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ABSTRACT

Modern optimizing compilers such as LLVM and GCC are huge and complex, and mature
releases routinely have uncaught bugs. Beyond harm to software development, the lack of for-
mal correctness guarantees for the compilation process seriously limits the guarantees other
software systems can provide, since the compiler that generates the final executable cannot
be trusted. These circumstances have motivated broad interest in compilation verification:
providing a formal guarantee that a compilation of a program is correct.

Translation Validation is a commonly used compilation verification technique that aims
to prove correctness of a single instance of compilation, by considering only the specific
input and output programs and treating the compiler mostly as a black box. Translation
Validation techniques are well-suited to the compilation verification problem because they
can be composed to validate a sequence of compilation steps, they can easily retrofit to
existing compilers, and they can be maintained independently from the compiler itself by a
separate team of formal method experts.

The basic components of a Translation Validation system are (1) a formal notion of pro-
gram equivalence, (2) a verification condition generator that generates a relation between
program points and variables in the input and output programs, (3) a proof system that
accepts the verification conditions, generates a machine-checkable equivalence proof, and
checks the proof for correctness.

Ideally such a system is completely agnostic to the specifics of transformation from the
input to the output as well as independent of the input/output languages. This allows the
same system to be reused across the many transformation and translation passes found in
modern compilers. However, this is not true in the state of the art: most existing systems
are custom-tailored for a particular sequence of transformations, and moreover, specialized
for a specific, common intermediate language for the input and output programs.

The overall goal of this work is to show that it is possible to develop a (mostly) language-
independent, transformation-agnostic translation validation system with support for different
input/output languages for an optimizing, production-quality compiler. In this thesis, we
present such a system as well as the theoretical and practical advances needed to arrive to
it.

First, we present a formal framework for program equivalence checking that is transformation-
agnostic and language-independent. This framework can serve as-is as the proof system for

any number of Translation Validation systems targeting different transformation and/or
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translation phases within an existing compiler. The basis of the framework is a rigorous
formalization, namely cut-bisimulation, for weak bisimulation variants that serves as a gen-
eralization of the various (sometimes ad-hoc) notions of program equivalence found in the
literature. We develop a program equivalence checking algorithm that proves two programs
equivalent by reducing a proposed relation between corresponding program states to a cut-
bisimulation relation. We implement this algorithm in KEQ, a new tool for checking program
equivalence that accepts the operational semantics of the input and output languages as pa-
rameters, and is independent of the transformation used to generate the output. This is the
first program equivalence checking tool known to the authors that is language-parametric
instead of containing hard-coded language semantics as is the norm in the literature.
Then, we use KEQ as the equivalence checker for two different Translation Validation
systems targeting two phases of the LLVM compiler: the Instruction Selection phase and
the Register Allocation phase. The two systems share the same notion of equivalence (cut-
bisimulation), the same proof system (KEQ), as well as the semantic definitions for the
input/output languages (LLVM IR and x86-64 based Machine IR), which are separate ar-
tifacts and not hardcoded into the logic of the systems. The only components that are
transformation-specific are the two verification condition generators. The Instruction Se-
lection one requires minimal support from the compiler in the form of compiler-generated
hints, while the Register Allocation one is employing a novel inference algorithm for register
allocation and related optimizations. These systems were evaluated on the GCC SPEC 2006
benchmark, where they correctly validated 4331 / 4732 (91.52%) and 4574 / 4732 (96.67%)

functions with supported features respectively.
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CHAPTER 1: INTRODUCTION

1.1 COMPILATION VERIFICATION AND WHY IT IS NECESSARY

Compilers are programs that transform an input program written in a source program-
ming language to an output program written in a (potentially different) target programming
language, a process known as compilation. The most common application for compilers is
the translation of programs written by humans in a high-level programming language (e.g
C/C++, Java, Haskell, etc.) to a hardware instruction set (e.g. x86-64, ARM, PowerPC,
etc.) native to the target machine that executes said programs. The most general definition
of compilation also includes program transformations that preserve the input language to
the output, such as code refactoring, optimization transformations, and others.

A compilation process is expected to preserve the semantics of the input program in the
the output program: existing behaviors in the input should not be altered in the output
and no new behaviors should be added in the output. In other words, the input and out-
put programs should be equivalent (for some well-defined notion of program equivalence).
Despite its importance for the correctness of the compilation process, the input-output pro-
gram equivalence is only a best-effort goal for most of today’s modern compilers. Indeed,
most modern compilers do not provide any formal correctness guarantee for the compilation
process.

On the other hand, modern optimizing compilers such as LLVM [1] and GCC |2]| have
evolved into intricate systems with huge code bases and, consequently, uncaught bugs that
make it into mature releases [3|. The reality of compilation bugs combined with lack of
any formal correctness guarantee for the compilation process hinders software development
and limits the guarantees other software systems can provide. Following are two examples
indicative of the necessity of formal correctness guarantees for the compilation process.

Most iOS applications and all of the watchOS and tvOS applications are shipped by
developers to the Apple Store as LLVM bitcode [4, 5] and they are compiled to machine
code on Apple’s servers, thus allowing the possibility of unintended behaviors introduced to
the binary due to compilation errors. This has raised concerns among developers that the
machine code may not be identical to what they tested before shipping and, even worse,
that it may contain new, unexpected bugs that could not be caught during testing on the
developer’s site. [6]. A correctness guarantee for the compiler on the Apple server’s site
would alleviate these concerns.

As another example, the selL4 operating system microkernel |7] is verified on the source



code level to have various security and functionality properties. In an effort to guarantee the
same properties for the microkernel ARM binary, the sel.4 developers engineered a custom
verification solution that completely removes the compiler from the trust base [8]. That
would not be necessary if the compiler came with a formal correctness guarantee.

These circumstances have motivated broad interest in compilation verification: providing
a formal guarantee that a compilation of a program is correct. The benefits from compilation

verification are numerous and here we list the most important ones:

e Guaranteed correct compilation allows for formal guarantees for the input program
to be transferred to the output program. This is especially helpful when the output
program is written in a hard to analyze language such as the various instruction set

architectures.

e Compilation verification allows for safe decoupling of the development and testing
of applications from the actual compilation to a native binary. Developers can test
and ship their application in a target-agnostic bytecode language such as the LLVM
Intermediate Representation (IR) [9], while the user compiles the application locally
optimizing for their native hardware and/or other custom specifications (energy con-

sumption, binary size, etc.)

e A verified compilation system can be used to aid the debugging efforts for compilers
as it will always report wrong compilations. Such reports can be used by compiler

developers to fix underlying compiler bugs.

Note that compilation verification is subtly but importantly different than compiler verifi-
cation. The latter refers to formally verifying parts of or the whole compiler for correctness.
Compilation verification is a more general term that refers to any approach that provides
formal guarantees for the correctness of the compilation process, including but not limited

to using compiler verification.

1.2 CHALLENGES FOR COMPILATION VERIFICATION

The design of a compilation verification system for an optimizing, production-quality
compiler is challenging because it should allow for a system that scales with the size of the
target compiler as well as the size of the input application, is developed independently by
formal verification experts while following the development of the target compiler, and has
a low enough complexity to be trusted as opposed to the target compiler itself. In more

detail, the main challenges for a compilation verification system are as follows:



e Existing modern compilers such as GCC [2] and LLVM |[1] are composed of a host of
different subsystems across hundreds of thousands of lines of code that transform the
compiled code into many intermediate stages and languages before producing a final
output targeting a number of different hardware instruction sets. A compilation veri-
fication system for such a compiler should be able to scale to the size of the code base
and handle the multitude of code transformations as well as the various intermediate
and final languages found in the compiler. This means that the verification system
should employ reusable components across different transformation and/or translation

stages, wherever possible.

e Similarly, compilation verification should scale with respect to the input program size.
The verification should be modular so that compiling large input programs can be

decomposed into verification of individual functions separately, for example.

e Moreover, modern compilers are actively developed on a daily basis and a compilation
verification system should be able to keep up with the evolution of the corresponding
compiler. On the other hand, compiler engineers are not verification experts and
should not be expected to maintain the verification system along with the compiler
development. This means that the verification system should be developed separately

from the compiler itself, and ideally, treat the compiler as black box.

e A central component of any compilation verification system is the formal semantics
of the language(s) involved in the compilation process. This semantics is the basis
for any formal proof of equivalence. Of course such semantics are also hardcoded into
the logic of the compiler and many compilation bugs are due to erroneous codification
of the semantics into the compiler code. A compilation verification system should
not similarly incorporate hardcoded semantics, but instead keep the formal semantics
definition clearly separated and easily accessible by its users. Doing so increases the
trust on the verification system, since users can access and more importantly test the
formal semantics, that is the framework upon which the equivalence proof is built.
Consequently, the verification system should be decoupled from any language semantic

definition(s) and ideally it should be completely parametric to it (them).

1.3 SUMMARY OF THE STATE OF THE ART

In this section, we give a brief summary of the state of the art for compilation verification.

We discuss the main approaches to the problem and their advantages and shortcomings



with the goal of identifying techniques appropriate for our goal and areas that need to be
improved. A more detailed review of the related research can be found in Chapter 2. There
are two different approaches to compilation verification: Translation Validation and Verified

Compilers.

Verified Compilers A ideal approach to compilation verification is verified compilers:
compilers with formally verified source code, as in CompCert [10], a verified compiler for
C, and CakeML [11], a verified compiler for Standard ML. Verified compilers come with a
formal proof of correctness for their implementation, meaning that they are proven to not
miscompile their input. Verified compilers are attractive because they give a development-
time guarantee of correctness, unlike Translation Validation systems that, as we will see, can
only provide compile-time guarantees and suffer from potential false-positives.

The main limitation with the verified compiler approach is that it is at odds with the
development life cycle of an existing compiler (e.g., LLVM and GCC) as opposed to a
compiler designed from scratch for verification. First, retroactive full formal verification
of the current code base of an existing, production-quality compiler, such as LLVM, is far
beyond the state of the art. Second, the maintenance of the various proofs while the compiler
code base evolves cannot be done by the compiler engineers. Instead, it requires active
involvement of and coordination with verification engineers in a way that is not practical
for these projects: Patches that update code in a way that makes existing proofs about said
code outdated (i.e. failing) need to be reviewed by verification engineers to fix the failing
proofs. That, in turn, may require further changes by compiler engineers in the patch that
caused the proof failures.

In fact, all existing verified compilers have been built from the ground up with the goal
of verification in mind (see CompCert [10], CakeML [11|, and Chipala et al. [12] among
others). These compilers are developed by formal methods experts and their development
life cycle includes formal correctness proofs for any patch of new implementation, meaning
that compiler engineering is tightly coupled with corresponding proof engineering. Although
this requirement can sometimes hinder compiler development, formal correctness has higher
priority for a verified compiler. For example, the register allocation phase of CompCert
had to use a sub-optimal algorithm for one of its transformations (spilling) because the
correctness proof for the preferable algorithm would be “a daunting task” [13]. A production-
quality optimizing compiler that prioritizes performance could not adhere to such standards.

To sum up, the approach of verified compilers makes the compiler development and the
compilation verification inseparable, and as a result, it does not suffice as a practical solution

for compilation verification for existing compilers.



Translation Validation (TV) [14] It is clear from the discussion above that full static
verification of the compiler source code itself has only been shown to work for compilers
designed specially from the ground up for formal proofs, and requires extensive proof en-
gineering by formal methods experts. On the other hand, compilation verification systems
based on Translation Validation are focusing on validating the correctness of a single instance
of compilation. The system accepts a pair of input and output programs and potentially
some compiler-generated information about the transformation that took place (e.g. the
correspondence between input and output variable names) and either validates the transfor-
mation, providing a formal certificate of correctness, or rejects it. Typically, a TV system for
compilation verification is sound with regard to validation, meaning that a validated trans-
formation is guaranteed to be correct (i.e. no false-negatives in validation). Such systems are
incomplete, meaning they can reject a correct transformation (i.e. generate a false-positive).

Translation Validation techniques are attractive for compilation verification because they
can easily be retrofitted to existing compilers. By operating solely on the input/output
programs of the compilation and utilizing only zero to limited support from the compiler
for transformation-specific information, a TV system for compilation verification treats the
compiler largely as a black box and can be developed independently from it. Moreover,
multiple TV systems addressing different transformation and/or translation phases in the
compiler can be composed to validate the whole compilation path, thus scaling with the
complexity of a production-quality compiler.

The ideal TV system would have several key characteristics, many of which have been
demonstrated for realistic production compilers. First, a TV system should be scalable and
powerful enough to handle large, production-quality optimizing compilers compiling large,
real-world application programs (see first and second challenge in Section 1.2). Second, a TV
system should require few or no changes to the compiler functionality itself, so that there are
no compromises to the quality or debuggability of generated code, or to compilation times.
Third, a TV system should require relatively few extensions to the compiler to generate the
verification conditions that guide the formal correctness proof, and importantly, it should
be possible to generate the verification conditions with only standard compiler techniques
and not sophisticated formal verification techniques, since the skills to develop and maintain
such techniques are almost always lacking in real-world compiler teams (see third challenge
in Section 1.2). Fourth, TV techniques should be possible to use in a modular fashion,
validating separate (sequences of) transformations, which can be then composed to provide
a correctness guarantee for the whole compilation sequence (again see first challenge in
Section 1.2). Together, these characteristics would ensure that the TV approach is very well

suited for verification of existing compilers.



There is a rich literature of successful TV systems for compilation verification, for exam-
ple [15] for GCC and [16] for LLVM, among others. The main limitation of these systems
is that each of them is custom-tailored for a particular sequence of transformations, and
moreover, specialized for a specific, common intermediate language for the input and output
programs. The fixed language makes it difficult to use the approach for modern compilers,
which typically use different intermediate languages for different stages (e.g,. LLVM uses at
least three different languages). For example, Necula’s work on GCC [15] is limited to the
lowest-level IR form, Register Transfer Language (RTL), and does not apply to the bulk of
the optimizations which are done on the higher-level GIMPLE representation [17]. More-
over, none of these previous systems would be able to verify a key phase like Instruction
Selection in LLVM, which converts between two different IRs. The best effort has been to
translate both input and output programs to a third, common internal representation as a
preliminary step [8], which introduces two new unverified language translators in order to
verify the original translator.

In short, existing TV systems for verified compilation successfully address the separa-
tion from the compiler challenge, but fall short of being modular and decoupled from the
input/output language semantics. Due to these significant weaknesses, existing TV sys-
tems cannot at this point be regarded as a satisfactory general solution to the problem of

compilation verification.

1.4 OUR GOAL FOR COMPILATION VERIFICATION

In this work, we attack the problem of compilation verification. We do that not only
theoretically, as an instance of program equivalence, but from a practical standpoint as well:
We aim for a solution suitable for optimizing, production-quality compilers such as LLVM.
Our solution should overcome all the aforementioned challenges to be practical. Specifically,
we propose a compilation verification system design based on translation validation that
is (a) modular with as many reusable transformation-agnostic and language-independent
components as possible, (b) separate from the compiler, and (c¢) decoupled from any semantic
language definitions which are separate artifacts.

In short, the thesis of this work is to show that it is possible to develop a (mostly) language-
independent, transformation-agnostic translation validation system with support for different
input/output languages for an optimizing, production-quality compiler.

In this dissertation, we present such a system as well as the theoretical and practical
advances needed to arrive to it. The system targets the LLVM compiler backend for the x86-
64 Instruction Set Architecture (ISA) [18], specifically the Instruction Selection phase [19]

6



that translates LLVM IR to x86-64 assembly as well as the Register Allocation [20] phase that
transforms the code so that it uses only the physical register file for x86-64 by eliminating
references to virtual registers (i.e. temporary names generated during previous compilation
stages). These are intricate, major components of the LLVM compiler backend that each
span above 100,000 lines of code and operate on two different languages: the LLVM IR and
the x86-64 machine IR [21], a low-level intermediate representation parameterized by the
opcodes and operand types of the x86-64 ISA. The semantic definitions of these languages
are given as independent artifacts, while the translation validation system consists of a
proof system module that is reused across transformations and two transformation-specific

verification condition generators.

1.5 OVERVIEW OF OUR APPROACH: MODULAR BLACK-BOX TRANSLATION
VALIDATION

In this work, we focus on a compilation verification approach based on Translation Vali-
dation [14], since it is proven to be better suited to existing compilers, as discussed in the
previous section. Translation Validation aims to prove correctness of a single compilation
run, by considering only a specific pair of input and output programs. A TV system treats
the compiler largely as a black box, can be developed independently from compiler, can
focus on a specific (sequence of) transformation(s), and can be easily combined with other
TV systems to validate the whole compilation path.

These properties make TV techniques practical for compilation verification and are the
reason we focus on TV for achieving the goals of this work. For the rest of this section,
we discuss how to utilize the strengths of TV to arrive to a system that is modular with as
many reusable across the compilation path components as possible. There are three essential

components of a TV system:
1. A formal notion of program equivalence.

2. A verification condition (VC) generator that generates a sufficient set of obligations
to be discharged in order to prove equivalence. Verification conditions relate program

points and variables in the input and output programs.

3. A proof system that accepts the verification conditions, generates a machine-checkable

equivalence proof, and checks the proof for correctness.

The key insight underlying our work is that two of the three TV system components men-

tioned above can be generalized to be transformation-agnostic and language-independent:
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the formal notion of equivalence, and the proof system. The only component that needs
to depend on specific transformations is the VC generator, and that is conceptually the
simplest because it requires little formal methods expertise, making our approach suitable
for real-world compiler teams which typically lack such expertise. Together, these make our
approach far more practical than previous solutions.

More specifically, we design a program equivalence checker, KEQ, that can be used un-
changed for different transformation passes and input/output language pairs. KEQ accepts
operational semantics definitions of the input and output languages as parameters, as well as
the VC for a transformation sequence. The operational semantics of each IR must be defined
once, and KEQ can then be reused across all the transformations found in the compilation
path. Moreover, the input and output languages can be completely different, as long as
programs can be related using the verification condition.

In this work, we showcase the power of these properties by using KEQ in a prototype TV
system for the Instruction Selection phase of LLVM, a sophisticated phase that translates
LLVM IR [9] to Machine IR [21] representing the x86-64 instruction set. We are also using
KEQ unchanged in another prototype TV system for the Register Allocation phase of LLVM,
with a VC generator that treats the allocator completely as a black box (i.e, has no knowledge
of the allocation algorithm), and we plan to apply it to LLVM-to-LLVM transformations in
future.

We provide a strong theoretical foundation for KEQ and its correctness. First, we present
a formalization for program equivalence which we call cut-bisimulation and is a variant
of weak bisimulation [22|. Cut-bisimulation is weak enough to enable proofs for realistic
compiler transformations, and yet expressive enough to subsume most of the equivalence
properties that have been used in existing TV systems. In fact, previous work has used the
intuition behind the cut-bisimulation formalism for applications on program equivalence, but
none of them have formalized it as a general framework suitable for program equivalence.
Cut-bisimulation can express equivalence of programs in two different languages, as long as
a verification condition can relate program states in the two languages. We then use cut-
bisimulation to define an equivalence checking algorithm that forms the theoretical basis for
KEQ.

