = (o1, 2, ..., ozj.d/)T

are the corresponding coefficients, and each group has Me; =
U, @;«M; . The basis matrices in M; can be specified ac-
cording to the candidate structures from prior information, such
as exchangeable, first-order autoregressive (AR(1)), or block-
wise structures. The illustration of these basis matrices will be
provided in Section 5.

In the cases where the prior information for correlation struc-
ture is unknown, we can use a linear representation of a simple
and complete set of basis matrices that contains 1 for (i, j) and
(j, i) entries and O elsewhere. Therefore, any correlation matrix
can be represented by a linear combination of the complete set of
basis matrices. Alternatively, the basis matrices can be selected
from the spectral decomposition of the empirical correlation
matrix. These types of basis specification do not require prior
information for the correlation matrix. However, their main dis-
advantage is that they do not provide much information about the
correlation structure, but rather serve the purpose of estimation
of the correlation matrix. Therefore, the matrix representation
by these types of basis matrices is not of our particular interest
in this article.

3. ESTIMATION AND SELECTION OF
CORRELATION STRUCTURE

We propose to estimate and select the correlation structure
for longitudinal data by approximating the empirical correla-
tion estimate with prespecified candidate basis matrices. The
correlation structure is identified through selecting the groups
of nonzero coefficients associated with the basis matrices.

We transform the problem of selecting correlation structure to
the problem of identifying nonzero coefficients e ; through the
representation of R™! in (1). If a group of candidate basis ma-
trices in M represents the true correlation structure sufficiently
well, the associated coefficients or; will be nonzero and can be
identified through model selection. Therefore, the correlation
structure can be selected correctly by selecting the correspond-
ing group(s) of basis matrices. This is in contrast to Qu, Lindsay,
and Li (2000), where the coefficients of the basis matrices are
considered as nuisance parameters and are not estimated. Here,
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the estimation of the coefficients of the basis matrices is essential
for the purpose of correlation structure estimation and selection.

3.1 Selection of Basis Matrices Groups

The selection of the correlation structure R is performed
through identifying nonzero vectors of o;. To estimate e, we
minimize the discrepancy between the estimating function using
the empirical correlation matrix estimate R™! and the estimat-
ing function using the basis matrices representation of R=!. The
discrepancy between the two estimating functions for the ith
cluster is measured by

S = i BA R — Mia—- -~ Myas)A, (v~ (B).
®)

where B is the estimator of 8 via the GEE with independence
structure R, and R is the sample correlation estimator based
on B.

The Euclidean norm of S = (ST, ..., ST)T should be suffi-
ciently small if R™! is approximated sufficiently well by the
selected groups of basis matrices. However, it is important to
balance model sufficiency and model complexity. We can always
include more basis matrices to achieve an exact R™!, but that
may likely lead to overfitting the model for correlation structure
when the cluster size increases. Therefore, we propose to select
the structure by minimizing the Euclidean norm of S and also
by penalizing models involving too many basis matrices.

The coefficient vectors o are estimated by minimizing the
objective function

n J
Y SISi+np Y palllelln), 3
i=1 j=2

where p, () is the smoothly clipped absolute deviation (SCAD)
penalty function (Fan and Li 2001), A is a tuning parameter,
|| - ||; denotes the L; norm, and the positive value involved
in p,(-) is typically chosen as 3.7. The selection of the tuning
parameter A will be discussed in more detail in Section 3.2. Note
that the coefficient o} associated with the identity matrix M ; is
not penalized in (3), since the identity matrix should always be
included as a basis matrix for any correlation structure. For this
reason, the first group basis matrix is M; = {M; ;} throughout
this article. To minimize (3), we define

U =] (BA; *R'A; 2 (y: — (),
Vik =il (BA M A (i — (B, j=1,....J,

i=1,...,n,

k=1,...,d;,
and V;; = (Vi1,...,Vijqg), with each matrix in M; =
{M;1,M;>,..., M} corresponding to a column of V;;. Ap-

plying the one-step local linear approximation to the SCAD
function (Zou and Li 2008), we can achieve an approximate
solution to (3) by minimizing

J
Ui - ZVijaj
j=1

where &;0) is an initial estimate of e, and can be obtained by

the least squares estimator.

n 2

2

i=1

J
+np > (|16 )lejlln, )

2 j=2
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Here, o ;’s are estimated in the transformed regression prob-
lem of U; on V;;. To obtain the sparse estimators of a;’s for
correlation structure selection, we adopt the SCAD penalty in
our method. Due to the use of L norm and local linear approx-
imation, coefficients in the same group are penalized using the
same weight, and, most importantly, the objective function (4)
is indeed an adaptive LASSO objective function (Zou 2006).
Therefore, the minimizers of the objective function (4) can be
obtained by the efficient least angle regression (LARS) algo-
rithm of Efron et al. (2004).