Given those, only the VC generator needs to be designed per transformation (or sequence
of transformations). Such generators need to provide a candidate relation between input
and output program states that the proof system can verify to be indeed a cut bisimula-
tion relation. A VC generator typically needs information about the effects of the specific
transformation(s) on the input. This information can either be provided by the compiler or

inferred, and both approaches have been explored in the literature [15, 23]. Compiler hints
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are more accurate while requiring some modification in the compiler code, while inference
algorithms can generate more false positives but treat the compiler as a complete black box.
We add a small number of compiler hints in the Instruction Selection phase of LLVM for
our VC generator for this phase. On the other hand, we use inference techniques in the
VC generator for the Register Allocation phase, thus making the TV system for Register
Allocation mostly ! black-box.

In short, this work presents the first TV system with a language-independent and transformation-
agnostic proof system. The system requires the minimum amount of customization per trans-
formation and (intermediate) language: a semantic definition of every language found in the
compilation path and one or more VC generators that use transformation-specific informa-
tion. Note that each semantic definition need only to be defined once for all transformations

that use the corresponding language as input and/or output.

1.6  CONTRIBUTIONS

The contributions of this work can be broken down to two categories: Contributions
in the area of program equivalence checking, and contributions in the area of compilation

verification.

Contributions in Formal Program Equivalence Checking The main contribution
here is a framework for program equivalence checking? that is transformation-agnostic and
language-independent. This framework can serve as-is as the proof system for any number of
TV systems targeting different transformation and/or translation phases within an existing

compiler. Specifically:

1. A rigorous formalization, namely cut-bisimulation, for weak bisimulation variants that
have been traditionally used in different TV systems. Cut-bisimulation is essentially a
(strong) bisimulation over a set of “cut” states. The cut is a subset of the program states
that satisfies certain well-defined properties. We also present a proof that stuttering
bisimulation can be reduced to cut-bisimulation. As such, cut-bisimualtion serves as
a generalization of the various (sometimes ad-hoc) notions of equivalence found in the

literature.

LAt this point, the only information required from the compiler is the number of arguments in each
callsite.

2Qur framework supports checking for program refinement in addition to program equivalence. For
refinement, the notion of bisimulation is replaced by the notion of simulation. In the following text, wherever
a claim is made about equivalence/bisimulation, a corresponding claim is also true for refinement /simulation.



2. A program equivalence checking algorithm along with a correctness proof based on cut-
bisimulation. The algorithm proves two programs equivalent by reducing a proposed

relation between corresponding program states to a cut-bisimulation relation.

3. KEQ, a new tool for checking program equivalence that accepts the operational se-
mantics of the input and output languages as parameters, and is independent of the
transformation used to generate the output. This is the first program equivalence
checking tool known to the authors that is language-parametric instead of containing
hard-coded language semantics as is the norm in the literature. KEQ implements the
cut-bisimulation based equivalence algorithm employing symbolic execution driven by
the given semantic definitions. KEQ is implemented as a tool within the K Frame-
work [24].

Contributions in Compilation Verification This work presents the first TV system
for Compilation Verification that has a language-independent and transformation-agnostic
proof system and requires the minimum amount of customization per transformation and
(intermediate) language: a semantic definition of every language found in the compilation
path and one or more verification condition generators that use transformation-specific in-

formation. Specifically:

1. A prototype of a Translation Validation system for the Instruction Selection pass of the
LLVM compiler infrastructure, able to automatically prove equivalence for translations
from LLVM IR when compiling to the x86-64 instruction set. This is a mature, sophis-
ticated translation phase of a production compiler. Moreover this is a transformation
that uses different input and output languages, and as such, avoids the problem in
previous systems of defining translators to a third, common language, e.g. in [8, 25].
This prototype employs KEQ for its equivalence proof system and a custom verifica-
tion condition generator for Instruction Selection. The latter relies on a minimal hint
generator added to the LLVM compiler.

2. A black-box inference algorithm for verification conditions required for Register Alloca-
tion. The algorithm supports important optimizations such as spilling, live-range split-
ting, register coalescing, and rematerialization, all of which can be found in production-
quality compilers such as LLVM and GCC. The algorithm automatically discovers the
correspondence between virtual registers in the input and physical registers and/or
spill memory locations in the output programs. The inference algorithm is the base

of a prototype Translation Validation system for the Register Allocation phase of the
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LLVM compiler. The system is able to prove equivalence for programs transformed
by register allocation, along with a set of related optimizations: spilling, live range
splitting, register coalescing, and rematerialization. The system is implemented with
minimal effort by reusing the exact same equivalence proof system based on KEQ, that
is utilized by the TV prototype for Instruction Selection. The only new component
is the verification condition generator, which implements the aforementioned inference

algorithm and requires no additional compiler-generated information.

3. We evaluate the Instruction Selection TV prototype on 4732 functions of the GCC
SPEC 2006 [26] benchmark with supported features. We correctly validate the trans-
lation of 91.52% of the supported functions in GCC, i.e., 4331 / 4732 functions. We
evaluate the Register Allocation TV prototype on 2815 functions of the GCC SPEC
2006 benchmark with supported features. We correctly validate the translation of
96.67% of the supported functions in GCC, i.e., 4574 / 4732 functions.

4. Formal semantic definitions for the LLVM IR and the £86-64 based Machine IR. These
definitions are implemented in K and are used to parameterize KEQ for our TV systems
for Instruction Selection and Register Allocation. These definitions are independent
artifacts that are useful beyond their TV application here. Thanks to the K Framework
paradigm, these definitions can be used to generate various tools for their respective

languages, such as parsers, interpreters, proof checkers, etc.

1.7 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows. In Chapter 2, we review the
current state of the art for compilation verification based both on TV and verified compilers.
We also give a brief survey of the most common bisimulation variants in the literature. Chap-
ter 3 presents our rigorous Cut-Bisimilation formalization for program equivalence proofs,
as well as KEQ and its equivalence checking algorithm. Chapter 4 presents the TV system
prototype for Instruction Selection and Chapter 5 presents the TV system prototype for
Register Allocation along with the VC inference algorithm. Finally, Chapter 7 presents the
main conclusions and take-aways from our work and Chapter 6 gives directions for future

work.
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CHAPTER 2: RELATED WORK

In this Chapter we discuss related work for program equivalence and compilation verifi-
cation. We first look into translation validation and the state of the art for systems that
employ it to verify the compilation process. Then we discuss the alternative approach of
verified compilers. Finally, we give a brief presentation of the K framework and language

semantic definitions in K.

2.1 TRANSLATION VALIDATION

Translation Validation as a method of verifying the correctness of a compilation first pro-
posed by Samet [27] and reformulated by Pnueli et al. [14]. Following is an incomplete list
of the various applications of Translation Validation on compilation verification aimed to
provide a high-level overview of the state of the art. Translation validation has been used to
prove correctness of specific compiler optimization passes [15, 16, 23, 28, 29, 30, 31|, discover
compiler bugs [32], and to prove correctness of end-to-end compilation [8, 14, 25|. VOC-
64 [28] for the SGI Pro-64 compiler, Necula et al. [15] for the GNU C compiler, Peggy [29] for
the Soot Java bytecode optimizer, LLVM-MD [16] and Namjoshi et al. [23] for LLVM, are all
tools that perform translation validation for specific optimization passes in their respective
compiler. Sewell et al. [8] presents a translation validation approach for the compilation of
the sel4 kernel from C to binary. Dahiya et al. [25] presents a translation validation system
for a collection of C compilers (GCC, clang, ICC, and CompCert). Hawblitzel et al. [32] uses
translation validation to determine whether assembly code produced by different versions of
the CLR JIT compiler are semantically equivalent and thus report miscompilations when
there are differences. PEC [30] applies TV techniques in pairs of partially specified pro-
grams, where such a pair describes a general optimization on all the corresponding concrete
programs. DDEC [31, 33| is an equivalence checker for x86 loops that uses data collected

from test runs rather than inference or hints to construct a simulation relation.

2.1.1 Formal Notion of Program Equivalence and Cut-Bisimulation

The proof of program equivalence in the majority of these translation validation tools [8,
14, 15, 28, 30, 31, 32] is based on generating sets of verification conditions, the satisfiability of
which is enough to prove equivalence. The verification conditions are produced as a combi-

nation of invariants that have to be inferred and a refinement requirement that is defined in a
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slightly different way in the context of each work. All these various refinement requirements
attempt to capture some weak notion of simulation suitable for compiler translation valida-
tion. In Chapter 3 we claim that cut-bisimulation is exactly the appropriate bisimulation
variant for practical use in this field, and that in fact, any of these refinement requirements
can be expressed as a cut-simulation proof requirement. For instance, the equivalence proof
rule used to generate the refinement requirement in VOC-64 [28] is reminiscent of our notion
of cut-similarity, but is expressed using syntactic devices (such as basic blocks and paths in
the control flow graph) that unnecessarily restrict its generality and distance it from classic
bisimulation theory. Although we do not claim that the intuition behind cut-bisimulation
is entirely novel, we do claim that cut-bisimulation formally captures the essential proper-
ties required for compiler translation validation, and moreover, enables proof systems to be
parameterized by the operational semantics of the input and output languages.

Namjoshi et al. [23] uses a variant of stuttering-bisimulation (see Section 3.1) with ranking
functions, first introduced in [34]. Informally, the ranking function returns an integer rank
for each pair in the relation which represents how many times one of the transition systems
is allowed to stutter while the other advances before the former has to advance in order for
the systems to reach another pair of related states. This variant requires matching single
transitions only, similarly to strong bisimulation and unlike classic stuttering bisimulation,
where a single transition may have to be matched with a finite but unbounded number of
transitions, thus leading to large number of generated proof requirements. Cut-bisimulation
shares the same property of matching single transitions only and is more appealing for proof
automation, since the proof generator does not need to produce ranking functions in addition
to the synchronization points.

Hur et al. [35] presents the relation transition systems (RTS) as a technique for program
equivalence proofs suitable for ML-like languages, that combine features such as higher-order
functions, recursive types, abstract types, and mutable references. Bisimulation is used as
part of the RT'S equivalence proof technique. Our notion of cut-bisimulation is orthogonal to
RTS and it can be the notion of bisimulation of choice within an RT'S equivalence proof. More
specifically, our notion of acceptability relation 4 is similar to the global knowledge relation
used in bisimulation proofs within the RTS proof. However, whereas a global knowledge
relation contains a subset relation (named local knowledge) that should be proven to consist
only of equivalent pairs, an acceptability relation is assumed from the start to only contain
equivalent pairs: this is unavoidable when we want to do an inter-language equivalence
proof, since the knowledge of what states are considered equivalent is indispensable for even
to define what it means for programs written in different languages to be equivalent. The

authors argue that RTS is a promising technique for inter-language proofs that involve ML-
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like languages (although they leave the claim as future work), and we believe that the notion
of cut-bisimulation can indeed help towards enabling RTS-style inter-language equivalence

proofs.

2.1.2 Graph-Based Notions of Equivalence

LLVM-MD [16] and Peggy [29] move away from simulation proofs, and instead use graph
isomorphism techniques to prove equivalence. Both tools operate on a graph-based represen-
tation of the LLVM IR. Program transformations can then be reduced to a series of simple
trusted graph transformations. Peggy applies the set of trusted transformations while explor-
ing various transformed forms of the input in order to discover optimized versions without
employing any complex optimizations. LLVM-MD attempts to transform both the input
and output program value-graphs to isomorphic graphs, thus proving equivalence. In both
cases, the set of trusted graph transformations is crucial to the effectiveness of the approach.
These transformations are inspired by the effects of actual compiler optimizations on the
code.

Another example of graph isomorphism employed for program equivalence is found in
Dasgupta et al. [36]. The work presents a translation validation approach for decompilers.
It uses dataflow graph isomorphism to prove equivalence between original LLVM IR code and
its counterpart that has been lifted to LLVM IR from a compiled binary with a decompiler
and then passed through a canonicalizer. The canonicalizer is expensive, because it uses
auto-tuning to find sufficient LLVM sequences, and not guaranteed to work because it may

not find an LLVM sequence that results in isomorphic dataflow graphs.

2.1.3 Hints vs Heuristics for Verification Condition Generation

Our proposed algorithm takes as input a relation between program points in the input and
output languages. To generate this relation, our implemented prototype for the LLVM In-
struction Selection phase uses compiler-generated hints, similar to the witnesses introduced
in [23|. Other works discuss various heuristics that can be used instead. In particular Nec-
ula et al. [15] describes an inference algorithm to generate both a relation between program
points and the accompanying constraints between program variables and memory locations
for two functions when any number of compiler transformations have been applied to the
original function to produce the transformed function. The algorithm uses transfer functions,
generated by symbolic execution, to describe the effect of each basic block. It then scans the

two programs using said transfer functions and collecting constraints that make the symbolic
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input states of corresponding blocks equal. Working towards a language independent proof
generator, it is possible that one can derive a language independent version of this inference
algorithm by implementing to be parametric in the language semantics in a fashion similar
to KEQ. A similar inference algorithm is presented by Dahiya et al. [25], which is also en-
hanced with back-tracking to handle cases where there is no clear correspondence between
basic blocks and jumps in the two programs. Finally, DDEC [31] uses a combination of static
analysis and data-driven inference for constructing simulation relations: Static analysis is
used to determine the program locations of synchronization points and the live variables

while the constraints between variables are inferred from execution traces.

2.1.4 Language-Independence in Translation Validation Systems

All the previous work on Translation Validation assumes that the input and output pro-
grams are either written in or are translated to a common language or representation: GNU
RTL [15], LLVM IR [23], value graphs [16, 29], x86 [31], Boogie IR [32, 37|, a C-like intermen-
diate language for PEC [30], and a common representation called Transition Systems [14, 28|.
Even the translation validation approach for the sel.4 kernel proposed in [8] requires trans-
lation of the input C code and decompilation of the output binary to a common graph
language used for equivalence checking. Finally, the fully black-box equivalence checker pro-
posed in [25] requires the input C code to be lowered and the output binaries to be lifted to
a common intermediate representation, namely transfer function graphs.

On the other hand, our equivalence checking algorithm is parametric to the input and out-
put language semantics, thus generalizing the original approach of Pnueli et al. by eliminat-
ing the requirement for a common semantic framework. This makes it much easier to validate
translations between two different languages (e.g., as in Instruction Selection), because it
does not require unchecked translations into a common language. Our program equivalence
checker, KEQ, is the first such tool we know of that is truly language-independent.

Our equivalence checking algorithm was inspired from the language-independent proof
system for mutual equivalence introduced in [38|. Instead of a proof system, in our work we
propose a bisimulation relation and an algorithm based on it and symbolic execution, lead-
ing to the first language-independent implementation of a checker for equivalence between

programs written in two different languages.

2.1.5 Translation Validation for Register Allocation

Unlike Instruction Selection, the Register Allocation phase of the compilation process
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typically involves the same language for input and output and as such it has been the target
of various compilation verification systems. Here we discuss translation validation works
that handle the Register Allocation phase as well as related optimizations.

Huang et al. [39] propose a static analysis approach that guarantees no false alarms and
generates informative messages when detecting errors in the output of the allocator. This
approach is useful for discovering bugs in the compiler but cannot be used in a setting where
formal guarantees for the compilation process are needed, since the underlying static analysis
does not guarantee correctness when no errors are reported. Moreover, the analysis is not
accompanied by a correctness proof. Such proof does not seem trivial as it would require a
formal definition of global value numbering, a complex analysis that is part of this system’s
static analyser.

On the other hand, Rideau et al. [13] present another static analysis approach for Register
Allocation that is proven correct in both algorithm and implementation (using Coq), and
provides a formal guarantee of correctness for validated compilations. This system is used
in the CompCert verified compiler [10] as a replacement for a verified register allocator,
since the latter was constrained to a rather naive spilling heuristic that negatively impacted
the quality of the compiled code. The Translation Validation approach allows CompCert to
use an untrusted and more aggressive spilling algorithm, while maintaining the correctness
guarantee for the compilation result. The static analysis used in this work makes similar
assumptions to our inference algorithm (i.e. 1-1 correspondence of basic block and non-
copying instructions) and manages to validate register allocated code without any symbolic
execution. However, the analysis (and its correctness proof) are specific to register allocation,
while the KEQ equivalence algorithm (and its correctness proof) can be reused for validation
of different transformations'. In short, the static analysis in [13] has the advantage that it is a
lightweight and fast analysis, but would be impractical to design separately for all the phases
of an existing production compiler. Our approach is better suited for existing compilers, by
entirely reusing the theoretical results and tools across different transformations.

Nandivada et al. [40] proposes RALF, a framework for easy development and evaluation of
register allocation algorithms. The framework consists of two languages, MIRA and FORD,
and a type system for checking correctness of register allocation. MIRA is an intermediate
level language designed to represent programs before register allocation. MIRA programs
contain architectural information such as the register file, calling convention, etc., as well as

static analysis information such as def-use chains, control flow, etc. FORD is a language for

IThe register allocation specific part of our system, our inference algorithm and the VC generator, is not
proven correct but need not to be trusted: KEQ will reject bogus synchronization points as explained in
Subsection 4.2.7.
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register allocation directives such as directives for spills, register/variable mappings at dif-
ferent program points etc. Finally, the type system is designed to ensure that a type-correct
FORD program preserves the values alive in the underlying MIRA program. The proposed
framework is mainly intended for fast implementation and testing of register allocation algo-
rithms, since it allows for easy plugging of said implementations into the GCC compilation
path and offers built-in validation of the allocator’s output. It cannot however be used for
translation validation of an existing register allocator within a production compiler, as it
only supports allocators that work with the MIRA /FORD intermediate representations.?
On the other hand, our proposed design focuses on existing compilers and it can be applied
to the register allocator of production compilers such as LLVM without any modification of
the allocator’s code.

Necula et al. [15] proposes a Translation Validation system for the GCC compiler that
tackles Register Allocation as one of the many supported transformations. Similar to our
approach, the system uses no compiler-generated information but rather employs an intricate
inference algorithm to produce equality constraints for each basic block of a function. The
inference algorithm uses transfer functions to describe the effect of each basic block, which
are generated using symbolic execution of the RTL representation on which the system
operates. In comparison, our inference algorithm is more light-weight (only a simple static
dataflow analysis, no need for SMT solvers) since we are able to focus our effort on a specific
transformation as opposed to a wide set of optimizations. By using a general equivalence
checker, KEQ, we are essentially refactoring the demanding workload of such automated
equivalence proofs (symbolic execution, SMT solvers) out of the inference logic that drives
the verification condition generation and needs to take transformation-specific characteristics
into account. This is especially important because the verification condition generator is the
only part that must be modified as passes are modified or added to a production compiler,
and a simple (yet automatic) generator like ours is far easier for compiler teams to develop
and maintain than one that requires sophisticated knowledge of theorem proving techniques.

Finally, Sewell et al. [8] and Dahiya et al. [25] tackle Register Allocation as one of the
many optimizations handled by the respective TV systems. Since these systems are designed
to validate end-to-end compilations, they are significantly more complex and heavyweight

than our verification condition generator, that specializes on Register Allocation.

20f course, a type-checker using the proposed type system could be implemented for the intermediate
representation of a target production compiler to be then used for validation of its register allocator.
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2.2 VERIFIED COMPILERS

One approach to the problem of compiler verification is the full formal verification of
the compiler, as in CompCert [10], CakeML [11], Jinja [41, 42|, and the lambda calculus
to typed assembly compiler in [12|. Full formal verification is attractive because it gives an
ahead-of-time guarantee of correctness for all input programs, whereas translation validation
approaches detect errors only when actually compiling programs and are also susceptible to
false alarms.

However, so far this approach has only been used for compilers built from the ground up
with the goal of verification in mind. For example, CompCert [10], a verified compiler for
C, has been written in the Coq proof assistant’s specification language [43]. The approach
requires extensive manual effort (“proof engineering”), and much greater expertise in formal
methods than is usually available in production compiler teams. Such design decisions and
development processes cannot easily be applied retroactively in existing compilers.

Instead of retroactively verifying an existing compiler, verification efforts for such compilers
have focused on formal verification of specific compiler transformation passes. Zhao et al.
presents a framework for formal verification of SSA-based transformations in the LLVM
compiler [44]. The framework utilizes the Vellvim semantics of the LLVM IR [45], a formal
semantics written in Coq, and it allows formally defined transformations (that come with
correctness proofs) to be extracted as LLVM passes that the can be used by the actual
compiler. Alive [46] is a framework for formally describing peephole optimizations on the
LLVM IR. Describing an existing peephole optimization in Alive allows the compiler engineer
to formally verify the correctness of said optimization. Moreover, Alive can export formally
proven correct optimizations as C-++ code to used by the LLVM peephole optimizer. Finally,
Peek [47] is a framework for expressing, verifying, and running assembly-level peephole
optimizations in the x86 backend of CompCert.

Beyond verifying existing compiler passes and/or exporting correct implementations for
compiler transformations, efforts such as the above have revealed inconsistencies in the
hardcoded semantics logic that the compiler uses to apply different transformations. For
example, Lee et al. [48] discuss such inconsistencies in the semantics of the undef and poison

values of the LLVM IR across optimizations found in the compiler.

2.2.1 Correct-by-Construction Compilers

Going one step further from generating verified compiler transformations for specific com-

pilers, there have been efforts to automatically generate correct-by-construction compiler
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transformations in a language-independent way. TRANS [49, 50| is a specification language
for compiler transformations, where a transformation is described as rewrites on the Con-
trol Flow Graph (CFG) [51] with side conditions expressed as temporal logic formulae * over
paths of the CFG. The semantics of the TRANS specification language along with semantics
for the involved input/output languages provide a framework for formal correctness proofs
of transformations specified in TRANS. Manksy et al. [54] has implemented the semantics
for TRANS using the Isabelle proof assistant’s specification language [55]. Moreover, in
his thesis [56], Mansky presents PTRANS, a transformation specification language based on
TRANS and expanded to support transformations on parallel programs, that has been given
an executable semantics in addition to its Isabelle implementation. The executable seman-
tics allows deriving prototype implementations for transformations described in PTRANS

automatically from their PTRANS specification.

2.3 K FRAMEWORK AND OTHER FORMAL SEMANTIC DEFINITION
FRAMEWORKS

The K Framework [24] is a rewriting-based framework with foundations on Reachability
Logic |57] for defining executable semantic specifications of programming languages. Given
the syntax and semantics of a language, K automatically generates a parser, an interpreter,
as well as formal methods analysis tools such as a deductive verifier and a symbolic execution
engine. This avoids duplication while improving efficiency and consistency. For example,
using the interpreter, one can test the semantics immediately, which significantly increases
the efficiency of and confidence in semantics development. The verifier uses the same internal
model for verifying programs, and that confidence carries over.

There exists a rich literature on using K for formalizing existing languages, such as
C [58, 59|, Java [60] and JavaScript [61|, among others. K has also been used to for-
mally specify EVM [62], the current smart contract language for Ethereum [63]. In fact, the
process of formalizing EVM as an executable semantics uncovered various inconsistencies
and unspecified behaviors in its original English language specification [64]. In this work,
we use K for our semantic definitions of LLVM IR and x86-64 based Machine IR to eas-
ily and automatically obtain symbolic execution engines for the languages. Moreover, we
found it natural to implement KEQ as another language semantics parametric tool of the K

framework.

3Linear Temporal Logic (LTL) [52] is the most commonly used such logic and is suitable for describing
properties on a single path of the CFG. Computation Tree Logic (CTL) [53] supports specifying properties
over a set of paths representing a branching tree of computation. CTL is the temporal logic used in TRANS.

19



Deductive

. see program
arser verifier
Interpreter Formal Language Definition Model

(Syntax and Semantics) checker

Compiler
) Symbolic
(semantic) .
execution
Debugger
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Beyond K and the K Framework, proof assistants such as Isabelle [55] and Coq [43] have
been used to formally define language semantics as theories written in the assistant’s speci-
fication language. The semantics then can be used within any verification effort supported
by the proof assistant. For example, a semantic definition of an LLVM IR subset, namely
miniLLVM, written as an Isabelle theory, is used along with PTRANS for the various trans-
formation correctness proof included in the work [56]. Both Isabelle and Coq allow for
exporting of such semantic definitions into executable form *, thus making the definitions
themselves executable. Some examples of real-world languages given formal, executable se-
mantic definitions using this approach include Vellvm [45], a semantics for LLVM IR in Coq,
CoqJVM [65], a semantics for the JVM in Coq, and Jinja [41, 42|, a semantics for a large
subset of Java and Java threads in Isabelle. The latter work also includes semantics for
compilation from Java to JVM bytecode along with a correctness proof for the compilation.
Since the compilation semantics is also executable, it has been used to derive a verified

compiler for Java.

4Typically as OCaml and ML code respectively.
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CHAPTER 3: CUT-BISIMULATION AND KEQ

We propose an algorithmic semantics-based approach for proving equivalence of programs
written in possibly different languages. We introduce a new notion of bisimulation, named
cut-bistmulation, that allows the two programs to semantically synchronize at relevant “cut”
points, but to evolve independently otherwise. While being analogous, cut-bisimulation
is different from stuttering bisimulation. We provide realistic counter-example programs
that are cut-bisimilar but not stuttering-bisimilar, which can be easily found in a compiler
optimization. Also, we identify a subclass of stuttering bisimulation that can be reduced
to cut-bisimulation. Based on cut-bisimulation, we have implemented the first language-
independent tool for proving program equivalence, parametric in the formal semantics of the
source and target languages, built on top of the K framework. As a preliminary evaluation,
we instantiated our tool with an LLVM semantics, and used it to prove equivalence of the
aforementioned example programs written in LLVM.

This is joint work with Daejun Park and appears in his thesis [66].

3.1 BACKGROUND ON BISIMULATION THEORY

In this section, we present a brief introduction in bisimulation theory, which is a prereq-
uisite for the work presented in the thesis. For more details on the classic bisimulation and
its variants, we refer the reader to [22]. We use the following notations in this Section and

the rest of the paper.

Binary Relations If R C §; x &, is a binary relation, then we write a R b instead of
(a,b) € Rand let Ry = {a | db.a R b} and Ry = {b | Ja.a R b} denote the projections
II;(R), where i € {1,2}.

Transition Systems Let S be a set of states (thought of as all possible configurations/s-
tates of a language, over all programs in the language). Let T' = (5, &, —) be an S-transition
system, or just a transition system when S is understood, that is a triple consisting of: a set
of states S C S, an initial state £ € S, and a (possibly nondeterministic) transition relation
— C S5 x S. Let next(s) denote the set {s' | s = §'}. T is finitely branching iff nezt(s) is
finite for each s € S. Let —* be the reflexive and transitive closure of —, and —* be the

transitive closure of —.
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Traces A (possibly infinite) trace 7 = sgsy--- S, -+ is a sequence of states with s; — s;41
for all i > 0. Let 7[n] be the n'® state of 7 where the index starts from 0, and let size(7)
be the length of 7 (co when 7 is infinite). Let first(7) = 7[0] be the first state of 7, and let
final(7) be the final state of 7 when 7 is finite. Let traces(s) be the set of all traces starting
with s, also called s-traces, and let traces(S) be | J, g traces(s). A complete trace is either an

infinite trace, or a finite trace 7 where next(final(7)) = 0.

Bisimulations One of our major contributions is a new notion of bisimulation, suitable
for formalizing the equivalence of programs in different languages. Below we summarize
existing variants of bisimulation (from [22]) that we attempted, but failed, to use for our
task. Triple (S, L,—) is a labeled transition system (LTS) when L is a set of labels and
— C S x L xS is a labeled transition relation; we write p—*q when (p, 1, q) € —. Assume
two LTS’s with the same labels L, and R a binary relation on their respective states. We let

p, p1, P2, P’ range over the states of the first LTS and ¢, q1, 2, ¢ over the states of the second.

Definition 3.1 (Strong Bisimilarity). Relation R is a strong simulation if, whenever p R q,
for each p—*p', there exists ¢’ such that ¢—*¢ and p’ R ¢’. Relation R is a strong bisimulation
if both R and R~! are strong simulations. Strong bisimilarity is the union of all strong

bisimulations.

Strong bisimulation is too strong for cross-language program equivalence, because different
programming languages typically have different computation granularity. Weaker notions of
bisimulation are required when non-observable or internal transitions need to be considered.
Let € be the label for the internal transitions (the label for internal transitions is typically 7

in the literature, but we use 7 for traces in this paper).
e Let = be the reflexive and transitive closure of —°¢.
e Let =" be the composition of =, —#, and =.
o Let =% be = if u # €, and = otherwise.

Definition 3.2 (Weak Bisimilarity). Relation R is a weak simulation if, whenever p R q,
for each p—#p', there exists ¢’ such that g="¢ and p’ R ¢’. A relation R is a weak bisimu-
lation if both R and R~! are weak simulations. Weak bisimilarity is the union of all weak

bisimulations.

Weak bisimulation is therefore not concerned with associating behaviors to e-transitions.

As detailed in Section 3.3, it is not trivial to differentiate between observable and internal
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transitions when different languages are concerned, and internal transitions can carry com-
putational contents that cannot be ignored. Additionally, ignoring e-transitions may lead to
failure in distinguishing branching structures, which led to the development of more variants

of bisimulation [22].

Definition 3.3 (Branching, n-, and Delay Bisimilarities). Relation R is a branching simula-
tion if, whenever p R ¢, for each p—*#p': either u = € and p’ R ¢; or there exists ¢1, 2, ¢’ such
that g=q¢—"g=¢ and (1) p R q1, (2) p' R q2, and (3) p’ R ¢'. Furthermore, n-simulation
(and delay simulation, resp.) is defined the same way as above, except the requirement (2)
(and (3), resp.). A relation R is a branching, (n-, and delay, resp.) bisimulation if both R
and R~! are branching, (n-, and delay, resp.) simulations. Branching, (n-, and delay, resp.)

bisimilarity is the union of all branching, (n-, and delay, resp.) bisimulations.

In addition to the already mentioned difficulty to differentiate observable from internal
transitions, when programs in different languages are concerned, it is counterintuitive to
ensure condition (1) in the variants of branching bisimulation above. For example, suppose
that p—*#p’ corresponds to an (observable) 64-bit memory store instruction in one language,
which simulates two 32-bit store instructions in the other language. In addition to not being
clear which of the two 32-bit store operations should be observable and which should be
internal, the condition (1) above requires the inconsistent state in-between the two 32-bit

operations to be equivalent to a consistent state of the first program.

3.2 TOWARDS FORMALIZING PROGRAM EQUIVALENCE

Translation validation ensures the correctness of a compiler by proving equivalence of each
instance of compilation (i.e., a pair of source and target programs), instead of verifying the
compiler itself. Intuitively, two (possibly non-terminating) programs are “equivalent” when
given the same input they reach the same relevant states in the same order. Similarly, a
(low-level) program L “refines” another (high-level) program H when program L contains no
new behaviors not found in program H.

A simulation-based technique for proving equivalence of transition systems is a well-studied
approach that admits a coinductive proof that deals with recursion, non-termination, and
nondeterminism of the systems in a uniform and elegant way. In such a technique, the notion
of equivalence is formulated as a bisimulation relation between the states of two transition

systems,! and proving equivalence is reduced to finding a bisimulation relation.

"'While most of bisimulation variants are originally defined over Kripke structures or labeled transition
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Figure 3.1: Program transformation example (as part of partial redundancy elimination), a
stuttering bisimulation relation (both black and red dotted lines), and a cut-bisimulation re-
lation (only black dotted lines). The if (x) statement denotes a non-deterministic branching
operation.

Classic bisimulation variants, however, are often too strong for proving equivalence of pro-
grams, especially for the purpose of translation validation of program transformation. Specif-
ically, strong bisimulation does not admit equivalence of programs generated by reordering
transformations. On the other hand, stuttering bisimulation can deal with reordering trans-
formations to certain extent (e.g., [23]), but it does not admit program transformations
that modify branching structures. For example, consider the simple program transformation
example shown in Figure 3.1(a), commonly performed by compilers as part of partial redun-
dancy elimination. The seemingly equivalent two programs are still not strongly bisimilar,
mainly because the intermediate states (P; and (1) are not “similar”. Weaker variants, such
as stuttering or branching bisimulation [22], could be used to prove their equivalence, since
they are flexible to admit the irrelevant intermediate states. Figure 3.1(b) depicts a stut-
tering bisimulation relation shown as both black and red dotted lines, where the transitions
Py — P, and Q1 — D, are considered “stuttering” transitions.? Note that, however, iden-
tifying the stuttering transitions are non-trivial. Indeed, the irrelevant intermediate states
P, and Q1 have the potential to stutter with all adjacent states. As such, there exist many
candidate stuttering transitions (which are Py — P, P, — P, P, — P53, Qo — @1, and

@)1 — (2 in this example) and identifying the appropriate ones among many candidates

systems, we can adapt their definition to transition systems by considering a transition system as a Kripke
structure with a single dummy atomic proposition, or a labeled transition system with a single dummy label.

2More precisely, it is a stuttering bisimulation over the Kripke structure where the labeling function L
satisfies L(Py) = L(Py) and L(Q1) = L(Q2).
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is not straightforward. The problem of identifying stuttering transitions becomes appar-
ent when we consider the witness-based translation validation approach [23], in which the
candidate relation is generated by the compiler as a “witness” for the correctness of the
transformation, and proving the equivalence is reduced to checking that the generated re-
lation is a (bi)simulation. However, it is not easy for the compiler to identify stuttering
transitions which are not directly related to the internal information used in the compiler
transformation. Thus, the stuttering transitions should be inferred separately, which incurs
additional overhead in proving equivalence.?

Symbolic summaries have also been used as another notion of equivalence that is more
relaxed than classic bisimulation variants. A symbolic summary of a program is a closed
formula that describes the effect of the program on its input state. For example, the two
programs in Figure 3.1(b) can be shown equivalent by showing that they have the same
symbolic summary: f(state) = if (x) then state[x : 0,y : 1] else state[r : 1]. Symbolic
summaries, however, are hard to compute for any program since they require symbolic
execution of the program that can lead to exponential explosion (in programs with loops
that have symbolic bounds) or even be intractable (in non-terminating programs).

On the other hand, a natural way of reasoning about equivalence of the two loops in
Figure 3.1(a) is to employ symbolic execution techniques to summarize the effect of the two
loop bodies and then use bisimulation treating the loop bodies as single nodes. In other
words, one can prove equivalence of the two loops in two separate steps, where the first step
is to prove equivalence of their loop bodies using symbolic summaries, and the second step is
to prove equivalence of the loops using a bisimulation-based technique, while assuming that
their loop bodies are equivalent. This blending of symbolic summaries and bisimulation proof
techniques is practical for real-world program transformations, where symbolic summaries
are used for local reasoning and bisimulation is used for global reasoning.

In this work, we present a bisimulation variant, named cut-bistmulation, that captures
this combination of symbolic summaries and traditional bisimulation. Essentially, cut-
bisimulation is a (strong) bisimulation over the “cut” states, a subset of the program states
that satisfies certain well-defined conditions (see Section 3.3). The intuition for the cut of a
program is that the states in the cut suffice as observation points of the program behavior,
that is, nothing relevant can happen which is not witnessed by a cut state. A nice property
of the cut is that there exists no infinite path between the cut states, thus symbolic execution
between them is tractable. Intuitively, a cut-bisimulation proof amounts to proving same

symbolic summaries for control flow between the cut states, and proving a strong bisimula-

3The time complexity of the best known algorithm for inferring stuttering bisimulation is O(mlogn)
where m is the number of transitions and n is the number of states [67].
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tion over the cut states. Moreover, cut-bisimulation allows one to fine-tune the combination
of the two proof techniques by adjusting the cut. For example, cut-bisimulation can be tuned
to be plain symbolic summary based equivalence by having the cut set to include only the
initial and final states, while it can become strong bisimulation by having the cut to include
all the states (see Section 3.3). We will also show that cut-bisimulation can be tuned to
be a stuttering bisimulation by properly setting the cut set (see Section 3.4). We believe
that this generality of cut-bisimulation will allow us to reconcile various notions of program
equivalence and their algorithms and techniques in an uniform and general framework.
Based on cut-bisimulation, we have implemented a language-independent program equiv-
alence checker, KEQ, on top of the K framework [24]. Parameterized by formal semantics
of source and target languages, KEQ takes as input two programs and a candidate relation
between the two, and checks if the candidate relation is indeed a cut-bisimulation (see Sec-
tion 3.5). As a preliminary evaluation, toward the use of our tool in translation validation
of the LLVM compiler, we instantiated our tool with an LLVM semantics, converted the
two programs in Figure 3.1 into LLVM bitcode, and proved equivalence of the two LLVM

programs using the tool (see Section 3.6).

3.3 CUT-BISIMULATION

As mentioned earlier, cut-bisimulation is essentially a bisimulation over the cut states,
where the cut represents a set of relevant states at which two programs can be synchronized
(e.g., ones at the beginning of functions, or loop headers, etc.). This enables an intuitive
procedure of proving equivalence, where one can check if the two programs indeed synchronize
at the cut states (hence we also refer to them as synchronization points throughout this
paper). Also, the cut can be adjusted to control the granularity of synchronization points,
to represent the observable behaviors of two programs desired to consider when reasoning
about their equivalence. This makes it easier to deal with intermediate states that are not
relevant in identifying equivalence of programs.

In order for cut bisimulations to correctly capture program equivalence, however, two
conditions must be satisfied. First, there must be enough cut states in the two transition
systems so that no relevant behavior of one program can pass unsynchronized with a behavior
of the other program. This implies, in particular, that each final state must be in the cut.
It also implies that each infinite execution must contain infinitely many cut states, because
otherwise one of the programs may not terminate while the other terminates.