3.2 Tuning Parameter Selection

Tuning parameter selection is critical to achieving better
model selection performance in finite samples. Wang, Li, and
Tsai (2007) proposed the Bayesian information criterion (BIC)
to select the tuning parameter of the SCAD penalty in penalized
least squares for consistent model selection, and Zhang, Li,
and Tsai (2010) proposed the generalized information criterion
(GIC-type) for tuning parameter selection in a nonconcave
penalized likelihood approach and studied its consistency
and asymptotic loss efficiency. We propose a GIC-type
criterion to select A in the SCAD penalty function in our
framework:

Nmax(R™TRZR™)

GIC(A) = nrlo ————
* 8 mn(RTRR)

+log(mk@),  (5)

where R is the empirical estimator as in (2) and
R!'=M&, +---+M,é&,. Here, the vectors &; are es-
timated using the tuning parameter value A, yax(+) and pin(+)
denote the largest and smallest eigenvalues of the matrix
R™'R*R™', k(1) is the number of nonzero estimates in &, x, and
r > 0 controls the sensitivity of the criterion to the discrepancy
between the empirical and the selected correlation structures,
where a larger r leads to a smaller A and the procedure tends to
overselect. We can choose an optimal r through cross-validation
to achieve a high percentage of overall correct fit. Our un-
reported numerical studies show that the performance of the
proposed procedure is quite robust against the value of r in the
range from 0.1 to 0.5. In this article, we use r = 0.25 in Sections
5 and 6.

The rationale behind the proposed GIC-type criterion is the
fact that if the selected groups of basis matrices capture most
of the information of R™!, the largest and smallest eigenvalues
of R™'RZR~! should be very close to 1 since R™'R is close
to the identity matrix. Therefore, the tuning parameter is se-
lected to minimize GIC(1). We also explore generalized cross-
validation (GCV), the Akaike’s information criterion (AIC),
BIC, and residual information criterion (RIC) to select A by re-
placing the likelihood function with the QIF as in Wang and Qu
(2009). Our simulation results, not provided here, indicate that
the GCV and the AIC have similar performance; while the BIC’s
and RIC’s performances are quite similar, and both are slightly
better than the GCV and the AIC. However, none of them per-
form as well as the proposed GIC criterion. This is probably due
to the additional parameter r in (5), which can adjust the size
of X to incorporate the ratio of noise versus signal levels from
the data.
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3.3 Implementation With Unbalanced Data Due to
Missingness

The above method is presented with balanced data, that is,
m; = m. In practice, longitudinal data may not be measured
with the same cluster size, and could be unbalanced due to
missingness or experimental constraints. To configure the pro-
posed method for unbalanced data, we apply the transformation
matrix to each cluster. We create the largest cluster with a size
m, which contains time points for all possible measurements,
and assume that fully observed clusters contain m observations.
We define the m x m; transformation matrix T; for the ith clus-
ter by removing the columns of the identity matrix, where the
removed columns correspond to the missing observations.

We define y7 = T,yi, #i(B) = Top;(B), i (B) = Tt (B),
and A} = T;A; T, where components in y; are the same as in
y; for nonmissing responses but are 0 for the missing responses,
and similarly for pu? and . Note that the pseudo-marginal
variance values in A} for the missing observations have no
effects on the values of U} and V7, , since the 0 values specified
infifandy; — ;Lf(/? ) corresponding to the missing observations
ensure that the missing observations do not contribute to the
objective function. Therefore, we can specify the variance to be
0in A} for the missing observations just for convenience.

For the empirical estimate of R*, we use the sample correla-
tion matrix estimated from fully observed clusters if the number
of fully observed clusters is sufficiently large. Otherwise, the
empirical estimator could be obtained based on the method by
Qu et al. (2010). Numerical studies in Section 5 show that the
proposed method is quite effective even if only 30% of the clus-
ters are fully observed and 50% of the observations in the other
70% of the clusters are missing.

We replace U; and V;; x with U} and V7, to formulate the
objective function (4), where U} and V}; , for each cluster of the
unbalanced data are computed using the same formulas as for
U; and V;;; in Section 3.1, but based on y7}, [L;-k(B), ;'L;‘(ﬁ), A,
and R* instead. Similar to the balanced data case, the groups
of basis matrices can be selected through identifying nonzero

coefficients & in the objection function with U} and V7, ;.

4. ASYMPTOTIC PROPERTY

The proposed regularization approach achieves the sparse es-
timator. That is, if the true parameter o is 0, it is estimated
to be exactly 0, with probability tending to 1 as »n increases.
In addition, the SCAD penalty employed in (4) performs better
than the adaptive group LASSO in general, since the formula-
tion of SCAD allows almost no penalty if the true parameter is
far from 0; however, the adaptive group LASSO penalizes all
parameters. Moreover, the sparsity of the estimator is achieved
groupwise, which enables us to identify a specific correlation
structure correctly through identifying groups of nonzero coef-
ficients.

Moreover, we allow the basis matrices to be misspecified up
to a small amount in the asymptotic study. Specifically, the pa-
rameter vector corresponding to the specified basis matrices,
o’ =@, ..., a9, is partitioned into &® = (&7, &%),
where &) = 0 corresponds to the coefficients of the basis matri-
ces that are irrelevant to the structure of R and ot?l = 0 consists
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of the coefficients of the basis matrices related to the correlation
structure of R. In addition, we assume that there is a misspec-
ified part with a?H # 0 consisting of the coefficients of basis
matrices related to the correlation structure of R, but not speci-
fied in the basis matrix representation (1). Let& = (&IT s &ITI )T be
the estimator of ” by minimizing (4) using the basis matrices
corresponding to ot?T and ot?lT only. Denote the tuning parame-
ter in the SCAD function by A, here. The subscript  is imposed
since the tuning parameter depends on the number of clusters 7.