Second, any two states related by a cut bisimulation must be compatible. Otherwise, one
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Figure 3.2: Left: a cut C for state s (each complete s-trace intersects ('). Right: a cut C
for a transition system (C' contains the initial state and is a cut for itself, i.e., for each state

in ()

can establish a cut bisimulation even for non-equivalent programs.* One straightforward
such compatibility relation relates two states when their corresponding variables have the
“same” value. However, what it precisely means for two values, especially in programs written
in different languages, to be the same is not trivial, due to different representations (e.g.,
big-endian vs little-endian, or 32-bits vs 64-bits), different memory layouts (physically same
location may point to different values, or contain garbage that has not been collected yet),
etc. Also, state compatibility may require to check if specific memory locations (in the
context of embedded systems), environment variables, input/output buffers, files, etc., are
also “the same”. Moreover, states corresponding to undefined behaviors (e.g., division by
zero) may or may not be desired to be compatible, depending upon what kind of equivalence
is desired. We found it awkward to encode such complex state compatibility abstractions as
labels on transitions, as the existing notions of bisimulation require. Instead, we design the
notion of cut-bisimulation to be parameterized by a binary relation on states, which we call
an acceptability (or compatibility or indistinguishability) relation.

Now let us formalize our notion of cut-bisimulation.

Definition 3.4 (Cut and Cut Transition System). Let T' = (S, &, —) be a transition system.
A set C' C Sis a cut for s € S, iff for any complete trace T € traces(s), there exists some
strictly positive & > 0 such that 7[k] € C. The set C C S is a cut for T iff £ € C and C
is a cut for each s € C', in that case T is called a cut transition system and is written as a
quadruple (S, &, —,C). See Figure 3.2.

In a cut transition system, any finite complete trace starting with the initial state termi-

4For any two terminating programs, for example, there always exists a trivial cut bisimulation where
all initial (and final) states are related to each other, respectively, if the compatibility of the states is not
considered.
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nates in a cut state, and any infinite trace starting with the initial state goes through cut

states infinitely often:

Lemma 3.1. Let T = (5, £, —,C) be a cut transition system. Then for each complete trace
T € traces(§) and each 0 < i < size(7), there is some j > ¢ such that 7[j] € C.

Proof. Let T € traces(§) be a complete trace. Assume to the contrary that there exists i
such that Vj > i. 7[j] & C. Pick such an i. Then we have two cases. When Vk < i. 7[k] € C,
we have Vk > 0. 7[k] ¢ C, which is a contradiction since C' is a cut for £ = 7[0]. Otherwise,
Jk < 1. 7[k] € C, and let k be the largest such number. Then, we have VI > k. 7[l] & C,
which is a contradiction since C' is a cut for each s € C, thus a cut for 7[k] € C. QED.

This result is reminiscent of the notion of Biichi acceptance [68]; specifically, if S is finite
and next(s) # () for all s € S, then it says that the transition system T regarded as a
Biichi automaton with C' as final states, accepts all the infinite traces. This analogy was not
intended and so far played no role in our technical developments.

Cuts do not need to be minimal in practice, and are not difficult to produce. For example,
a typical cut includes all the final states (normally terminating states, error/exception states,
etc.) and all the states corresponding to entry points of cyclic constructs in the language
(loops, recursive functions, etc.). Such cut states can be easily identified statically using

control-flow analysis, or dynamically using a language operational semantics.

Definition 3.5 (Cut-Successor). Let T = (S, &, —, C) be a cut transition system. A state s’
is an (immediate) cut-successor of s, written s ~ ', iff there exists a finite trace ss; - - 5,8’

where s € C'and n >0 and s; € C for all 1 <i <n.

Definition 3.6 (Cut-Bisimilarity). Let T; = (5;,&;, —, Ci) be two cut transition systems
(i € {1,2}). Relation R C C) x Cy is a cut-simulation iff whenever (s, s2) € R, for all &
with s1 ~ & there is some s/, such that so ~»9 s}, and (s, s5) € R. Let < be the union of all
cut-simulations (also a cut-simulation). Relation R is a cut-bisimulation iff both R and R™!

are cut-simulations. Let ~ be the union of all cut-bisimulations (also a cut-bisimulation).

Cut-bisimulation generalizes standard (strong) bisimulation [22]. A cut bisimulation on
(Si, &, —i, Ci) is a bisimulation on (S;, &;, —;), when C; = S;. Also, cut-bisimulation becomes

bisimulation if we cut-abstract the transition systems:

Definition 3.7 (Cut-Abstract Transition System). Let T be a cut transition system (5, ¢, —

,C). The cut-abstract transition system of T, written T, is the (standard) transition system

(C,&,~).
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Lemma 3.2. Let T; = (5;, &, —, C;) be two cut transition systems (i € {1,2}). A relation
R C C) x Oy is a cut-bisimulation on T} and Ty, iff R is a (standard) bisimulation on 7} and
T.

Proof. By identifying ~»; as the transition relation of T}. QED.

Corollary 3.1. Let T; = (S5;,&;, —4, C;) be two cut transition systems (i € {1,2}). Let R
be a cut-bisimulation, and (s, ss) € R. For any state s; € C; with s; — s/, there exists

some s, € Cy with s, —3 s, such that (s},s,) € R. The converse also holds.
Proof. By Lemma 3.2 and the bisimulation invariant of reachability. QED.

Now we formalize the equivalence of cut transition systems in the presence of a given

acceptability (or compatibility, or indistinguishability) relation 4 on states.

Definition 3.8. Let 2 C S; X Sy, which we call an acceptability relation. Let T; = (S;, &, —
, C;) be two cut transition systems (i € {1,2}). Ty cut-simulates Ty (i.e., T\ cut-refines Ts)
w.r.t. 4, written Ty <5 Ty, iff there exists a cut-simulation P C 4 such that & P &.
Furthermore, T7 and Ty are cut-bisimilar w.r.t. 4, written T} ~4 T5, iff there exists a cut-
bisimulation P C 4 such that & P &.

Note that if a cut bisimulation P like above exists, then there also exists a largest one;
that’s because the union of cut bisimulations included in 4 is also a cut bisimulation included
in 4. We let the relation ~; denote that largest cut bisimulation, assuming that it exists
whenever we use the notation (and similarly for <j).

Our thesis is that ~4 yields the right notion of program equivalence. That is, that two
programs are equivalent according to a given state acceptability (or compatibility or indis-
tinguishability) relation 4 between the states of the respective programming languages, iff
for any input, the cut transition systems 7} and 75 corresponding to the two program execu-
tions satisfy T} ~4 T. The following result strengthens our thesis, stating that cut-bisimilar
transition systems reach compatible states at cut points, and, furthermore, that they cannot

indefinitely avoid the cut points:

Theorem 3.1. If T} ~; Ty then for each s; with & — s; there exists some s, with
& —3 8o, such that: (1) if s; € C) then s; ~4 so; and (2) if s; & C; then there exists some

sy € Cy such that s; =T s} and s} ~4 so. The converse also holds.

Proof. We only need to show the forward direction, since the backward is dual. First we
have & ~ & by Definition 3.8 and the fact that ~ is the union of all cut-bisimulations. Let

s1 be a state with & —>{L s1. Then we have two cases:
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e When s; € ;. There exists s, such that & —>; s9 and s; ~ s9 by Corollary 3.1.

e When s; ¢ C. There exists s| such that s; —] s} and s/ € C; by Lemma 3.1 and the
fact that (' is a cut for & € ;. Then, there exists s, such that & —>§r S9 and s} ~ sy
by Corollary 3.1.

QED.

3.3.1 Property Preservation

Consider two cut transition systems where one cut-simulates another, but not the other
way around. For example, an abstract model cut-simulates its concrete implementation, if
implemented correctly, but the inverse may not hold since the model may omit to specify
some details, leaving as implementation-dependent, for which the implementation can freely
choose any behavior. In this case, it is not trivial to see whether a property of the model is
also held in the implementation. Intuitively, the set of all reachable cut-states of the model is
a super set of that of the implementation. Thus, if a cut-state is not reachable in the model,
then it is also not reachable in the implementation. This implies that safety properties of
the model are preserved in the implementation, since a safety property can be represented
as “nothing bad happens”, i.e., in other words, “a bad state is not reachable”. In general,
inductive invariants are preserved in the refined system.

Now we formulate the property preservation of cut-simulation. Let T'= (S,&, —,C) be a
cut transition system. Let P be a predicate over a domain D, and f : S — D be a state
normalization function. Let Py be a predicate over S, defined by Py(s) EE P(f(s)) for some
s € S. The predicate Py is a cut-inductive invariant of 7', if P(&), and P(s) A s~ s =
Ps(s') for any states s, s’ € S. A cut-inductive invariant, thus, holds for all reachable cut-
states. Also, let T; = (5;,&;, —4, C;) be two cut transition systems (for i € {1,2}). Suppose
Ty > T, that is, T; cut-simulates Ts, (in other words, Ty cut-refines 77). We say > is

right-total if for all sy ~g 5, there exists s; ~» s} such that s; > sy and s} > ).

Theorem 3.2. Suppose 17 > T,. Suppose > is right-total, and § > &. Suppose Py, is a
cut-inductive invariant of 71, and fi(s1) = fa(sz) if s1 > so. Then, Py, is a cut-inductive

invariant of T5.

Proof. Py, (&) since § > & and Py, (&1). Suppose Py, (s2) and s9 ~9 s5. Since 17 > T, and
> is right-total, there exists s; ~» s} such that s; > s, and s} > s). Then, P, (s;) since
f1(s1) = fa(sq). Since Py, is inductive, Py, (s). Thus, Py, (sh) since fi(s)) = fa(sh). QED.
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3.4 COMPARISON TO STUTTERING BISIMULATION

In this section, we identify a subclass of stuttering bisimula- G A e
tion that can be reduced to cut-bisimulation. b .

Although cut-bisimulation is analogous to stuttering bisim-
Figure 3.3: Systems that

are stuttering-bisimilar,
that are not relevant in reasoning about equivalence of sys- Hut not cut-bisimilar.

ulation in the sense that both deal with intermediate states

tems, they are not equivalent. As explained in Section 3.2, there exist systems that are
cut-bisimilar but not stuttering-bisimilar, as shown in Figure 3.1. Also, there exist (trivial)
systems that are stuttering-bisimilar but not cut-bisimilar, as shown in Figure 3.3. Here,
the relation {(a,a’), (b,a’)} is not a cut-bisimulation, because while a and a’ are related and
there exists a successor from a, there does not exist a successor from a’.

On the other hand, there still exist many non-trivial systems that are both cut-bisimilar
and stuttering-bisimilar, for which a stuttering-bisimulation can be converted to a cut-
bisimulation. Let us illustrate the intuition of the reduction. Consider Figure 3.4 that
shows a stuttering bisimulation on two deterministic systems P and P’, and its reduction
to a cut-bisimulation. The stuttering bisimulation R shown in Figure 3.4(a) relates a path
fragment with another fragment, where the fragments identify “stuttering” nodes, i.e., nodes
b and e in P, and nodes d’ and ¢ in P’. The cut-bisimulation R. shown in Figure 3.4(b)
can be constructed by restricting R on the non-stuttering nodes. In other words, R induces
a partition of states, i.e., {{a,b},{c},{d,e},{f}} for P, and {{da'},{V'}, {c,d',e'},{f'}} for
P’ from which R. can be constructed by restricting R on the representatives of the parti-
tions, i.e., R. = RN ({a,c,d, f} x {d',0,c, f'}). We will explain later how to identify such
representatives.

However, not all stuttering bisimulations induce such a state partition, especially when
systems involve loops and a stuttering bisimulation takes different stuttering nodes for differ-
ent loop iterations. In that case, it is not straightforward to reduce a stuttering bisimulation
to a cut-bisimulation, if any. In the remaining of this section, we will identify a subclass
of stuttering bisimulation, named stationary stuttering bisimulation, that can be reduced to

cut-bisimulation.

Notations Let AP be a set of atomic propositions, and (5,&, —, L) be a Kripke structure
over AP, i.e., a transition system augmented with a labeling function L : S — 247, The
underlying graph structure G of the Kripke structure T'= (S, &, —, L) is a directed graph
with vertices S and edges —.

A partition ¢ of a finite trace 7 is a finite sequence of indexes pg, p1, -+ , Pn, Where 0 = py <
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Figure 3.4: Conversion of stuttering bisimulation to cut-bisimulation

p1 < -+ < p, < size(7), which denotes a sequence of n sub-traces of 7, (7[po], -+ ,7[p1 —
1), -+, (7[pnl, -+ s T[pns1 — 1]), where p,1 = size(r). Let ¢[k] be the k" sub-trace of T,
and [¢[k]] be the set of states in ¢[k], {7[pk], - ,T[prs1 — 1]}, for any 0 < k < n. A
partition of an infinite trace is a infinite sequence of indexes, which is similarly defined. Let
size(¢) be the length of ¢ (0o when ¢ is infinite), and final(¢) = ¢[size(¢) — 1] be the final
sub-trace when ¢ is finite. Let partitions(7) be the set of all partitions of 7, and partitions(7")
be |J, o7 partitions(7).
First, let us recall the definition of stuttering bisimulation, proposed in [69].

Definition 3.9 (Stuttering Bisimulation [69]). Let T; = (S;, &, —, L;) be two Kripke struc-
tures (i € {1,2}). Relation R C S; x Sy is a stuttering simulation iff whenever (s, s2) € R,
Li(s1) = La(s2), and for every trace 7, € traces(s;) there exist a trace 7o € traces(sz), and

partitions ¢; € partitions(7;), such that:

size(¢y) = size(¢), and for any 0 < k < size(¢1), [¢1[k]] % [#2]k]] € R (3.1)

Relation R is a stuttering bisimulation iff both R and R™! are stuttering simulations.

Now, let us define a trace partitioning function that induces a state partition, which will

be used to identify a subclass of stuttering bisimulation later.

Definition 3.10. Let 7' = (S, ¢, —, L) be a Kripke structure, and 7 be a trace over S. Let
M : S — N be a finitely partitioning function over S, where {s € S | M(s) = k} is finite
for all K € N. An M-induced partition of T, ¢p(7), if it exists, is a unique partition of T,

i.e., a sequence of indexes py = 0, p1,ps,..., which denotes a sequence of sub-traces of 7,
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(7lpo], -+, 7lpy = 1)), (7pa), -+ 7lp2 = 1)), - -, such that for any k > 0, px < pe1:

M(7[i]) = M(7[j]) for pr <i,j < Pri1, (3.2)
Tlpk] # 7[i] for pr <i < pry1, and (3.3)
M (7lprsr = 1]) # M(7[pera])  or 7[pe] = 7[prsa]. (3.4)

Moreover, let G be the underlying graph of 7. Then, an M -induced partition of Gr is a
set of components where each component is a weakly-connected component of a subgraph
of Gr induced by a set of vertices {s € S | M(s) = k} for some k € N. Each component in
the M-induced partition of G is called an M -induced component of Gr. An entry vertex
of an M-induced component of Gt is the vertex of the initial state £, or a vertex that has

incoming edges from outside the component. We say that M is natural if:
(i) every M-induced component of Gr has only a single entry vertex, and

(ii) for any finite complete trace 7 over S, the final sub-trace of an M-induced partition

of 7, if it exists, is a singleton, i.e., size(final(¢py(7))) = 1.

Recall that a vertex-induced subgraph may contain multiple weakly-connected compo-
nents. Also, note that the condition (i) can be satisfied for any natural loop. The condition
(i) can be also easily satisfied by augmenting the original Kripke structure with a dummy
next state for each final state.

Now, we identify a subclass of stuttering bisimulation that can be reduced to cut-bisimulation.

Definition 3.11 (Stationary Stuttering Bisimulation). Let T; = (S;, &, —, L;) be two
Kripke structures (i € {1,2}), and R C S; x Sy be a stuttering bisimulation. We say
that R is stationary, if there exist natural, finitely partitioning functions M; such that when-
ever (s1,82) € R, for every trace 7 € traces(s;), there exists a trace 7, € traces(sy) such that
the M;-induced partitions ¢y, (7;) exist and satisfy the equation (3.1), and the converse also
holds.

Theorem 3.3. Suppose R is a stationary stuttering bisimulation on two Kripke structures
T, = (Si, &, —i, L) (i € {1,2}), and R is total, i.e., II;(R) = S;. Then there exist cuts
C; € S; and R. € R such that R. is a cut-bisimulation on two cut-transition systems
T = (S, &, =4, Cy).

Proof. Let M; be the natural, finitely partitioning function for R, and G, be the underlying
graph of T;. Let C; be the union of the entry vertex state of all M;-induced components of
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Gr,. Then, C; is a cut for T; by Lemma 3.5 and the fact that an M;-induced partition exists
for any trace over .S;, since R is a total, stationary stuttering bisimulation.

Now, let us prove that R, = RN(C xCy) is a cut-bisimulation on 77. Let (s1,$2) € R. C R
be two states related by R., and let 7, € traces(s;) be a complete trace starting with s;.
If size(r;) = 1, that is, s; is a final state, then it immediately satisfies the condition of
cut-bisimulation. Now, suppose that size(;) > 1. Then, by Lemma 3.3 and Lemma 3.6,
there exists a non-singleton partition ¢ (71) = po, p1, - - ., and an entry vertex state s} (thus
sy € C4), such that s; ~ s| = 7[p1]. Then, by Definition 3.11, there exists another trace
Ty € traces(sy) and another non-singleton partition ¢ (72) = qo, q1, - - -, such that (s, s5) € R
where s, = 7y[¢q1]. Then, by Lemma 3.6, s} is an entry vertex state (thus s, € C), and
To[k] is not an entry vertex state (thus (k] & Cs) for any 0 < k < ¢;. Thus, sy ~ s}, and
(s}, 85) € R., which concludes that R, is a cut-simulation. Similarly, R_! is a cut-simulation,

and thus R, is a cut-bisimulation.
QED.

The lemmas used in the above proof are presented in the following Subsection 3.4.1.

3.4.1 Lemmas for Theorem 3.3

Lemma 3.3. Let T' = (5,&,—, L) be a Kripke structure, Gy be the underlying graph of
T, and M be a natural, finitely partitioning function over S. Suppose that there exists an

M-induced partition of 7 for any trace 7 over S. Then we have the following:
1. An M-induced component of G is a singleton, if it contains a final state.
2. For any complete trace 7 over S, if size(7) > 1, then size(¢n (7)) > 1.

Proof. Let us prove the claim 1. Let W be an M-induced component of Gr. Suppose
W contains a final state s;, but is not a singleton. Then, there exists a (complete) trace
T = $081, where sg is in W. Then, the M-induced partition of 7, ¢y (7), is a singleton
sequence, thus size(final(¢y/(7))) = 2, which is a contradiction because of the condition (ii)
of Definition 3.10.

Let us prove the claim 2. If 7 is infinite, we immediately have size(¢y/(7)) > 1. Suppose
T = S0S1...S, is finite, where n > 1. Assume that size(¢p(7)) = 1. Then, by the equa-
tion (3.2), M(sg) = M(sy). On the other hand, since 7 is a finite complete trace, s, is a
final state, and sg # s,. Thus, by the claim 1, s, is in a singleton M-induced component,

which means that sy is in another M-induced component, but it is a contradiction because
of M(so) = M(sy). QED.
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Lemma 3.4. Let T = (5,&,—, L) be a Kripke structure, Gt be the underlying graph of
T, and M be a natural, finitely partitioning function over S. Suppose that there exists an
M-induced partition of 7 for any trace 7 over S. Then, for any M-induced component of
G, if there exists a cycle within the component, the cycle contains the entry vertex of the

component, or is not reachable from the entry vertex.

Proof. Suppose that there exists a cycle within the component, and the cycle is reachable
from the entry vertex of the component, but does not contain the entry vertex. Then, there
exists an infinite trace 7 within the component that starts from the entry vertex but never
revisits the entry vertex, i.e., 7[0] # 7[i] for any ¢ > 0, and M (7[i]) = M (7[j]) for any i, 5 > 0.
Thus, there exists no p; > 0 that satisfies the equation (3.4) for £ = 0 in Definition 3.10,

which is a contradiction because there exists an M-induced partition of 7. QED.

Lemma 3.5. Let T' = (5,¢,—, L) be a Kripke structure, Gt be the underlying graph of
T, and M be a natural, finitely partitioning function over S. Suppose that there exists an
M-induced partition of 7 for any trace 7 over S. Let C' be the union of the entry vertex

state of all M-induced components of Gy. Then, C'is a cut for 7.

Proof. First, it is obvious that £ is in C. Let s € C be a state, and 7 € traces(s) be a

complete trace starting with s. Then we have three cases:

e When 7 reaches a final state without entering to another M-induced component. In
this case, T is a singleton, i.e., s is a final state, by Lemma 3.3. Thus, we immediately

have that C is a cut for s.

e When 7 enters into another M-induced component, i.e., there exists k£ > 0 such that
M(s) = M(7[k—1]) # M(7[k]). In this case, 7[k] is the entry vertex of the component
because of the condition (i) in Definition 3.10. Thus, C' is a cut for s, since the entry

vertex is in C.

e When 7 stays within the current M-induced component without reaching a final state,
ie., for any k > 0, M(s) = M(7[k]). In this case, there exists a cycle within the
component that 7 visits infinitely. Since the cycle contains s by Lemma 3.4, there
exists k > 0 such that 7[k] = s € C, and thus C' is a cut for s.

Thus, C'is a cut for T by Definition 3.4. QED.

Lemma 3.6. Let T'= (S, ¢, —, L) be a Kripke structure, G be the underlying graph of T,

and M be a natural, finitely partitioning function over S. Let 7 be a trace over S that starts
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with an entry vertex of an M-induced component of Gr. Suppose that there exists an M-

induced partition of 7, ¢ (7) = po, p1, - . ., where pg = 0. Then, for any 1 < i < size(pp (7)),

7[p;] is an entry vertex, and (3.5)

7[k] is not an entry vertex for any p;_1 < k < p;. (3.6)

Proof. Let us first prove the equation (3.5). Suppose that there exist integers i such that
1 < i < size(¢n(7)) and 7[p;] is not an entry vertex. Let j be the smallest integer among
them. Then, 7[p;_;] is an entry vertex, since 7[po| is an entry vertex. Since 7[p;] is not an
entry vertex, M(7[p; — 1]) = M (7[p;]). Thus, by the equation (3.4), 7[p;_1] = 7[p;], which
is a contradiction because 7[p;_1] is an entry vertex.

Now let us prove the equation (3.6). Suppose there exists 1 < i < size(¢p (7)) and
pi—1 < k < p; such that 7[k] is an entry vertex. By the equation (3.5), 7[p;_1] is an entry

vertex. We have two cases:

e When 7[p;_1] and 7[k] are in different M-induced components. Then, we have M (7[p;_1]) #
M (7[k]), which is a contradiction because of the equation (3.2).

e When 7[p;_;| and 7[k]| are in the same M-induced component. Then, by the con-
dition (i) of Definition 3.10, 7[p;—1] = 7[k], which is a contradiction because of the

equation (3.3).
QED.

3.5 KEQ, A LANGUAGE-PARAMETRIC PROGRAM EQUIVALENCE CHECKER

We implemented a language-independent equivalence checking tool on top of the K frame-
work [24]. K provides a language for defining operational semantics of programming lan-
guages, and a series of generic tools that take a language semantics as input and specialize
themselves for that language: concrete execution engine (interpreter), symbolic execution
engine, (bounded) model checker, and a deductive program verifier. The main idea under-
lying K is that a given language operational semantics is turned into a transition system
generator, one for each program, and a suite of existing components provide the capability
to work with such transition systems generically, in a language-independent manner. We
developed a new such tool, KEQ, which takes two language semantics as input and yields
a checker that takes two programs as input, one in each language, and a (symbolic) syn-
chronization relation, and checks whether the two programs are indeed equivalent with the

synchronization relation as witness.
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Note that checking program equivalence in Turing complete languages is equivalent to
checking the totality of a Turing machine (whether it terminates on all inputs), which is a
known II3-complete problem [70], so strictly harder than recursively or co-recursively enu-
merable. It is therefore impossible to find any algorithm that decides equivalence for two
given programs. The best we can do is to find techniques and algorithms that work well
enough in practice. Definition 3.8 suggests such a technique: find a (witness) relation P
and show that it is a cut-bisimulation. While finding such a relation is hard in general, it
is relatively easy to check if a given relation, for example one produced by an instrumented

compiler, is a cut-bisimulation.

Theoretical Equivalence Checking Algorithm Based on Cut-Bisimulation Our
KEQ implementation follows the model of the theoretical Algorithm 3.1. Function main
essentially checks whether P is a cut-bisimulation: for each pair (py, ps) € P, for each p| with
p1 ~1 Py, there exists pl, with ps ~4 pl, such that p} P pl; and the converse. It first computes
the cut-successors of p; (at line 7), and checks whether each pair of the successors is related in
P (line 9). The pairs found to be related in P are marked in black (line 10), while the others
remain in red. If all of the successors are in black, it returns true (line 12). Note that the
algorithm can also be used for checking whether P is a cut-simulation, by simply considering
only Ni in the line 12, i.e., replacing the if-condition with ¥Yn € N;j. n.color = black.

Due to its concrete (as opposed to symbolic) nature, Algorithm 3.1 may not terminate
in practice, since P could be infinite. Line 2 assumes that P is recursively enumerable, so
iterable. Furthermore, lines 19 and 8 terminate only if 7; is finitely branching. We will
explain how to refine Algorithm 3.1 to be practical shortly; for now we can show that it is
refutation-complete, in the sense that if it does not terminate then the two programs are

equivalent.

Theorem 3.4 (Correctness of Algorithm 3.1). Suppose that cut transition systems 7; =
(Ss, &, =4, C;) are finitely branching (i € {1,2}) and P C 4 is recursively enumerable with
(&1,&) € P. If Algorithm 3.1 does not terminate with false, then 77 ~ 4 T5.

Indeed, suppose that Algorithm 3.1 does not terminate with false. Then none of the
check(py,po) calls (line 3) terminates with false (line 13). Since the loop at Line 8 always
terminates (T} and Ty are finitely branching), it means that all nodes are colored black at
line 11. Therefore, for each (p1,p2) € P, each cut-successor of p; can be paired in P with a
cut-successor of py, and vice versa. Then P is a cut-bisimulation (Definition 3.6), that is,
Ty ~4 T (Definition 3.8).
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Algorithm 3.1: Equivalence checking algorithm. For checking cut-simulation,
replace N1 U Ny, with N; at line 11. As given, the algorithm works with concrete
data and thus is not practical. Replace boxed expressions with their grayed
variants to the right for a practical, symbolic algorithm, as implemented in KEQ.

Data: T;, = (5;,&,—:,Ci); PCCy xCy;  // P is r.e.

1 Function main():

2 foreach do // E

3 if check(py,p2) = false then
4 L return false;
5 return true;

Function check(pq, p2):
Nl <— nextl(pl); N2 <— nextQ(pQ);
foreach (n;,n3) € Ny x Ny do

9 if @ then // [(n1,m2)] € [P]

B B>

10 L ny.color < black; ns.color <— black;
11 if Vn € Ny U N,. n.color = black then

12 L return true;

13 | return false

14 // Returns cut-successors of n
15 Function next;(n):

16 N < {n}; Ret « 0;

17 while N is not empty do

18 choose n from N; N < N\ {n};
19 N« {n' | n =i n'}; //
20 foreach n’ € N’ do

21 if then // ] C[C]]
22 n'.color < red;

23 Ret <— Ret U {n'};

24 else

25 L N+ Nu{n'};

26 return Ret;
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Proof. By Definition 3.8, we only need to show that P is a cut-bisimulation when main does

not terminate with returning false. First let us characterize the two sub-functions:

1. check(pi,p2) terminates; and if it returns true, then for all p; ~»; sq, there exists s,

such that py ~9 59 and (s, s9) € P; and the converse also holds.
2. next;(n) terminates and returns the set of all cut-successors of n, i.e., {n’ | n~; n'}.

P is cut-bisimulation by (1), while the claim (1) is straightforward by (2). Now we only need
to show the claim (2). To show (2), let us claim the invariant of the while loop as follows.

It is easy to show that it is maintained in each iteration.

e For each finite trace ny---nyn’ (k > 1) such that ny =n, n; € C; (1 < j < k) and
n' € C;, either holds: n’ € Ret or 3m € [1,k]. n,, € N.

e For each n’ € N U Ret such that n’ # n, there exists a finite trace nny - - -ngn’ (k> 0)
such that n; ¢ C; (1 < j < k).

e Ret C (.

Now let us show (2). First, Ret C {n’ | n ~; n'} by the second and the third bullets. Then,
Ret O {n' | n ~; n'} by the first bullet, since N is empty when it terminates. Let us show
the termination. Assume next;(n) does not terminate. If it does not terminate, then since
T; is finitely branching, there should exist an infinite trace from n that never comes across
one of C;, which is the contradiction since C; is a cut for n € P; C ;. Now let us show
that the loop invariant is maintained in each iteration. The second and the third bullets are
trivial. Let us show the first bullet. Assume that it holds in some iteration. Pick such a
finite trace ny - --nin’. We have three cases: n’ € Ret, n, € N, and n,, € N where m < k.
For the first and the third cases, it is easy to show the invariant is maintained in the next
iteration. In the second case, we have n’ € next(ny) by definition of the traces. Then n’ is
added in Ret in the line 23, since n’ € C;, and we conclude. QED.

Note that if we replace the if-condition of the line 11 with “Vn € N;. n.color = black”,
then it suffices to show T} <; 15, i.e., T} refines T5.

Symbolic Implementation of Algorithm 3.1 Note that Algorithm 3.1 may also ter-
minate with true, namely when P is finite. Unfortunately, P is not expected to be finite
in practice. For example, P may include all the synchronization points at the beginning of
the main loop in a reactive system implementation. Nevertheless, in practice it is often the

case that we can over-approximate infinite sets symbolically. For example, we can use a
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logical formula ¢ to describe a symbolic state, which denotes a potentially infinite set [¢]
of concrete states that satisfy it. Then we may be able to describe the sets of states .5; and
C; of the cut transition systems T; (i € {1,2}) with finite sets S; and C;, respectively, of
symbolic states. Similarly, symbolic pair (¢, ¢’) can describe infinite sets [(¢, ¢’)] of pairs
of states in the two transition systems, related through free/symbolic variables that ¢ and
¢’ can share. Then we may also be able to describe P as a finite set P of pairs of symbolic
states. If all these are possible, then Algorithm 3.1 can be modified by replacing the boxed
expressions with their symbolic variants (grayed); n, n’, ny, na, p1, pe, etc., are symbolic
now.

Given an operational semantics of a programming language, K provides us with an API
to calculate symbolic successors of symbolic program configurations. This allows us to
conveniently implement the symbolic = transitions at line 19. Also, K is fully integrated
with the Z3 solver [71], allowing us to implement the set inclusion checks, i.e., [(n1,n2)] C
[P] (at line 9) and [n'] C [C;] (at line 21), by requesting Z3 to solve the implications of the
corresponding formulae. (See below.)

It is clear that the symbolic variant of Algorithm 3.1 terminates provided that Z3 ter-
minates. Also, working symbolically allows us to usually eliminate the restriction that T;
must be finitely branching, as infinite branching can often be modeled symbolically (e.g., a

random number generator can be modeled as a fresh symbolic variable).

Optimizing SMT Queries Before checking the symbolic set inclusion [(ny,n2)] € [P],
we check first the equivalence between the path conditions of the two symbolic states ny
and ns, since the SMT query for checking the set inclusion becomes much simpler when the
two path conditions are equivalent.’ Let the path conditions of n; and ny be p; and ¢,
respectively. Then, we need to prove @1 = @2 and ¢s = ¢; to prove the path condition
equivalence. For proving 1 = @9, we ask Z3 to prove that its negation is unsatisfiable, that
is, that 1 A -y, is unsatisfiable. (Similarly for proving ws = 1 as well.) However, we found
that Z3 performs poorly for proving the unsatisfiability of ¢ A =y, especially because of
the negation applied to @ that involves existential quantifiers.

To improve the performance of Z3 solving, we devised the following optimization that is
applicable when the underlying transition systems are deterministic. Suppose that N; =
{n1,n}} and Ny = {ng,n,} (at line 7). Let the path condition of ny, ny and nj be 1, o
and ¢}, respectively. Since the transition systems are deterministic, we have that ¢, V ¢

is tautology and s is disjoint from ¢f. Thus, ¢; A =gy is equivalent to ¢ A ¢). Now, for

5In case that the two path conditions are not equivalent, we can split the symbolic states with different
path conditions and re-run the loop (lines 8-10).
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int foo(unsigned n) { int foo(unsigned n) {

int i = 0; int i = 0;
while (i < n) { while (i < n) {
i=1+1; i=1+2;
} }
return i; return i;
} }

Figure 3.5: Program transformation example. Two programs are equivalent provided that n
is an even natural number.

proving ¢; = ¢, we ask Z3 to prove the unsatisfiability of p1 A ¢} (instead of p1 A —3).
Note that Z3 performs much better for solving the positive form ¢; A ¢} than the original
negative form ¢ A =g, even though the two are logically equivalent in theory.

This optimization has been adopted in our TV prototypes, utilizing the fact that both

relevant language semantics (LLVM and x86) are deterministic.

Example Application of Algorithm 3.1 We implemented the symbolic variant of Al-
gorithm 3.1 in a tool called KEQ for checking language-independent program equivalence.
To illustrate how KEQ works, consider the example in Figure 3.5. At the beginning of the
programs, we have the symbolic synchronization point pisir which is a triple (sp,.; ). s Vpie )

where

Spoy =1+ 1 * n—n  where n mod 2 =0 (3.7)
s, =i x n—n'  where n' mod2=0 (3.8)
Vppie = 10 = n’ (3.9)

Spme a0d s, are the symbolic state of the first and second program, respectively (* is a
separator for map bindings), and ¥, is the constraint for s, . and s, to be related,
essentially saying that the inputs of the two programs are the same and they are even.
Mathematically, pi,ir denotes the set of infinitely many pairs of states {(i +— i*n+ n, i +—
i"*n+—n)|i,i,neN A niseven}. Also, we have a synchronization point piep at the
beginning of each loop iteration (i.e., the loop head), which is a triple (s, sgloop,wploop),
where

Spop = 1+ @ * n+>n  where i mod 2=0 A nmod2=0 (3.10)

ooy =17 * n>n’ where i mod 2=0 A 7’ mod 2= 0 (3.11)

SKEQ also supports program refinement, but for simplicity we only discuss equivalence.
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wploop

i=1 ANn=n (3.12)

Finally, we have a synchronization point psna at the end of the programs, which is a triple

/
(Spﬁ"al ) Spfinal7 ¢pfina| )7 Where

Sppy =1Fr0 %k n>n (3.13)
. =irri x nn (3.14)
Vpboat = & = i A =0 (3.15)

Note that psnal is relaxed, capturing more states than the reachable states. This is allowed
as long as it is admitted by the acceptability relation (in this case, equality between the
same variables). Indeed, the more synchronization points are relaxed, the easier it is to
automatically generate them (e.g., by instrumenting a compiler). Below we will show this
relaxed synchronization point is enough to prove the equivalence.

Next we illustrate how KEQ symbolically runs Algorithm 3.1. Let P = {pinit, Dioop, Dfinal }-
First, KEQ picks a point (say pinit) from P (line 2 of Algorithm 3.1) and executes the function
check with it. In check, it first symbolically executes each program (lines 7 and 19) until
they reach another synchronization point (line 21). In this case they reach states s; and s

that are matched by s, and s;bop respectively, where:

s=1i+—0 * n—n where nmod2=0 (3.16)

si=1—0 * n—n' where n’ mod 2=0 (3.17)

KEQ checks if (s1, 8], p,,,) is matched by pioop (line 9), which is true. Since s; is the only
pair that reaches pioop, the check function returns true (line 12).

Next, suppose KEQ picks pioop (line 2). Symbolic execution starting from pieep yields two
pairs of symbolic traces, that reach synchronization points peep (through the for-loop body)
and pfnal (escaping the for-loop), respectively. Let us consider the first case. We have the

pair of states s; and s, that are matched by s, and s}loop respectively, where:

Sg=1i+i4+2 * n—n where imod2=0 A nmod2=0 (3.18)

so=1i+—i+2 x n—n’ where i/ mod2=0 A " mod2=0 (3.19)

Note that s, is resulted from executing the loop twice, since the result of the single loop
iteration (i + i+ 1 * n + n) is not matched by s, because (i + 1) mod 2 # 0, that
is, it is mot in the cut (line 21). KEQ checks if (s2, 85, 1y,,,) is matched by piep (line 9),
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int cnt(unsigned n) { int cnt(unsigned n) {

int ¢ = 0; int ¢ = 0;

int i = 0; int i = n;

while (i < n) { while (i > 0) {
i=1+1; i=1i-1;
c=c+1; c=c+1;

} }

return c; return c;

} }

Figure 3.6: Two equivalent programs with the out-of-order loop iteration.

which is true. (Here KEQ needs to rename the free variables in pioop to avoid the variable
capture.) The other case is similar and check with pjeep eventually returns true. Then, KEQ
continues to pick from the remaining synchronization points and execute check with each
of them (loop at lines 2-4), eventually returning true (line 5).

On the other hand, Figure 3.6 shows an example of equivalent programs with the out-of-
order loop. The first program iterates the loop increasing the loop index i, while the second
program iterates decreasing i. The cut-bisimulation is expressive enough to capture this
out-of-order execution. The following three synchronization points are sufficient for KEQ to

prove the equivalence:
e At the beginning: n =n’
e At the loop head: n=n', i+ i’ =n,and c =¢’
e At theend: c=¢’

where the primed variables refer to the second program’s variables. Note that the non-trivial
part of the synchronization points is the equality i + i’ = n, but the compiler can provide

this information that must be known to perform such an out-of-order loop transformation.