The following conditions are assumed in order to achieve the
asymptotic properties:

Ci: E(|ly:113) < oo;
1
Co: Ay > 0O0andnz ), — oo.

Theorem 1. LetV; = (V;1, ..., V;;)be the matrix of covari-
ates in (4) for the ith cluster. Assume that the correlation matrix
is possibly misspecified at the rate of “(1)11 =0 p(n‘é). Given that
condition C is satisfied, we have

P . .
(@ n7'Y" VIV, — X, for some covariance matrix X.

() n=2 Y (U; — Via®)'V; 2> N(0, =*), where X* is
provided in the Appendix.

Following Theorem 1, we show in Theorem 2 that, given the
rate of misspecification, the oracle property holds for our ap-
proach; that is, the correct structure for R is selected consistently
and the estimator of the correlation parameters involved in R™!
has the same asymptotic distribution as if the true structure is
known in advance.

Theorem 2. Assume that the correlation matrix is possibly
misspecified at the rate of ot?H = o,,(n’%). Given the condi-
tions C and C,, we provide the sparsity property of &; and the
asymptotic distribution of @y as follows:

(a) The structure of R can be identified correctly with prob-
ability tending to 1, that is, &; = 0.

(b) The estimator of the nonzero coefficients associated with
R~ is asymptotically normal, that is, \/7( — oc?l) BN
N(0, ®), where the asymptotic covariance matrix ® is
provided in the Appendix.

The proofs of Theorems 1 and 2 are given in the Appendix.
By Theorem 2, the basis matrices associated with the true struc-
ture can be selected consistently. Consequently, the regression
parameter estimator by the QIF method using the selected ba-
sis matrices is efficient within the class of mean zero moment
conditions (Hansen 1982). The efficiency gain in regression pa-
rameter estimation is also confirmed in the following simulation
studies and data example.

5. SIMULATION STUDIES

We provide simulation studies to illustrate the performance
of the proposed estimation and selection method for correlation
structure in finite samples, and compare the efficiency of regres-
sion parameter estimation under different correlation structures
for both balanced and unbalanced data, and also under misspeci-
fication of basis matrices. Here, we allow the response variables
to be both normal and binary.
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5.1 Study 1: Binary Responses

We evaluate the correlation structure selection for binary
responses. The datasets are generated from the model y;; ~
Binomial(1, u;;) for i =1,...,n and j=1,...,9, where
logit(u;) = 0.5 + XiTjﬁ andx;; € R3 from N(0, I5). This is bal-
anced data with cluster size 9. We let 8 = (0.01, 0.01, 0.01)7
such that u;; are all close, to facilitate the generation of cor-
related binary responses. The correlated binary responses are
generated using the R package “mvtBinaryEP” with three dif-
ferent correlation structures of R = (7;;): (1) R = Ry is AR(1)
with r;; = 0.7/771, (2) R = R, is exchangeable with r;; = 0.6
fori # j,and (3) R = Ryj is blockwise exchangeable with block
sizes 4 and 5 and correlation parameters p; = 0.8 and p, = 0.7
for each block. Observations in different blocks are independent.

The unbalanced datasets are created from the balanced ones
by keeping 30% of the clusters with the fully observed nine
measurements, and for the remaining 70% clusters, each ob-
servation has a probability of 0.5 to be missing. Given the ini-
tial estimator B assuming independence structure, the empirical
estimator R* is computed based on the 30% fully observed
clusters.

We specify the basis matrix groups M; = (M, ;}, M, =
{Mz,1, Mo}, M3 = {Mj3 1}, and My = {My 1, M4, My 3}, and
the corresponding coefficients are «; ; in vectors e; for i =
1, ..., 4 accordingly. Here, M  is the identity matrix, M, con-
tains the other two basis matrices for AR(1) with one matrix
of 1 on the subdiagonal and O elsewhere and another matrix
with 1 on two corner components of the diagonal, M3 contains
the other basis matrix for exchangeable structure with 1 on the
off-diagonal and O elsewhere (Qu, Lindsay, and Li 2000), and
M, contains three block-diagonal basis matrices to represent
R; besides M ;. The correlation structure can be selected using
the sparsity property of the estimator of a; proposed in Section
3.1. For example, the AR(1) structure R; will be selected if the
coefficients &; and &, associated with groups 1 and 2 basis ma-
trices are nonzero, and &3 and é&4 associated with groups 3 and 4
are zero.

We calculate the percentages of the basis matrices being cor-
rectly selected (C), underselected (U), and overselected (O) out
of 100 generated datasets for each correlation structure. Table 1
summarizes the results with sample sizes n =100 and 300, and
shows that the proposed method selects the correct correlation
structure effectively for balanced datasets. Since almost half
of the observations are missing in the unbalanced datasets, the
proposed method performs less effectively for the unbalanced
data with sample size n = 100, but shows a consistent model
selection trend when the sample size increases, such as when
n = 300.