3.6 PRELIMINARY EVALUATION OF KEQ

As a preliminary evaluation, we revisit the example of Figure 3.1 and prove their equiv-
alence using KEQ. The transformation presented in these programs is called partial re-
dundancy elimination (PRE) and it is a common transformation in compiler literature.
Figure 3.7 shows two LLVM programs that correspond to the code shown in Figure 3.1. The
non-deterministic choice operator is simulated in LLVM with a call to an external function,

@check, that returns a boolean value, at line 9 in Figure 3.7(a) and line 8 in Figure 3.7(b).
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1: define void @prel () { 1: define void @pre2() {

2: entry: ;5 po 2: entry: ;5 pO

3: br label Y%while.body 3: br label Y%while.body

4: 4:

5: while.body: ; pl, p2 5: while.body: ; pl, p2

6: %y.0 = phi i32 [1, %entryl, [%y.1, %if.endl] 6: %y.0 = phi i32 [1, %entryl, [%y.1, %if.end]

7: %x.0 = phi i32 [1, Y%entryl, [%x.1, %if.endl] 7: %x.0 = phi i32 [1, %entryl, [%x.1, %if.end]

8: %inc = add i32 %x.0, 1 8: %call = call i32 @check ()

9: Y%call = call i32 @check () 9: Y%tobool = icmp ne i32 Y%call, 0

10: %tobool = icmp ne i32 Y%call, 0 10: br il %tobool, label %if.then, label %if.else

11: br il Y%tobool, label %if.then, label %if.else 11:

12: 12: if.then:

13: if.then: 13: %inc = add i32 %x.0, 1

14: %incl = add i32 %y.0, 1 14: %incl = add i32 %y.0, 1

15: br label %if.end 15: br label %if.end

16 16

17: if.else: 17: if.else:

18: %mul = mul i32 %y.0, 2 18: %mul = mul i32 %y.0, 2

19: br label %if.end 19: br label %if.end

20: 20:

21: if.end: 21: if.end:

22: %y.1 = phi i32 [%incl, %if.then], 22: %y.1 = phi i32 [%incl, %if.thenl],
[%hy.0, %if.elsel [hy.0, %if.elsel

23: %x.1 = phi i32 [%inc, %if.then], 23: %x.1 = phi i32 [%inc, %if.thenl],
[%mul, %if.elsel [fmul, %if.elsel

24: br label Y%while.body 24: Dbr label %while.body

25: 25

26: return: 26: return:

27: ret void 27: ret void

28: } 28: }

29: 29

30: declare i32 @check() 30: declare i32 @check()

(a) Before PRE (b) After PRE

Figure 3.7: A simple partial redundancy elimination transformation in LLVM. The two
LLVM programs mirror the loops shown in Figure 3.1. The while loop is diverging (i.e.,
non-terminating) and the non-deterministic condition is simulated by a call to an external
function @check. The add-operation in line 8 of the original function prel is moved inside
the if.then block as shown in line 13 of the transformed function pre2.

Figure 3.8 summarizes the synchronization points that KEQ needs to prove to establish a
cut-bisimulation: one point at the entry of the code (p0) and two points at the entry of the
loop, one for entry from outside (pl) and one for entry through the back edge (p2). Once
instantiated with an LLVM semantics in K, KEQ took as input the set of synchronization
points and successfully proved equivalence of the two LLVM programs. The KEQ proof took
26 seconds in a laptop machine with an Intel Core i7-6500U processor at 2.50GHz and 12GB
of memory.

Let us illustrate how KEQ prove that the synchronization points establish a cut-bisimulation.

It is trivial to see that all traces starting from pO will reach pl in both programs. Traces

Sync Point  Previous Block Constraints
(0) - -
(1) hentry -
(2) %if.end hx1=Y%x.1" AN by.1="%y.1

Figure 3.8: Synchronization points for the PRE transformation in Figure 3.7. The primed
variable names refer to the variables in Figure 3.7(b).
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volatile int G; unsigned f(unsigned n) {

unsigned x = 5;
void f(int X, int A) { unsigned 1i;
int a;
while (1) { for (i = 0; i < n; ++1i)
a = A + X; if (x > B) ++x;
G += a;
T return x;
} }

(a) C program for LICM example (b) C program for SCCP example

Figure 3.9: C programs for the LICM and SCCP equivalence proofs.

starting from pl will reach the entry of the loop through the back edge with %x.1 =
%x.1" =2 and %y.1 = %y.1 = if-then-else(@check(),2,1), where primed variable names
refer to the variables in Figure 3.7(b). These values satsify the constraints for synchro-
nization point p2, so it will be reached from pl. Finally, traces starting from p2, where
%x.1 =%x.1" = X and %y.1 = %y.1 =Y, will reach the entry of the loop through the
back edge with %x.1 = %x.1" = if-then-else(@check(), X + 1,2Y) and %y.1 = %y.1 =
if-then-else(@check (), Y + 1,Y). These values also satisfy the constraints for synchroniza-
tion point p2, so it will be reached from p2.

Note that the set of synchronization points in Figure 3.8 is straightforward enough to
be automatically inferred. Indeed, Necula et al. [15] proposed an inference algorithm of
such synchronization points in their their translation validation system for the GNU C
compiler transformation. Their system uses an informal notion of program equivalence that
is reminiscent of cut-bisimulation, and we believe that it can be employed in our language-
independent equivalence checking framework, so that their technique can be easily applied

to other languages, which we leave as future work.

3.7 EQUIVALENCE PROOF EXAMPLES

This section presents two more example equivalence proofs using cut-bisimulation for
the Loop Invariant Code Motion (LICM) and Sparse Conditional Constant Propagation
(SCCP) transformations. Both are standard compiler optimizations found in most of modern

production compilers.

3.7.1 Loop Invariant Code Motion (LICM)

The LICM transformation moves code out of a loop when the corresponding computation
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1: @G.0 = common global i32 0, align 4 1: @G.1 = common global i32 0, align 4

2: 2:

3: define void @f(i32 %A.0, i32 %X.0) { 3: define void @f(i32 %A.1, i32 %X.1) {

4: entry: ;5 pO 4: entry: ;5 po

5: br label %while.body 5: %a.1 = add i32 %A.1, %X.1

6: 6: br label %while.body

7: while.body: 7:

8: %a.0 = add i32 %A.0, %X.0 8: while.body:

9: %0 = load volatile i32, i32% @G.0, align 4 9: %0 = load volatile i32, i32% @G.1, align 4
10: %1 = add i32 %0, %a.0 10: %1 = add i32 %0, %a.1l

11: store volatile i32 %1, i32* @G.O, align 4 11: store volatile i32 %1, i32* @G.1, align 4
12: ; pl 12: ; pl

13: br label %while.body 13: br label %while.body

14: 14

15: return: 15: return:

16: ret void 16: ret void

17: } 17: }

(a) Before LICM (b) After LICM

Figure 3.10: A simple LICM transformation. The add-operation in line 8 of the original
function (a) can be hoisted out of the loop as shown in line 5 of the transformed function
(b). Note that the while-loop is diverging (i.e., non-terminating). See Figure 3.9(a) for the
original C program.

Sync Constraints

Point

(0) %A.0 = JA.1, %X.0 = JX.1, [6G.0] = [eG.1]
(1) HA.0 = %A.1, %X.0 = %4X.1, %ha.0 = %a.1

[eG.0] = [€G.1], Y%a.1 = %A.1 + %X.1

Figure 3.11: Synchronization points for the LICM translation in Figure 3.10.

can be proven to be independent of the loop iteration, thus it can be safely executed only
once before entering the loop. Additionally, before attempting the transformation, the com-
piler should prove that the hoisted computation has no side-effects and /or that the original
program would execute at least one loop iteration.

Figure 3.10 shows an LLVM IR function containing a loop with the loop invariant code in
line 8 on the left and the transformed function after LICM where the loop invariant code has
been hoisted out of the loop in line 5 on the right. The corresponding C program is shown
in Figure 3.9(a). Intuitively, the two functions synchronize at the entry (point (0)) and at
the end of each loop iteration (point (1)). We use non-terminating loops with side-effects
to showcase the importance of using bisimulation-based proofs for program equivalence.
Although both functions diverge, they should not be declared equivalent when they had a
different effect on the value of the volatile global variable @QG.

The intuition about where the two functions synchronize is reduced to a cut-bsimulation
equivalence proof in a straight-forward way. It sufficies to formally describe the above syn-
chronization points, prove that the individual states are indeed a cut for each corresponding

function, and finally prove that the given synchronization point relation is indeed a cut-
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1: define i32 @f(i32 %N.0) { 1: define i32 @f(i32 UN.1) {
2: entry: ;5 pO 2: entry: ; pO pl
3: br label %for.cond 3: br label %for.end
4: 4:
5: for.cond: 5: for.end: ; p2
6: %x = phi i32 [ 5, Y%entry 1, [ %y, %for.inc 1] 6: ret i32 5
7: %i = phi i32 [ 0, %entry 1, [ %inc.i, %for.inc ] 7: 0}
8: Y%emp.for = icmp ult i32 %i, %N.O
9: br i1 Ycmp.for, label %for.body, label %for.end
10:
11: for.body: ; pil
12: %emp.if = icmp ugt i32 %x, 5
13: br i1 Ycmp.if, label %if.then, label %if.end
14:
15: if.then:
16: %inc.x = add i32 %x, 1
17: br label %if.end
18:
19: if.end:
20: %y = phi i32 [ %inc.x, %if.then 1, [ %x, %for.body 1]
21: br label %for.inc
22:
23: for.inc:
24: %inc.i = add i32 %i, 1
25: br label %for.cond
26:
27: for.end: ;5 p2
28: ret i32 Yx
29: }
(a) Before SCCP (b) After SCCP

Figure 3.12: A simple SCCP transformation: the for loop in lines 5-25 of the original
function (a) can be removed as dead code, and the constant 5 can be propagated to the
return instruction as shown in line 6 of the transformed function (b). See Figure 3.9(b) for
the original C program.

bisimulation. The formal descriptions of the synchronization points are given in Figure 3.11.
The proof for individual states being a cut is straight-forward. In general, it is acceptable
to trust an automated proof generator only to produce synchronization point relations using
individual states that define a cut for the corresponding program. Finally, the symbolic
version of algorithm 3.1 can be used to prove the relation to be a cut-bisimulation, hence
the functions are equivalent.

Notice that for the synchronization point (1), in addition to the equality constraints be-
tween the two functions’ variables, we need an extra constraint that relates the values of
%A1, %X.1, and %a.1. This constraint will allow us to prove that the cut-successors of any
pair of states described by (1) are also a pair of states described by (1). An automated proof
generator can generate this constraint using compiler-provided hints or heuristics about the
effect of the LICM transformation. This type of constraint generation beyond simple variable

equality constraints is typical for equivalence proofs of program transformations.

3.7.2 Sparse Conditional Constant Propagation (SCCP)

The SCCP transformation propagates constant values and removes infeasible branches
that are discovered through constant propagation. In the example shown in Figure 3.12

with the corresponding C program shown in Figure 3.9(b), we see that the constant 5 is
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Sync Constraints

Point

(0) UN.O = YN.1

(1) WN.O = YN.1, Y%x =
(2) WN.O = YN.1, Y%x =

Figure 3.13: Synchronization points for the SCCP translation in Figure 3.12.

assigned to %x in line 6 during the first iteration of the loop in lines 5-25 of the original
function. Therefore, the branch in lines 12-13 will be taken to line 19 and the constant 5 will
also be assigned to %y in line 6 during the first iteration, hence %x is assigned the constant
5 during the second and all subsequent iterations. By proving that %x is constant (equal to
5), the compiler can remove the infeasible branch in lines 11-17, and afterwards the whole
loop in lines 5-25 as dead code. Finally the constant 5 can be propagated to the return
instruction in line 28.

The cut-bisimulation equivalence proof follows from the observation that each iteration
of the loop in the original function synchronizes with the start state of the transformed
function, as well as from the fact that %x =5 is an invariant for the execution of the
original function. Figure 3.13 shows the formal synchronization points that capture these
observations, which can be automatically generated by a proof generator that uses compiler-
provided hints or heuristics about the effect of the SCCP transformation. Again, it is
straightforward to see that the individual states in the synchronization points constitute a
cut for the corresponding functions and using KEQ we can prove that the synchronization

point relation is a cut-bisimulation.
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CHAPTER 4: TRANSLATION VALIDATION FOR INSTRUCTION
SELECTION

4.1 INTRODUCTION AND MOTIVATING EXAMPLE

We present here our prototype Translation Validation (TV) system for the Instruction
Selection phase [19] of the LLVM compiler [1|. As discussed in Chapter 2, there is a rich
literature of successful TV systems for compilation verification, but each one is assuming a
fixed common intermediate language for input and output programs. Thus, none of these
previous systems would be able to verify a compilation transformation like Instruction Selec-
tion, which converts between two different IRs. The Instruction Selection phase of LLVM is
a sophisticated transformation that translates LLVM IR [9] to Machine IR [21] representing
the x86-64 instruction set.

In this section, we present a TV system that comprises of modular components that can
be reused with minimal effort for the various transformations and languages found in the
compiler. Specifically, the key insight underlying our work is that two of the three TV
system components (see Section 1.5) can be generalized to be transformation- and language-
independent: the formal notion of equivalence, and the proof system. We use KEQ as our
proof system and Cut-bisimulation as the notion of equivalence, as presented in Chapter 3.
An equivalence proof with KEQ involves proving that a given verification condition (VC),
provided in the form a set of pairs of relevant program states or synchronization points, is a
cut-bisimulation for the input and output programs.

For example, consider the simple C code shown in Figure 4.1. Figure 4.2 shows the mid-
level internal representation (IR) of this code in the LLVM Compiler Infrastructure (the
LLVM IR, or simply, LLVM), as well as the output of the instruction selection (ISel) phase of
the compiler when compiling for x86-64. This phase is the primary language translation step
beyond the front-end: it translates LLVM IR to a low-level IR called Machine IR representing

unsigned arithm_seq_sum(unsigned a0, unsigned d, unsigned n) {

unsigned s = a0, a = a0, 1i;
for (i = 1; i < n; ++i) {
a = a + d;
s = s + a;
}
return s;

}

Figure 4.1: Function to compute the sum of the first n elements of an arithmetic sequence
with first element a0 and step d.
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define i32 Qarithm_seq_sum(i32 %a0, i32 %d, i32 %n) { arithm_seq_sum:

entry: ; poO .LBBO: ;5 po
br label %for.cond %vr8_32 = COPY edx
%vr7_32 = COPY esi
for.cond: ; pl, p2 %vr6_32 = COPY edi
%s.0 = phi i32 [ %a0, %entry 1, [ %addl, %for.inc ] %vr9_32 = mov 1
%a.0 = phi i32 [ %a0, %entry 1, [ %add, %for.inc ] jmp  .LBB1
%i.0 = phi i32 [ 1, Y%entry ], [ %inc, %for.inc ] .LBB1: ; pl, p2
%cmp = icmp ult i32 %i.0, %n %vr0_32 = PHI %vr6_32, .LBBO, %vr4_32, .LBB3
br il Ycmp, label %for.body, label Y%for.end %vr1_32 = PHI %vr6_32, .LBBO, %vr3_32, .LBB3
%vr2_32 = PHI %vr9_32, .LBBO, %vr5_32, .LBB3
for.body: %vr10_32 = sub %vr2_32, %vr8_32
%add = add i32 %a.0, %d jae .LBB4
%addl = add i32 %s.0, %add jmp .LBB2
br label %for.inc .LBB2:
%vr3_32 = add %vr1_.32, %vr7_32
for.inc: %vr4_32 = add %vr0_32, %vr3_32
%inc = add i32 %i.0, 1 jmp .LBB3
br label %for.cond .LBB3:
%vr5_32 = inc %vr2_32
for.end: ;5 p3 jmp .LBB1
ret i32 ¥%s.0 .LBB4:
} eax = COPY %vr0_32
5 p3
ret
(a) LLVM IR (b) Virtual =86

Figure 4.2: The arithmetic sequence sum in LLVM IR and Virtual x86, as produced by
Instruction Selection at optimization level O0. Comments in red show the synchronization
points generated by our prototype.

a particular target instruction set (ISA). The Machine IR for x86-64 keeps some high-level
abstractions such as an unlimited amount of virtual registers and support for SSA virtual
registers, along with the x86-64 ISA opcodes; we call this output language “Virtual x86”.
In Figure 4.3, points {p0, pl, p2, p3} are corresponding synchronization points where state
comparisons are valid for live values between the LLVM IR and the machine code generated
by the ISel phase. Using these points and appropriate LLVM IR and Virtual x86 semantics
definitions, KEQ proves that the synchronization point relation is a cut-bisimulation and
hence the two programs are equivalent (see Section 3.5 for more details).

The final component of the TV system, the verification condition generator, has to take
into account the specifics of the transformation in question (either using compiler-generated
hints or heuristics inspired by the transformation’s effect in input programs). For this reason,
it is not clear how to effectively generalize it, although there have been examples in prior work
of verification condition generators able to work with a wider range of transformations (see
Chapter 2). The verification condition generator for Instruction Selection is implemented a
python script that relies on a minimal hint generator added to the LLVM compiler. The hint
generation code that we needed to add to LLVM contains less than 500 lines of C++. This
code is conceptually simple and requires only standard compiler skills. Most of it simply
outputs information that the compiler already computes as part of the instruction selection.
For comparison, instruction selection itself uses more than 140,000 lines of code. Using the
compiler-generated hints, the generator produces a set of synchronization points that are

given to KEQ to check for a bisimulation relation, thus proving equivalence.
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Sync  Prev  Prev Equality Constraints
Point BB BB

(LLVM)Vx86)

p0 - - %a.0 = edi, %d = esi,
%n = edx,

pl %entry .LBBO %d = %vr7_32, 1 = %vr9_32,
%a.0 = %vr6_32, %n = %vr8_32,

p2 %for.incLBB3 %add = %vr3_32, % = %vr8_32,
%addl = %vr5_32, %d = %vr7_32,
%inc = %vr5_32

p3 - - %s.0 = eax

(exit)

Figure 4.3: Synchronization points for the translation of the arithmetic sequence sum in
Figure 4.2. A more detailed explanation of how KEQ uses these points to prove equivalence
will be given in Subsection 4.2.9

Finally, in order to use KEQ for the Instruction Selection phase of LLVM, we have devel-
oped K semantic definitions of a subset of the LLVM and Virtual x86 languages which are
the input and output languages of this transformation.

In short, this work presents the first translation validation system for compilation veri-
fication that can handle a transformation with different input and output languages. This
feature is a consequence of our design: a modular system that maximizes reuse of com-
ponents across the compilation path. Specifically, the semantic definitions as well as the
proof system used in the prototype are reused as-is in the Register Allocation prototype
presented in Chapter 5, and only the verification condition generator is differs between the

two systems.

4.2 TRANSLATION VALIDATION FOR LLVM INSTRUCTION SELECTION

Here we describe the application of the proposed equivalence checking algorithm in a trans-
lation validation system for the Instruction Selection phase of LLVM. This phase translates
LLVM intermediate representation (IR) into various target instruction sets, and we focus on
the x86-64 target for the scope of this work. We chose this particular application because
it is a non-trivial component of a widely-used mature compiler that operates with differ-
ent input and output languages. Moreover, in an LLVM-based compiler (e.g., Clang [72],
Swift [73], Julia [74]), this phase is the primary language translation step beyond the front-
end: it converts the mid-level IR to the low-level Machine IR. As explained in Chapter 2,

none of the existing TV techniques can be directly used to validate instruction selection,
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LLVM ISel
LLVM IR Virtual X86
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compiler hints
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Sync Point
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sync points

l
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equivalence checker
llvm.k common.k Vx86.k

Figure 4.4: Translation validation system for LLVM ISel phase

which translates between two fundamentally different languages.

The various components of the system along with the Instruction Selection (ISel) phase
itself are shown in Figure 4.4. ISel translates LLVM IR to Machine IR; when targeting x86-
64, the generated machine IR represents a slightly simplified version of the x86-64 instruction
set that we call “Virtual x86”. Let us discuss the various components of the TV system in

more detail.