In addition, the percentages of positive definite correlation
matrix R in (5) obtained by minimizing (4) are also reported in
Table 1, which shows that more than 98% of the time the esti-
mated correlation matrix is positive definite with various sample
sizes and correlation structures. We also study the sensitivity of
the basis matrices selection to the initial value . In the unre-
ported study, we replace each component of 8 by a randomly
sampled value from its corresponding 95% confidence interval.
We observe that the proposed approach achieves very similar
results as in Table 1.
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Table 1. Study 1: Selection of the correlation structures and positive
definiteness of the estimated correlation matrix with binary responses.
The columns C, U, and O are the percentages of correct selection,
underselection, and overselection of the basis matrices out of 100
simulation datasets. The column P is the percentage of the estimated
correlation matrix being positive definite

Equal cluster size Unequal cluster size

R n C U (6] P C U o P

R, 100 0.99 0.00 0.01 1.00 0.30 0.60 0.10 0.98
300 0.97 0.00 0.03 1.00 0.89 0.00 0.11 1.00

R, 100 098 0.00 0.02 1.00 042 026 032 098
300 097 0.00 0.03 1.00 0.80 0.00 0.20 1.00

R; 100 0.53 046 0.01 1.00 0.20 0.79 0.01 1.00
200 0.87 0.08 0.05 1.00 0.70 0.23 0.07 1.00

5.2 Study 2: Normal Responses With Many Basis
Matrices

To investigate the performance of the proposed method
with a larger cluster size and a larger number of basis ma-
trices, we increase the cluster size to 25 and the number
of basis matrices to 20. The normal responses are gener-
ated from the model y;; =2 + xl.Tjﬂ +e¢jfori=1,...,nand
j=1,...,25 where g = (1,1, )7, x;; € R? from N(0, I),
ande; = (¢;1,..., 6,‘$25)T from N (0, Ry). The correlation struc-
ture Ry is block diagonal with total five blocks and each block
size is 5, where the first block is AR(1) with p; = 0.7, the third
block is exchangeable with p, = 0.8, and the other blocks have
independence structure. Unbalanced data are created using the
same missing data scheme as described in Study 1, with 50%
of the clusters having missing observations and the missing
probability for each observation being 0.4. Since each block is
either independence, AR(1), or exchangeable, the overall possi-
ble combinations of three different structures for five blocks is
3% = 243, which might not be practical to try one at a time with
the BIC or AIC criterion. In contrast, the proposed approach
is able to select the blockwise structure through identifying
nonzero coefficients in a single model, and therefore is much
more efficient than traditional model selection approaches.

We choose 20 basis matrices from the block-diagonal matri-
ces with block size 5, and divide them into 11 groups. Group G
contains the identity matrix Is and four matrices with I5 on the
first, second, third, and fourth blocks, respectively, and 0 matrix
on the other blocks. Group G, contains two matrices with My ;
and M, as in Study 1 for the first block and 0 matrix for the
other blocks, which corresponds to the AR(1) structure for block
1. Group G3 contains one matrix with M3 ; for the first block
and 0 matrix for the other blocks, which corresponds to the ex-
changeable structure for block 1. The other groups are defined
similarly using the same M, ;, M»», and M3 ;, but on different
block locations. In summary, G; represents the independence
structures; G, and Gj represent the AR(1) and exchangeable
structures for block 1; similarly, G4 and Gs for block 2; G¢ and
G+ for block 3; Gg and Gy for block 4; and Gy and G;; for
block 5.

To identify the correlation structure R4 correctly, the group
parameter estimates shouldbe &; = 0 fori # 1,2, 7and &; # 0
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Table 2. Study 2: Selection of correlation structures with a large number of basis matrices with normal response. The frequency of &; = 0 out
of 100 simulation datasets. Structure Ry corresponds to vectors a¢; # 0, oy # 0, and &7 7# 0. The column P is the percentage of the estimated

correlation matrix being positive definite

R Balance n 1 2 3 4 5 6 7 8 9 10 11 P
Equal 100 0 0 99 100 100 100 0 100 100 100 99 1.00
200 0 0 100 100 100 100 0 100 100 100 100 1.00
Unequal 100 0 9 98 100 98 91 5 98 99 99 100 0.97
200 0 0 100 99 100 100 0 100 100 100 100 1.00

fori =1,2,7. The frequencies of &; =0 (i =1,...,11) and
the percentages of the estimated correlation matrix being posi-
tive definite are summarized in Table 2 out of 100 datasets with
sample sizes n = 100 and 200. The true correlation parameters
o;, i = 1,2,7, and the mean and standard deviation of &; are
given in Table 3. Tables 2 and 3 show that the proposed method
performs well in correlation structure selection and parame-
ter estimation for both balanced and unbalanced data, and the
performance in model selection consistency, bias, and standard
deviation of the estimator improves as the sample size increases,
especially for unbalanced data.

5.3 Study 3: Efficiency Improvement in Regression
Parameter Estimation

We evaluate the efficiency improvement for regression pa-
rameter estimation using the correlation structure selected by
the proposed method. We generate 100 datasets of equal cluster
size 5 with the relatively simple structure R in Study 1, and of
cluster size 25 with the complex structure Ry in Study 2. Both
are generated from the normal response model in Study 2, and
the basis matrices in Study 1 and Study 2 are used for R; and
Ry, respectively. The efficiencies of the three regression param-
eter estimators are compared for the GEE estimators with the
independence and unstructured working correlation structures,
and the QIF estimator using groups of basis matrices selected
by the proposed method. The relative efficiency, defined as the
ratio of the variances of the regression parameter estimators be-
tween the independence and the selected structures, and between
the unstructured and the selected structures, is summarized in
Table 4 with various sample sizes. Table 4 indicates that with the

selected structure, the estimation efficiency of the regression pa-
rameter is significantly improved, and this holds especially for
small and moderate sample sizes. Surprisingly, the efficiency of
the unstructured GEE estimator is the worst of all, with the vari-
ance of the estimator of 83 1500 times more than that using the
selected structure for Ry when n = 50. Even when 7 increases
to 200, the unstructured estimator performs notably worse than
the estimators based on the selected correlation structures, and
even worse than the independence structure.