Verification Condition Generator We enhanced [Sel with a hint generator to output
information relevant to the specific translation instance. This information along with the
input and output programs guides the generation of the synchronization points for the trans-
lation instance. These two components, the hint generator and the synchronization points
generator, constitute the Verification Condition (VC) generator. A key observation is that
the hint generator will be part of the compiler code base and maintained by compiler engi-
neers, so we want its implementation to be possible without any formal methods expertise.

The specific strategy for synchronization point generation employed by our VC genera-
tor for ISel is described in more detail in Subsection 4.2.6. In general, the objective of a
VC generator for use with KEQ is to provide a set of points that form a cut for the input
and output programs and are adequate for a cut-bisimulation proof by KEQ. Determining
a strategy for the generation of such points requires understanding of the target transfor-
mation’s assumptions and effects on the code, as well as formal methods knowledge about
bisimulation proofs.

Typically, a successful VC generator will need some information about the effects of the
target transformation on the code. For example, our VC generator requires knowledge of the

mapping from LLVM IR virtual registers to Virtual x86 virtual and/or physical registers that
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was used during the translation of the target input program. Such information can be either
automatically obtained by an appropriate inference algorithm or provided by enhancing the
compiler with a hint generator. The former approach treats the compiler as a completely
black box, while the latter trades off transparency for increased accuracy. In case of a hint
generator, we emphasize that this specific component should not require any formal methods

expertise to be developed or maintained.

Language Semantics The set of synchronization points is provided to KEQ, which is pa-
rameterized by the K semantic definitions of LLVM IR and Virtual x86. These are discussed
in more detail in Subsections 4.2.2 and 4.2.3. In general, one needs a K semantic definition
for the input and output languages involved in the target transformation (which may be

identical if the language is preserved).

Acceptability Relation The acceptability relation is a formal way to abstract away
the correspondence between program states in different languages: Recall that the cut-
bisimulation theory is parameterized by a given acceptability relation, which relates equiv-
alent states across the two programs. Such correspondence may not be trivial between two
different languages. However it has no effect on the theory other than the requirement that
the states related in the cut-bisimulation relation must also be related in the acceptability
relation. In general, the acceptability relation can be arbitrarily complex to define for any
two given different languages. In our system, we provide common.k, a third semantic def-
inition accepted by KEQ, for formally defining complex acceptability relations. This way,
we can at least make the formal definitions for the same language pairs reusable, similar
to the language semantic definitions themselves. In the case of LLVM IR and Virtual x86,
the acceptability relation is mostly straight-forward. Specifically, in our TV system, the
common.k module contains various definitions of equivalent (or common) components of the
state in the two languages. This serves as a shortcut so that these components need not be
repeatedly marked as equivalent in every synchronization point. The most significant such
component is the memory model used for the two definitions (see Subsection 4.2.4).

KEQ runs the equivalence checking algorithm presented in Section 3.5 on the given set of
synchronization points and outputs a verdict that validates the translation instance or flags it
as not validated. In our ISel TV system, we need to trust (beyond the KEQ implementation
and the K semantic definitions) that the given synchronization points cover all entry points
of each function of the program, and the synchronization points belong to the acceptability

relation.! Note that we do not need to trust that other relevant points (e.g., exit points,

'In principle, the latter can be excluded from the trust base by verifying it in a separate process, but we
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loopheads, etc.) are also covered by the set of synchronization points, because otherwise

KEQ will fail.

4.2.1 LLVM Instruction Selection Phase

The ISel phase [19] of an LLVM-based compiler is responsible for translating LLVM IR
into a selected target’s instruction set. This is a non-trivial component of the compiler,
implemented in more than 140,000 lines of C++ and TableGen |75] code (excluding target-
specific code for back-end targets other than x86-64). During ISel, LLVM IR code is first
converted into a target-independent direct acyclic graph (DAG) representation called Selec-
tionDAG with one DAG generated per basic block. Next, the actual instruction selection
happens by matching patterns of DAG subgraphs to new subgraphs that contain the target
opcodes. Finally, the DAG nodes are linearized to produce instruction sequences for each
basic block.

Our translation validation prototype has been developed for the version 5.0.2 of the LLVM
compiler. There are two different algorithms for instruction selection in LLVM 5.0.2, namely
SDISel and FastISel. SDISel is slower and more sophisticated, and is the default for compi-
lation to native; FastISel is faster and used at OO0 and in JIT compilation. Our prototype
works on the SDISel algorithm with optimization level OO0, since this level performs the least
amount of extra transformations to the code and focuses mainly on the language transla-
tion. Optimizations enabled in higher levels include more aggressive pattern folding and
more aggressive constant propagation. These are not conceptually affecting the applicability
of our method, but may require more sophisticated hint generation that we currently do not

support.

4.2.2 LLVM IR Semantics

A full documentation of the LLVM intermediate representation can be found in [9]. In
our LLVM semantic definition, we model the i1, i8, 116, i32, and i64 integer types, com-
posite (arbitrarily nested) array and struct types, the corresponding pointer types, and the
getelementptr instruction used to compute the address of an element nested within a com-
posite type. We also model integer arithmetic operators, bitwise operators, and the integer /-
pointer comparison operators. We model the control flow instructions for unconditional and
conditional branches, as well as function calls and returns. Finally, the supported memory

operations are loads, stores, and the alloca instruction for stack allocation of local variables.

only manually checked it since the acceptability relation is rather straightforward in this case.
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The LLVM semantics uses the common memory model described in Subsection 4.2.4 as its
memory abstraction. Our memory abstraction does not yet take alignment requirements into
consideration, so we do not support programs that assume any kind of variable or load /store

alignment.

4.2.3 Virtual x86 Semantics

The output of ISel is LLVM Machine IR, a low-level representation representing the op-
codes and operand types of the selected target ISA. More specifically, the LLVM Machine
IR is a register-based IR that is parametric to any number of ISA opcodes and physical
registers. It also supports a number of higher-level features such as various pseudo-opcodes
(such as COPY, PHI, and others), an unlimited number of virtual registers, a frame abstrac-
tion for modeling call stacks, and a jump table abstraction. The Machine IR used in the x86
backend of the LLVM compiler is then specialized by using all the x86 opcodes and the full
x86 physical register file [18]. We call this version of the Machine IR “Virtual x86.”

Our K semantic definition of Virtual x86 captures all the extended features except jump
tables and also various features of x86-64. We model integer arithmetic operations and
integer comparison operations, bitwise operations, the general-purpose physical registers,
conditional and unconditional jump instructions as well as the flags and program counter
registers, eflags and rip. The program address space is modeled (similar to the LLVM IR
semantics) using the common memory model abstraction described in Subsection 4.2.4. We

model a variety of move instructions that copy data between registers and memory.

4.2.4 Common Memory Model

Both the LLVM and Virtual x86 semantics definitions are using a common low-level se-
quentially consistent memory model. This simplifies the formal definition of equivalent
memory configurations between LLVM and Virtual x86 programs (although it is not nec-
essary). The semantic definition of this common memory model is part of common.k (see
Figure 4.4).

In the following, we describe the various aspects of the common memory model and how
they are utilized by the two languages.

Memory Address A memory address in the common memory model is generated by an
allocation operation and /or offset addition and subtraction operations on an existing address.
It is represented as a quad (P, L, A, S) where P is the 64-bit unsigned integer value of the

address, L is an identifier of the (dynamic) memory allocation operation that allocated this
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address, A is the base address of the allocation operation, and S is the size of the allocation
operation. We keep the information about the allocation operation (identifier, base address,
and size) as part of a memory address so that we can perform bounds checks that are needed
by the LLVM semantics in order to capture out-of-bounds undefined behaviors. Both the
LLVM and Virtual x86 semantics definitions are using the memory address quad as the
value for integer and pointer objects, hence not distinguishing between integer and pointer
values. Finally, note that symbolic memory addresses can appear during symbolic execution,
for example when allocating a new memory location or loading a pointer from a memory
location. These symbolic addresses adhere to certain theorems that are part of the memory
model semantic definition, for example two address with different allocation identifiers are
implied to not overlap.

Memory Contents Since both LLVM and Virtual x86 feature byte-addressable memories,
a memory location in the common memory model also contains a single byte. A byte is
represented as a triple (B, S, V), where V is the integer value to which this byte belongs, B
is the order of the byte with 0 being the least significant, and S is the total size in bytes
of the value V. We use this representation to efficiently convert between integer and byte
values: For example a 32-bit integer i can be converted to 4 bytes (0,4,7)..(3,4,7) and vice
versa. Both LLVM and Virtual x86 semantics convert between scalar (and, in case of LLVM,
array and struct) values and byte series, when interfacing with the common memory model.
Memory Map The common memory model defines a mapping from memory addresses to
bytes that represents the contents of the memory during execution. It also defines a set of
freed memory locations that is useful for capturing undefined behaviors due to out of bounds
accesses and double free operations.

Memory Access Operations The common memory model provides semantics for memory
allocation, deallocation, loading, and storing. All the memory operations use the memory
address quad representation for address values and the byte representation for data values.
Both LLVM and Virtual x86 semantics contain rules that convert their respective memory

operations into the operations of the common memory model.

4.2.5 Execution State Representation

A set of synchronization points is required as an input for the equivalence checking algo-
rithm. Before we discuss details about the generation of synchronization points, we briefly
discuss how program states and execution traces are described in the context of a K semantic
definition. A K configuration is a collection of cells representing various components of the

program state (e.g. a cell for the physical register %rsp) which are populated with concrete
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values (e.g. the address of the top of the stack) to represent a specific state of the program.
The specification of the cells and their expected content is part of the K semantic definition
of a language. The rest of the K semantic definition is a set of rules that describe how to
transition from a given configuration to valid next ones according to the language semantics.
Hence, program states are described by K configurations and execution traces are described
by sequences of configurations produced by applying rules to a starting configuration. In

the following we use the terms configuration and state indiscriminately.

4.2.6 Characterizing Synchronization Points

Each synchronization point is a pair of symbolic states of the input and output programs
accompanied by a set of equality constraints over symbolic variables found in the two states.
Figure 4.3 shows the synchronization points generated by our TV system for the programs
in Figure 4.2. For example, the synchronization point pl consists of a symbolic state for the
LLVM IR program that represents states entering the for.cond basic block while coming
from the entry basic block, and a symbolic state for the Virtual x86 program that repre-
sents states entering the .LBB1 basic block while coming from the .LBBO basic block. In
addition, the point represents only pairs of states that satisfy the equality constrains %d =
hvr7_32, ha.0 = %vr6_32, %n = %vr8_32, and %vr9_32 = 1, where the names of the virtual
registers serve also as the names of the symbolic values that they hold in the correspond-
ing symbolic states. In general, each synchronization point describes a potentially infinite
number of input and output program state pairs, one pair for each concrete substitution of
the symbolic variables of the two states that satisfies both state constraints as well as the
equality constraints of the synchronization point.

To prove cut-bisimulation, the synchronization points should be a cut for the programs,
i.e., “covering” all possible program executions (see Chapter 3). In the rest of this subsection,
we discuss how the synchronization point generator creates such a set of points to be given
to KEQ using compiler-provided hints and static analysis results. Please note that this
generator is specifically designed for the ISel pass of LLVM. As discussed earlier, different
transformations would require different synchronization point generation strategies.
Function Granularity An important design decision is whether input/output function
pairs should be treated independently or not. When function pairs are treated independently,
the translation of each function is considered a unique instance of the equivalence checking
problem. In this case, we can assume that the called functions will be translated correctly,
and hence function calls to the same function are equivalent. This is the same assumption

that the compiler makes when applying any intra-procedural transformation to a function,
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and for this reason treating function pairs independently is a natural choice when doing
translation validation of an intra-procedural transformation, such as ISel. This approach
has the added benefit that it deals uniformly with cases of missing code and compile-time
unknown callees: Every function call, whether the callee is known, unknown, or missing is
treated the same.

Function Entry and Exit We generate synchronization points that cover the entry and
corresponding exits of each function pair. These are the points p0 and p3 in Figure 4.3 for
the program in Figure 4.2. We can infer the equality constraint for these points from the
calling convention.

Loop Entry We also generate synchronization points that cover the entries of corresponding
loops in order to cover states that belong to cycles. These are the points pl and p2 in Fig-
ure 4.3 (one point per predecessor to expedite the symbolic execution of the phi instructions).
The relation between loops in the input and output is provided as a compiler-generated hint.
The equality constraints for these points relate corresponding live registers in the input and
output. The register correspondence is provided as a compiler-generated hint. The liveness
information is computed by a static analysis.

Callsites Assuming that calls starting from equivalent states result in returns to equivalent
states, it suffices to generate synchronization points before and after corresponding callsites.
A synchronization point before a callsite is treated as covering an exiting state (meaning
that we do not symbolically execute the call itself in KEQ). The equality constraints for a
point before a callsite are inferred from the calling convention. The equality constraints for
a point after a callsite relate corresponding live registers in the input and output as well as
the return value registers (inferred from the calling convention).

Memory state Finally, all synchronization points should contain constraints that ensure
that corresponding memory objects accessible by the functions hold the same contents.
Since our prototype uses a common memory model for input and output, this requirement
is translated to a simple equality constraint between the whole memory of the input and
output.

In summary, the only compiler generated hints required in our approach are pairs of
corresponding LLVM and Virtual x86 virtual registers and of corresponding loops. The hint
generator records and outputs these for each translation instance. Its implementation is
trivial, adding just about 500 lines of C++ code to ISel, and does not require any formal

methods expertise.
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4.2.7 Trusted Synchronization Points

It is important to note that we only need to trust that the generated synchronization
points: (a) cover all the entry program points in the two functions, and (b) describe equiva-
lent states, i.e. states that are related in the acceptability relation. The two above require-
ments ensure that the generated synchronization points form a cut for the (terminating)
programs and are related in acceptability relation. These are indeed the requirements, along
with proving that the points form a cut-bisimulation, for an equivalence proof.

There is a clarification we need to make in the above observation. There is an extra
requirement for a set of synchronization points to form a cut for a pair of (potentially non-
terminating) programs: synchronization points need to cover corresponding exiting points as
well as corresponding non-terminating execution paths. Moreover, the latter should be such
that we can always reach a synchronization point in a finite number of steps when starting
from a synchronization point. However, we do not need to trust that the generated synchro-
nization points satisfy these properties. Indeed our equivalence checking algorithm will fail
to terminate if these properties are not satisfied: When the KEQ symbolically explores a path
leading to an uncovered pair of corresponding exiting points, it will fail to reach a synchro-
nization point before the programs exit, hence failing to prove cut-bisimulation. Similarly,
when starting from a synchronization point in a not properly covered, non-terminating path,
the symbolic execution would need to explore an infinite number of steps to reach another
point in the path. Thus, if the generated synchronization points do not form a cut for a
non-terminating program, KeQ will fail to prove equivalence (it will in fact terminate with
a time-out exception).

Other than that, we do not need to trust the placement of the rest of the generated
synchronization points. For a pair of terminating programs, the points form a cut as long
as the entry and exits of the two programs are covered and we only need to trust that the
entry points are covered. For a pair of non-terminating programs, as discussed above, we do

not need to trust that the non-terminating paths are covered appropriately.

4.2.8 Characterizing Undefined Behaviors

The ability to handle undefined behaviors is an important aspect of a practical TV system.
Our prototype handles undefined behaviors related to memory out-of-bounds accesses as well
as signed integer overflow.

We model these undefined behaviors by a set of uniquely marked error states. When such

behavior can potentially happen in a symbolic state, our semantics have rules to conditionally
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branch into an error state, which captures information about the nature of the reached
undefined behavior. Our acceptability relation for LLVM IR and Virtual x86 relates LLVM
error states to any Virtual x86 state. On the other hand, Virtual x86 error states are only
related with relevant LLVM error states in the acceptability relation, e.g. the out-of-bounds
access error state in Virtual x86 is related only to the out-of-bounds access error state
in LLVM. This way KEQ automatically reverts to checking refinement in the presence of

undefined behaviors.

4.2.9 FExample of Validation with KEQ

To illustrate how KEQ works within the Instruction Selection translation validation pro-
totype, consider the running example in Figure 4.2. At the beginning of the programs, we

have the symbolic synchronization point p0 which is a triple (sy0, 8}, ¥po), Where

Spo = %020 — ag * %d — do * %n — ng (4.1)
Sho = edi > ag x esi — dj * edx — ng (4.2
Yoo =ap=ay N\ do=dy N ng=ny (4.3)

are the symbolic state of the LLVM program, the symbolic state of the x86 program (x is
a separator for map bindings), and the constraint for s, and s}, to be related, essentially
saying that the inputs of the two programs are the same. Mathematically, p0 denotes the
set of infinitely many pairs of states {(sp0,5,0) | Ypo} = {(%20 — a * %d +— d * %n
n, edi — a*xesi — dxedx — n) | a,d,n € N} (an over-approximation including all the
pairs of interest). Symbolic synchronization points pl, p2, and p3 are similarly defined (see
Figure 4.3).

Next we illustrate how KEQ symbolically runs Algorithm 3.1. Let P = {p0, p1,p2, p3}.
First, KEQ picks one point (say p0) from P (line 2 of Algorithm 3.1) and executes the function
check with it. In check, it first symbolically executes each program (lines 7 and 19) until
they reach another synchronization point (line 21). In our case they reach pl with the pair

of symbolic states

Spl = Spo (4.4)

Sp1 = Spo * Sovr8 = ng k HvrT = d * %ovr6 — ag * %ovrd — 1 (4.5)

KEQ checks if {(sp1,5,;) | o} is included in pl (line 9), which is true.
Next, suppose KEQ picks p2 (line 2). Symbolic execution starting from p2 yields two pairs
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Result ‘ #Functions

Succeeded 4,331
Failed due to timeout 206
Failed due to out-of-memory 179
Other 16
Total 4,732

Figure 4.5: Translation validation results for GCC benchmark

of symbolic traces, that reach synchronization points p2 (through the for-loop body) and p3
(escaping the for-loop), respectively. Let us consider the first case. We have the pair of the
final states sy = %d — da * addl — So + as + da * %n — ng * add — ag + dg * inc — iy + 1
with the path condition iy < ny (due to icmp ult), and s, = %vr7 = dj * %vrd —
sh+ah+dy*x%vr8 — nhx%vr3 — ab+dyx%vr5 — iy +1 with the path condition i, —nj < 0
(due to sub and jae), where we have ¥,2 = as = ay A do = dy A\ 59 = s Nig = il A ng = nl.
KEQ checks if {(sp2, 8}2) | ¥p2} is included in p2 (line 9), which is true. Regarding the path
conditions, KEQ checks if i5 < ny and i — nj, < 0 are equivalent given 1), which is true.
The other case for p3 is similar and check with p2 returns true. Then, KEQ continues to
pick from the remaining synchronization points and execute check with each of them (loop

at lines 2-4), eventually returning true (line 5).

4.3 EVALUATION ON COMPILATION OF REAL-WORLD CODE

We evaluate the Translation Validation system for Instruction Selection in two ways. First,
we apply the system on the compilation of the GCC SPEC 2006 benchmark [26]. Second, we
reintroduce several bugs that were found and fixed in the code of the Instruction Selection
pass of LLVM and verify that our system does not validate translations that trigger said

bugs and thus contain miscompilations.