5.4 Study 4: Efficiency Improvement and Correlation
Estimation Bias Under Basis Matrices
Misspecification

We conduct this study to show the efficiency improvement for
estimating 8 and the bias for estimating the correlation matrix
when the inverse of the correlation matrix is not exactly a linear
combination of the basis matrices. We generate data using the
model in Study 2 withm = 9 and a new correlation structure Rs,
the hybrid structure of AR(1) and exchangeable with parameters
p1 = 0.8 and p, = 0.9, respectively. For this hybrid structure,
each component of R is r;; = (/ollﬂ| + 02)/2,i # j,if the two
random processes with AR(1) and exchangeable correlations are
independent and have the same variance. In the normal response
case, it is equivalent to saying that the random error can be
decomposed into two sources, €;; = el.’j + elf}, where elfj and el’;
are independent of each other with the same variance, €; ; has the
AR(1) structure with the correlation parameter p;, and el/; has
the exchangeable structure with the correlation parameter p;.

Since the inverse of a hybrid correlation structure does
not have a specific structure, more than 20 basis matrices

Table 3. Study 2: Estimation of correlation parameters using a large number of basis matrices with normal response. The mean and standard
deviation of the estimators of the nonzero correlation parameters in R4 from 100 simulation datasets

o [+ %) o7
R Balance n o1 al,Z (11,4 [eZN1 [e5X) 71
R, True 1.000 1.922 3.048 —0.961 —1.373 —0.952
Equal 100 1.011 1.927 3.207 —0.945 —1.384 —0.995
(0.093) 0.477) (0.661) (0.300) (0.247) (0.166)
200 1.006 1.928 3.050 —0.951 —1.385 —0.955
(0.052) (0.290) (0.446) (0.195) (0.153) (0.112)
Unequal 100 1.425 3.212 5.316 —1.545 —2.156 —1.484
(0.266) (1.675) (1.920) (0.954) (0.968) (0.524)
200 1.130 2.359 3.809 —1.149 —1.650 —1.161
(0.098) (0.422) (0.721) (0.297) (0.237) (0.183)
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Table 4. Study 3: Efficiency study with balanced and normal response. Ratio of variances of regression parameter estimators between
independence and selected, and unstructured and selected correlation structures

R n Ratio of variance Bo B B, Bs
R, 50 Independence/selected 0.965 2.161 2.614 2.429
Unstructured/selected 3.074 131.581 660.804 1528.858
100 Independence/selected 0.918 2.257 2.526 1.978
Unstructured/selected 14.801 3.274 2.603 1.887
200 Independence/selected 0.901 3.977 2.503 2.157
Unstructured/selected 0.980 1.220 1.316 1.706
Ry 100 Independence/selected 1.183 1.204 0.986 1.690
Unstructured/selected 153.778 20.948 634.152 129.319
200 Independence/selected 1.238 1.583 1.676 1.893
Unstructured/selected 2.067 1.581 4.130 3.357

are needed to fully represent the inverse of the correlation
matrix. In this study, we select seven of them, including
the three matrices in M; and M, and four matrices in
M;s = {Ms’l, M5'2, M5’3, M5,4}, where M571 has 1 on the
entries (1,2), (2, 1), (m — 1, m), (m, m — 1), and O elsewhere;
M;s, has 1 on the two second-main off-diagonals and 0
elsewhere; M 3 has 1 on the entries (1, 3), (3, 1), (m — 2, m),
(m,m — 2), and O elsewhere; and Ms4 has 1 on the corners
(1, m) and (m, 1) and O elsewhere. Although these seven basis
matrices do not fully represent R:', they provide a good
approximation to RS_I. The irrelevant basis matrix M3 in Study
1 is also included, so that the basis misspecification not only
omits relevant matrices but also contains irrelevant matrices.

For 100 generated datasets, we report the efficiency improve-
ment for estimating B using the selected matrices in Table 5, and
the difference between ﬁg, and Rs measured by ||ﬁ5 — R||g/m
in Table 6, where [|A||r is the Frobenius norm defined by the
square root of (AT A). Table 5 shows that under the misspec-
ified basis matrices, the proposed method can still improve the
estimation efficiency significantly for B, compared with the in-
dependence or the unstructured working correlation structure.
In addition, Table 6 indicates that the Frobenius norm shows less
bias in correlation matrix estimation using the proposed method
than in the initial estimate. The efficiency improvement for re-
gression parameter estimation and the bias reduction for corre-
lation parameter estimation are more significant with a smaller
sample size.

6. EXAMPLE: HIV DATA

We apply the proposed method to HIV (human immunod-
eficiency virus) AIDS (acquired immunodeficiency syndrome)

data (Huang, Wu, and Zhou 2002; Fan and Li 2004; Qu and Li
2006; Fan, Huang, and Li 2007) for illustration. In this dataset,
there are 283 homosexual males who were HIV positive be-
tween 1984 and 1991. Each patient had his first visit after HIV
infection, and his CD4 (cluster of differentiation 4) counts were
measured repeatedly about every 6 months. Due to missing
data, the number of repeated measurements of CD4 varies from
a minimum of 1 to a maximum of 14. It is known that HIV
destroys CD4 cells, and therefore, it is important to monitor
progression of the disease through CD4 counts over time. The
response variable here is the CD4 percentage over time, and is
considered to be approximately normal. Four covariates were
also collected: smoking status as a binary measurement (x;),
standardized patient age (x;,), standardized CD4 cell percent-
age before infection (x;3), and measurement time (%;;). We adopt
the following model, suggested by Fan and Li (2004), for the
marginal mean:

yii = ao(tij) + Bixin + Paxia + Baxiz + Bax) + Bsx
+ Boxitxiz + Brxitxiz + BsxinXiz + €5, (6)

where the varying intercept coefficient c(#;;) is estimated by
B-splines.

We study the correlation structure of the first six observations
from each subject since these measurements were followed more
regularly in the 6-month interval in the earlier phase of the study.
There are total 244 subjects remaining in our subset, where there
are 32 with two measurements, 20 with three measurements,
17 with four measurements, 25 with five measurements, and
150 with six measurements. To select the correlation structure
for this unbalanced data, we obtain the initial estimator of the
correlation matrix using the 150 patients with six measurements,
and implement the procedure proposed in Section 3.3. Model

Table 5. Study 4: Efficiency improvement with balanced and normal response under basis matrices misspecification. The true correlation
structure is the hybrid structure of AR(1) and exchangeable

R n Ratio of variance ﬁo ﬁ 1 ,32 /§3
R;s 50 Independence/selected 0.721 3.908 5.706 3.607
Unstructured/selected 892.943 275.668 462.136 529.959
100 Independence/selected 0.834 3.994 5.792 5.254
Unstructured/selected 86.097 186.235 408.396 113.139
200 Independence/selected 0.956 5.871 3.183 5.117
Unstructured/selected 1.497 2.853 1.721 2.709
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Table 6. Study 4: Bias reduction with balanced and normal response
under basis matrices misspecification. [IR — R|| is the Frobenius
norm of the difference between the estimated correlation matrix and
the true matrix. ||R — R||r is the Frobenius norm of the difference
between the initial estimated correlation matrix and the true matrix.
The mean and the standard deviation (in parenthesis) from 100
datasets are reported

R n IR —Rl[p/m IR —Rl|g/m
R;s 50 0.418 (0.200) 1.199 (0.467)
100 0.325(0.137) 0.723 (0.214)
200 0.191 (0.096) 0.454 (0.115)

(6) is first fitted using the GEE with independence correlation
structure to obtain the initial regression parameter estimate. The
empirical correlation matrix estimated by the sample correlation
of the fitted residuals from 150 patients is Ry,
Riyy

1.00 0.71 0.59 0.52 047 0.43
0.71 1.00 0.73 0.69 0.56 0.52
0.59 0.73 1.00 0.77 0.70 0.58
0.52 0.69 0.77 1.00 0.77 0.68
0.47 056 0.70 0.77 1.00 0.76
043 052 0.58 0.68 0.76 1.00

Ry
1.00 0.76 0.63 0.56 0.48 0.41
0.76 1.00 0.75 0.68 0.58 0.48
0.63 0.75 1.00 0.76 0.68 0.56
0.56 0.68 0.76 1.00 0.75 0.63
048 0.58 0.68 0.75 1.00 0.76
041 048 0.56 0.63 0.76 1.00

We consider three candidate structures, namely AR(1), ex-
changeable, and the hybrid structure of AR(1) and exchange-
able, to select the structure for R}y, . For the hybrid structure,
we include Ms = {M5s 1, Ms >, M5 3, M5 4} in Study 4 of Sec-
tion 5 to approximate the inverse of this structure. We apply the
proposed approach with the basis matrices in groups M;, My,
M3, and M5 of Section 5. The final result shows that group M3
is not selected, indicating that the correlation structure for this
data can be well approximated by a hybrid correlation structure

Journal of the American Statistical Association, June 2012

of AR(1) and exchangeable. After taking the inverse of the es-
timated linear combination of the selected basis matrices and
standardizing for diagonal elements through dividing the ith
row and column by the square root of the corresponding diago-
nal element, the estimated correlation matrix is ﬁHIV. Note that
the standardization performed in Ry is only to ensure 1 on
the diagonal. Before standardization, the diagonal entries were
(1.023,0.984, 0.944, 0.944, 0.984, 1.023), which are close to 1.
The negligible deviance from 1 is mainly due to the estimation
error in the o;’s.

Note that neither the exchangeable nor the AR(1) structure
alone is a good approximation to the empirical R;uv due to
different off-diagonal entries and a much slower decay of corre-
lations than the AR(1) structure. Based on the selected structure
Ryrv, we conclude that the correlation structure for this data
contains a hybrid structure of AR(1) and exchangeable, with
correlation parameters around 0.7 and 0.8 in the AR(1) and
exchangeable structures, respectively.

To illustrate the efficiency gain in estimating §;’s through the
selected hybrid structure, we compare the regression parameter
estimated by the QIF with hybrid structure basis matrices to
the GEE estimators with working independence, exchangeable,
AR(1), and unstructured correlation structures, respectively. The
regression parameter estimates and the standard errors are re-
ported in Table 7, showing that the standard errors by QIF using
the selected structure are the smallest among these estimators.

7. DISCUSSION

A new approach is proposed to estimate and select correla-
tion structures simultaneously for longitudinal data. It is able to
capture the major correlation structure in the process of model
selection and balance model complexity and informativeness.
One of the advantages of the proposed approach is that it is able
to identify complicated structures that contain a mixture of com-
mon structures. This is different from other correlation structure
selection approaches such as comparing Akaike’s information
criteria (Pan 2001) or correlation information criteria (Hin and
Wang 2009). Comparing different correlation structures one by
one is impractical if the number of candidate structures increases
dramatically.

Even if the inverse of the true correlation/covariance matrix
does not belong to the space spanned by the selected basis ma-
trices, as long as the candidate basis matrices are in the class of
bases with a good approximation for the true structure, the bias
is negligible. Although our approach might not obtain the most

Table 7. The estimated regression parameters for the HIV data example. QIF is the quadratic inference function estimator with correlation
structure selected by the developed method. The other four estimators are the GEE estimators with working independence, exchangeable,
AR(1), and unstructured correlation structures, respectively. The estimated standard errors are reported inside the parentheses

QIF GEE.indep GEE.exch GEE.AR(1) GEE.unstr
Smoking 0.92 (0.83) 0.59 (1.11) 0.72 (1.11) 0.81(1.12) 0.92 (1.33)
Age 0.27 (0.54) 0.02 (0.80) 0.02 (0.79) 0.23 (0.78) 0.16 (0.82)
PreCD4 4.04 (0.50) 3.29 (0.67) 3.61 (0.69) 3.41 (0.68) 3.74 (0.93)
Age? —0.43 (0.25) 0.03 (0.39) 0.01 (0.39) —0.09 (0.38) —0.21 (0.40)
PreCD4? 0.66 (0.21) 0.40 (0.31) 0.42 (0.31) 0.39 (0.35) 0.41 (0.56)
Smoking x Age —2.85(0.83) —1.90 (1.18) —1.78 (1.17) —1.83 (1.16) —1.76 (1.39)
Smoking x PreCD4 1.86 (0.92) 0.01 (1.34) —0.66 (1.33) —0.47 (1.33) —1.07 (1.64)
Age x PreCD4 —0.86 (0.34) —0.01 (0.47) 0.09 (0.48) —0.07 (0.52) 0.45 (0.60)
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accurate working correlation structure, our simulation shows
that it can still improve the efficiency of regression parame-
ter estimation compared with an independence structure or an
unspecified structure.

In addition, the proposed approach also possesses the oracle
property of selecting the true correlation structure and estimat-
ing the correlation parameters consistently. Although numeri-
cally we cannot guarantee that the linear combination of basis
matrices is always positive definite, the oracle property ensures
that the estimated correlation matrix is positive definite if the
sample size is sufficiently large, as shown in our simulation
studies. Note, however, that once the basis matrices are selected
to approximate the true correlation structure, the estimation of
the regression parameter by minimizing the QIF does not re-
quire positive definiteness of the estimated correlation matrix.
This is because the construction of the QIF has the advantage of
not relying on the inverse of the correlation matrix. Therefore,
positive definiteness of the estimated correlation matrix is not
crucial for the purpose of increasing the estimation efficiency of
the regression parameters.

APPENDIX

Proof of Theorem 1. Let U;, Vi, and
A; be U;(B), Vij(B), and A;(B) here to indicate their depen-
dence on B. Under regularity conditions, ni (B — B) is asymptotically
normal. Given C, and the asymptotical normality of 8, the proof of
Theorem 1(a) is straightforward and thus is omitted.

Assuming Cy, it can be shown that, for some covariance matrix X,

vee[nZ[R1(B) =R} -2 N, Z)).
For fixed j and k, we have
(U = Vi Vi = UI'V — (Vie) Vi
- tr(v,-,-,kU,T) - tr(V,-,—_k(V,-aO)T)
= i BIAB) M AB) i — (B
x (v — (B Ai(B)
X [RTB) =R +0,(1D]AB) i (B)]
= uf[RB) =R 40,0 HIAB) (BT B)
x Ai(B) M, A (B)
X 3 = B — BN AR ).

(A.1)

Let Qi(B)=A:(B)* i (BT (B)AIB) M A (B) 2 (v =1, (B)) x
i~ mB)AB)

DU = Vi) Vi = tr{ [R*‘(B) —R' 4 op(n*%)] [ 3 Qij,k(ﬁ)] }
i=l1 i=l1

Thus, we have n=2 3" (U; — V;a®)"V,; ; as
tr{n% [R’I(B) —R! —|—0p(n7%)] [’fl i Qij,k(B)] }
izl

. '
For fixed j and k and the true 8, we know that ™! S Qik(B) —
Cj for some constant matrix Cj,. Since B is J/n-consistent with g,
we have

n! ZQij,k(B) N Cj
im1

forj=1,....,Jandk=1,...,d;.
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By Slutsky’s theorem and (A.1), for any constants a i, we have the
following:

n

J dj
n1 Z Zj aji Z(Ui — Vi) Vi
[—

j=1 k=

-, tr{[n;(rz—'(m— R +0p("‘%)>]2i“’kc"'}'

j=1 k=1

<

By the Cramer—Wold theorem, we have

-1 - R . ’ .
nt ;(U V,ao) \¢

2, <tr|[n%(l~l’l(}§) —R™! +o,,<n7%>)]C“], cey

o[22 (R B) = R +0,07%) )] Cra, }).

The above trace part can be written as
Jen

(st (R By —R o (1) ]
[ (R B) - R 40, (1)) ] |

= (vec{n%[fr‘(ﬁ) -R! +0p(”])]i

ey

2 (vec(Cyy), ..., vec(Cyy,))
= (VCC{I’I% [ﬁ_'(ﬁ) —R! —}—op(n_%)]
C = (vec(Cyy), ..., vec(Cyq,)). By (A1), we have
nmE Y (U = Via®)'V, 2> N©, %), and ¥*=CT%,C.
Theorem 1(b) is proved.

)T
) c

where

Proof of Theorem 2. We first establish the convergence rate of @ to
a®. Define L,(e) = Y!_, |[U; — Y7, Vije;1[3. Given that @ mini-
mizes L, (), we have

o)t = o =) [ v e )
i=1
- 2[;(@ - ViaO)TVij| (&(O) — <x0> <0.

Let & be the smallest eigenvalue of X in Theorem 1(a). By Theorem
1(b), we have

e <o) [
< 2[ Xn:(U,- - V,-a”)Tvi} (@ -

i=1

&in

=

oS- verry | o]
i=1

=0,(n?)

‘&(O) - aOH ’
2

with probability tending to 1. Thus, we establish the convergence rate
of

& —oton = 0,(n7). (A2)

Consequently, &} = 0,(1) for a9, #0 and &Y} = 0,(n"?)

for a?_k = 0. This also implies that if n is large enough and C,

holds, we have p} (/|a{"||;) =0 for & # 0 and p; (|@}"[|)) = A,
for oc(; = 0. Thus, letting 7,(a) be the objective function in (4),
we  have  T,(&) — T,(a’) = (& — a«®)"[Y1_, VIV,](@ — a) —
2030 (U — ViV, (& — «°) +np ngzo Aplléejlly < 0.  Since
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np Yy 00 all&;!; > 0, similar to obtaining (A.2), we have
J
lla — |l = Op(n*%). (A3)

Since p; (1[&1) =0 for «%#0 and pj (1&|}) =4, for
oz? = 0 for large enough n, the objective function 7,(«) becomes
T, () = ZLI |IU; — V,-ot||§ + nph,||ee]|;- Taking the partial deriva-

AT,

tive of T,,(a) with respect to o for «;x € oy, we have Tf"‘k)laﬂi =
: "

— 20 20U = Vi@) Vi i +npi,Sign(@; 0)=— >, 2(U; — V)"
Vik+ 20, 2@ —a®'VIV;, +nph,Sign(é; ), where Vi is
the column of V; corresponding to «;. Given Theorem 1(b),
we have Y 2(U; — V;a®)"V,, = O,(n?). Theorem 1(a)
and (A3) imply that Y|  2(& —a®)"VIV;, = Op(n%). Sup-
pose @;x #0 for of, € ). Since & minimizes 7,(a), we have
%}f’ﬂa:& = 0, indicating np, Sign(@; ) = Y 1, 2(U; — V;a®)"V,;
— >, 2@ — a®)"VI'V;; ;. However, the condition C, ensures that

ZL] 2(U; — ViOCO)TVij,k - Z?:l 2(& — aO)TV,'TVij,k
nph,Sign(&; i)

Thus, P{&;; # 0} < P{nph,Sign(@;) =Y i, 2((U; — V;a®)"V;; .
=3 2@ —a®) VIV, 1} — 0. Therefore, with probability tending
to 1, we have &; ; = 0 for a?, « € &, which indicates that the structure
of R7! is identified correctly with probability tending to 1. Theorem
2(a) is proved.

Next, we show the asymptotic normality of &y. We define R, (oty) =
Z7=1 1G; — V,v,”ozn||§, where oy is the second partitioning part of
a = (af, «!)7, and V, ; contains the columns of V; corresponding to
the parameters in oy. Since & minimizes 7, () and p’kn(||&§.°)||1) =0
for a(; # 0, and p;n(||&5»0)||1) = A, for ot(} =0, and &; = 0 with prob-
ability tending to 1 from the proof of Theorem 2(a), we know that
& minimizes the objective function R,(ay) and VR, (&) = 0, with
probability tending to 1. By Taylor expansion, we have

VR,(&y) = VR, (aﬁ) + VR, (a;;) (&H - aﬁ),

= 0,(1).

for some vector aj;. Since VR, (&) = 0 with probability tending to 1,
we have

an - oy = ~[V2Ry ()] VR, (of )

n -1 n
= ( Z V,'T:IIVLH) [ Z VZ:II (U[ - VL[I“?I)} .
i=1 i=1

By Theorem 1, we have \/n(&y — o)) ~ N(0, T;' Z5 X "), where Iy
and X}; are the submatrices of X and X*, corresponding to the columns
of V; 1. Theorem 2(b) is proved.

[Received February 2011. Revised January 2012.]
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