4.3.1 Application to GCC from SPEC 2006

We applied the Translation Validation prototype to the source code of the GCC SPEC
2006 benchmark, a version of an important piece of software that affects the correctness
of many other critical software systems (e.g., the Linux kernel). The GCC source code
is comprised of 5572 C functions, which we compiled to LLVM IR using clang-5.0.2 at
optimization level -O0 and translated to Virtual x86 by the ISel pass of LLVM 5.0.2. For
each verification run, we allocated 2 Intel Xeon CPU ET7-8837 processors at 2.67GHz and

61



2000

800

5, 1500 600
1)
e
(]

g 1000 400
o
w

500 200

0 0

0 200 400 600 0 200 400
Validation time (sec) LOC of LLVM IR (per function)

Figure 4.6: Distributions of validation time and code size

12GB of memory, with a timeout of 3 hours.

Out of the 5572 functions, our evaluation considered 4732 functions that are covered by our
LLVM and x86 language semantics (Section 4.2.2 & 4.2.3). The remaining functions involve
floating point, SIMD, or certain bitwise operations that are not supported by the current
semantics. In the following discussion, 4732 will be the denominator of all percentages
mentioned.

Figure 4.6 shows distributions of validation time and the code size of the functions. With
the above hardware setup, the average time for processing a function in our GCC experiment
is 150 seconds and the median is 0.8 seconds. Note that this does not include the time used
for K to load the semantics and parse the input proofs.

Out of the 4732 functions, our prototype was able to formally verify the translation of
4331 functions (91.52%). Figure 4.5 categorizes the reasons for failure for the remaining 401

functions. We discuss these categories in more detail below.

Timeout 206 functions (4.35%) failed due to timeout (3 hour limit), and the Z3 solving
time was the dominating factor. With the symbolic variant of Algorithm 3.1, KEQ may
make multiple Z3 queries in each step containing path conditions, which grow significantly
over time, particularly when there is a large number of complicated memory operations and
branching conditions. Making things worse, the current integration of Z3 in the K framework
does not use the incremental query solving feature of Z3, and thus solving each query needs
to have a cold start even if many of the complex queries share significant sub-queries. We
believe that this can be improved by integrating the incremental Z3 query solving to the K

framework, which we leave as future work.

Out of Memory 179 functions (3.78%) failed with an out-of-memory exception. All these
failures happened during the parsing of our synchronization point specifications, which were

caused by performance issues in the K builtin parser. The K parser was designed to be
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quite general, equipping a comprehensive parsing ambiguity resolving mechanism, which
does not often scale well. This can be improved by using a more compact representation of
the synchronization point specification to alleviate the burden on the K parser, or by using

a more recent feature of K to generate a static parser ahead of time.

Inadequate Synchronization Points The rest of the failures (16 functions) are due to
an inaccuracy in our liveness analysis, that resulted in a mismatch of LLVM and Virtual
x86 live registers at the beginning of certain basic blocks, i.e. a live register in the x86 block
with no live counter-part in the LLVM block. This caused the VC generator to generate
an inadequate set of synchronization points for an equivalence proof. A more sophisticated

liveness analysis would resolve this issue.

4.3.2 Evaluation with Real LLVM Bugs

We discuss two Instruction Selection bugs that made their way in the LLVM code base.
Although the bugs are currently fixed, we were able to reintroduce them in the compiler and
we attempt to validate translations that trigger the buggy code with our system. In both

cases, the Translation Validation system could not verify the translation.

Write-After-Write Dependency Violation When Translating Store Instructions
This bug causes a miscompilation that violates a write-after-write dependency for a memory
location when subsequent overlapping stores access said location. The compiler erroneously
reorders the two write accesses while attempting to optimize the compilation of the store
instructions by merging them into fewer wider stores.

This is a bug for the x86-64 backend and it last appeared in clang 3.7.x (as a regression from
older versions) for optimization levels -O2 and -O2 [76]. Figures 4.7 and 4.8 demonstrate
the miscompilation. Figure 4.7 shows the LLVM code. The shown function performs 3
2-byte wide stores at offsets 2, 3, 1 of a global byte array. This means that the first two
stores both write the byte at offset 3. A straight-forward correct translation to x86-64 is
shown in Figure 4.8(a), while Figure 4.8 shows a correct optimized compilation: The third
store has been merged into the first store that becomes a 4-byte wide store. This is correct
because there is no dependency between the third store and any of the rest and the order
of the first and second store has been preserved. On the other hand, Figure 4.8(b) shows
the miscompilation due to the bug: This time the first store has been merged into the third

thus reversing the write-after-write dependency between the first and second store.
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@b = external global [8 x i8]

define void @foo() {

entry:
store i16 0, i16% bitcast (i8* getelementptr inbounds ([8 x i8], [8 x i8]* @b, i64 0, i64 2) to il6%)
store i16 2, i16% bitcast (i8* getelementptr inbounds ([8 x i8], [8 x i8]* @b, i64 0, i64 3) to il6%)
store i16 1, i16x bitcast (i8% getelementptr inbounds ([8 x i8], [8 x i8] @b, i64 0, i64 0) to i16%)
ret void

}

Figure 4.7: LLVM function for the write-after-write dependency violation bug

foo: foo: foo:
movw $0, b+2(%rip) movw $2, b+3(%rip) movl $1, b(%rip)
movw $2, b+3(%rip) movl $1, b(%rip) movw $2, b+3(%rip)
movw $1, b(jrip) retq retq

retq

(a) Simple correct translation (b) Optimized incorrect translation (c) Optimized correct translation

Figure 4.8: x86 functions for the write-after-write dependency violation bug

Our system catches the bug, since KEQ cannot prove the candidate synchronization point
set is a cut-bisimulation. Indeed, starting from the entry point and assuming that the global
memory contents are the same, the symbolic execution of the input and output programs
leads to different memory contents for the byte at offset 3, hence not allowing KEQ to prove

the constraint for equal memory contents at the exiting synchronization point.

Incorrect Load Narrowing with Non-Power-of-Two Types This bug causes a mis-
compilation that leads to an out-of-bounds memory access. The compiler erroneously com-
piles a 4-byte wide load to an 8-byte wide load when attempting to narrow a load that
accesses a memory location holding a non-power-of-two bitwidth type.

This is a bug for the x86-64 backend and it was found in clang 2.6.x for optimization
levels -O2 and higher [77]. Figure 4.9 and 4.10 demonstrate the miscompilation. Figure 4.9
shows the LLVM code. The shown function loads from a memory location holding a 12-
byte (196) integer. It then logically shifts right the lower 8 bytes and stores the remaining
4 bytes, zero-extended as an 8-byte (i64) integer to another memory location. A correct
translation to x86-64 is shown in Figure 4.10(a): The code first loads the upper 4 bytes of the
source location into eax, thus zeroing-out the higher 4 bytes of the 64-bit general purpose
register rax, according to the x86-64 semantics. It then stores rax which now holds the
correct contents (the higher 4 bytes of the store zero-extended as an 8-byte integer) to the
destination memory location. On the other hand, Figure 4.10(b) shows the miscompilation
due to the bug: This time the load is 8-byte wide, thus accessing 4 out-of-bounds bytes that
may contain garbage or cause a segmentation fault. In the former case, the value stored at
the destination is incorrect because the 4 higher bytes are not zeroed-out but rather have

random values.
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Qa
@b

= external global i96, align 4

= external global i64, align 8
define void @foo() {

%srcval = load 196, 196* Q@a, align 4
%tmp96 lshr i96 Y%srcval, 64

%tmp64 trunc i96 %tmp96 to i64
store i64 %tmp64, i64* @b, align 8
ret void

}

Figure 4.9: LLVM function for the load narrowing bug

foo: foo:
movl a+8(%rip), %eax movq a+8(%rip), %rax
movq %rax, b(%rip) movq %rax, b(%rip)
retq retq

(a) Optimized correct translation (b) Optimized incorrect translation

Figure 4.10: x86 functions for the load narrowing bug

Similar to previous case, our system catches the bug, since KEQ cannot prove the candidate
synchronization point set is a cut-bisimulation. Indeed, starting from the entry point and
assuming that the global memory contents are the same, the symbolic execution of the output
x86 program branches into an out-of-bounds error state in addition to reaching the exiting
point. This error state cannot be matched with any state in the input LLVM program, hence
not allowing KEQ to prove cut-bisimulation: there is a behavior in the output that is not

found in the input?.

2In fact, in this case we cannot even prove that the output simulates the input.
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CHAPTER 5: TRANSLATION VALIDATION FOR REGISTER
ALLOCATION

5.1 INTRODUCTION

Register allocation is a phase present in every modern optimizing compiler that deter-
mines the mapping from program variables to physical registers of the target instruction set
architecture. Typically compilers convert the input program to an intermediate language
representation that is amenable to analysis and optimization, e.g., GIMPLE [17] in GCC |2]
and the LLVM IR [9] in the LLVM compiler infrastructure [1]. These intermediate languages
feature an infinite number of temporary variables (sometimes called virtual registers) that
need to be mapped to the limited physical register file of the target instruction set architec-
ture in an efficient way that maximizes register usage and minimizes the need to use memory
as temporary storage (spilling). This is an NP-complete problem (specifically, it can be re-
duced to graph coloring |78]) and the Register Allocation phase of modern compilers includes
a complex set of transformations that aims to give a best-effort solution: spilling [78, 79|,
register coalescing [80], live range splitting [81], and rematerialization [82].

Verification of register allocation is an important phase for compilation verification due to
both its complexity of implementation and its ubiquity as part of compiler backends. Unfor-
tunately, it has been proven challenging from the point of view of verified compilers. Some
of its transformation algorithms have been proven hard to normally prove correct without
sacrificing some of their complexity and thus their optimization capabilities. Specifically, a
state-of-the-art verified C compiler, CompCert [10], is shown to use a sub-optimal spilling
algorithm for the transformation, so that the implementation can be proven correct.

In this Chapter, we present our Translation Validation system for compilation verification
of the Register Allocation phase of the LLVM compiler. Similar to the Instruction Selec-
tion system, the system accepts the input and output programs and a set of verification
conditions, i.e formal descriptions of correspondence between variables in the two programs,
generates a machine-checkable proof of equivalence, and verifies correctness by checking said
proof.

For Register Allocation, we reuse the whole equivalence proof system used in Instruc-
tion Selection (cut-bisimulation based equivalence plus KEQ), while only implementing a
transformation-specific verification condition generator. We implement a verification condi-
tion generator specific to the Register Allocation phase in a modern optimizing compiler,
including advanced optimizations like live range splitting, register coalescing, and remateri-

alization. Note that KEQ needed no modifications to accommodate the Register Allocation
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phase. Instead, we were able to focus our efforts on the development of an inference algo-
rithm for the verification condition generator. Our algorithm is black-box: it is capable of
inferring the correspondence between virtual registers in the input code and physical reg-
isters and/or spill memory locations in the output code solely by analyzing the input and
output programs, and requiring minimal assistance from the compiler itself !. Thus, we ar-
rive to a highly practical compilation verification solution for the complex phase of Register
Allocation of a modern optimizing compiler, as well as provide more evidence for the value
of a modular TV System with a reusable equivalence checker.

We evaluate our TV System on the GCC benchmark of SPEC 2006 [26]. We are able to
successfully validate 4574 out of the 4732 supported GCC functions (96.67%). The main
reasons for the failures are discussed in Subsection 5.4.3, mainly inadequacies of our infer-
ence algorithm to handle specific edge cases as well as performance reasons related with
symbolic execution. We also reintroduced two actual register allocation bugs to LLVM and

verified that our system does not validate miscompilations due to said bugs, as shown in
Subsection 5.4.4.

5.2 THE REUSABLE TRANSLATION VALIDATION COMPONENTS FOR
REGISTER ALLOCATION

In this work, we take advantage of the modular TV system for modern compilers pre-
sented in the previous Chapter 4. Specifically, the system is based on a language- and
transformation-independent equivalence checker, namely KEQ. This checker accepts a pair
of programs, the input program and an output program that is the result of a (set of) trans-
formations applied to the input. It is also parameterized by formal semantic definitions for
the input and output languages. Finally, KEQ accepts a set of verification conditions in the
form of synchronization points: pairs of symbolic state descriptions for the input/output
programs that are known to be related along with a set of constrains that equate variables
in the two programs.

An example of synchronization points for an input program and its corresponding output
after register allocation is shown in Figures 5.1 and 5.2: the locations of those points are
shown in the former and the equality constraints in the latter. For example, the synchro-
nization point p2 is a pair of symbolic descriptions of the states of the input and output

programs when execution is reaching basic block .BB1 from block .BB3. These symbolic

!Currently we only require the compiler to provide the number of arguments in a callsite. The inference
algorithm is then able to figure out the registers and/or stack slots that are used for argument passing from
the calling convention.
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1 main: 1 main:

2 .BBO: ;pO 2 .BBO: ;pO

3 COPY %vr2, edi 3

4 movl %vrd, 0O 4 movl eax, O

5 5 movl [frm(1)], edi
6 6 movl [frm(2)], eax
7 jmp .BB1 7 jmp .BB1

8 8

9 9

10 .BB1: ;pl p2 10 .BB1: ;pl p2

11 %vr0 = PHI (%vr4, .BBO), (%vri, .BB3) 11 movl eax, [frm(2)]
12 12 COPY ecx, eax

13 %vr5 = subl %vr0, 19 13 ecx = subl ecx, 19
14 14 movl [frm(3)], eax
15 15 movl [frm(4)], ecx
16 jg .BB4 16 jg .BB4

17 jmp .BB2 17 jmp .BB2

18 18

19 19

20 .BB2: ;p3 20 .BB2: ;p3

21 21 movl eax, [frm(3)]
22 %vr8 = addl %vr0, 1 22 eax = addl eax, 1
23 23 movl ecx, [frm(3)]
24 movsxq %vr9, %vr0 24 movsxq rdx, ecx

25 movl [frm(0), 4, %vr9l, %vr8 25 movl [frm(0), 4, rdx], eax
26 jmp .BB3 26 jmp .BB3

27 27

28 28

29 .BB3: ;p4 29 .BB3: ;p4

30 30 movl eax, [frm(3)]
31 %vrl = addl %vr0, 1 31 eax = addl eax, 1
32 32 movl [frm(2)], eax
33 jmp .BB1 33 jmp .BB1

34 34

35 35

36 .BB4 : ;pb 36 .BB4: ;pb

37 37 movl eax, [frm(1)]
38 movsxq %4vr6, %vr2 38 movsxq rcx, eax

39 movl %vr7, [frm(0), 4, %vré6] 39 movl eax, [frm(0)], 4, rcx]
40 COPY eax, %vr7 40

41 ;p6 41 ;p6

42 retl eax 42 retl eax

(a) Before Register Allocation (b) After Register Allocation

Figure 5.1: A simple array accessing program in Virtual x86 before and after Register
Allocation (with the greedy allocator of LLVM). Comments in red show the program points
for which synchronization points are generated by our inference algorithm.

state descriptions contain symbolic variables for the live values at this point (e.g. for the
value of virtual register %vrl in the input program). The point p2 also includes a set of
equality constraints between such symbolic variables in the input and output. The pairs
of concrete states that satisfy the equality constraints are considered to describe execution
points that the two programs synchronize.

Given the input and output program along with a proposed set of synchronization points,
and parameterized by the input and output language semantics, KEQ attempts to prove that
there exists a bisimulation relation [22] between the two programs, the existence of which is
enough to prove equivalence. The KEQ equivalence algorithm involves symbolic execution
of both programs, and, in its core, it tries to answer a set of reachability queries: starting
from each pair of synchronization points (that do not describe exiting states) can we reach,
after a finite number of steps in each program, states that are also captured by a pair of

synchronization points. If the answer is yes, then the proposed synchronization points are
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Sync  Prev BB Equality Constraints

Point

p0 - frm(0) = frm(0), Y%edi = %edi

pl .BBO hvr2 = [frm(1)], %vrd = [frm(2)],
frm(0) = frm(0)

p2 .BB3 %vr2 = [frm(1)], Y%vrl = [frm(2)],
frm(0) = frm(0)

p3 any hvr2 = [frm(1)], %vr0 = [frm(3)],
frm(0) = frm(0)

pd any wvr2 = [frm(1)], %vr0 = [frm(3)],
frm(0) = frm(0)

PO any %vr2 = [frm(1)], £frm(0) = frm(0)

p6 any %eax = %eax

Figure 5.2: Equality constraints of synchronization points for the translation of the simple
array accessing program in Figure 5.1.

in fact a bisimulation relation for the programs, and assuming that the proposed point do
describe equivalent states, the programs are equivalent.

KEQ is implemented as a tool within the K framework [24]. K is language for defining
operational semantics of programming languages. These semantic definitions are used to
specialize a series of generic tools into tools for the defined language. KEQ expands on that

principle as it can be parameterized by two (possibly different) languages.

5.2.1 KEQ in Instruction Selection and Virtual x86

KEQ has been successfully applied to the Instruction Selection phase of the LLVM com-
piler [19], that is the phase that translates LLVM IR [9] to Machine IR [21], a generic low
level representation that can be parameterized with the specific opcodes of a target instruc-
tion set architecture and retains some higher-level features such as an infinite register file,
phi instructions and SSA form, function signatures, etc. We call the Machine IR form of the
x86-64 instruction set [18] Virtual 86. This is the output language for Instruction Selection
and also the input and output language for the Register Allocation phase that is addressed
in this work.

A feature of Virtual x86 that plays an important role in Register Allocation is stack frames.
Virtual x86 functions can define any number of such stack frames, one frame for each stack
slot in the function’s call frame. These frames are typically utilized to allocate local objects
with not known compile-time size. After Register Allocation they are also utilized as spill

locations, stack slots used in addition to physical registers, when the latter are not enough
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to store all live values at a given point in the function’s code.

5.2.2 KEQ in Register Allocation

We are able to use both KEQ and the Virtual x86 semantic definition presented in 4.2.3
without any modifications for our TV prototype for the Register Allocation phase of the
LLVM compiler [20]. The additional component required to arrive to a fully functional TV
system is a custom synchronization point generator for Register Allocation. We discuss the
generator in detail in Section 5.3. To familiarize the reader with the transformations of
Register Allocation, here we give an example of a pair of input and output programs along
with the desirable synchronization points that KEQ would use to prove equivalence.

Figure 5.1 shows a simple function that accesses a local array object, stored in frm(0)
as an array of 20 32-bit integers. The function is shown in Virtual x86 before and after
the Register Allocation phase. As expected, the input function uses virtual registers in SSA
form. Physical registers are only used for parameter passing (line 3) and return values (lines
40 and 42). The function also uses some of the so-called pseudo-instructions of Virtual x86,
namely COPY and PHI. The output function uses only physical registers and it is not in SSA
form any more, the PHI instructions have been removed as well. In addition, more frames
are used as spill locations.

In order to prove the two programs equivalent, we generate seven synchronization points,
p0 to p6: the program locations for those points are shown in red in the code in Figure 5.1
while their equality constraints are shown in Figure 5.2. Given these synchronization points,
KEQ is able to prove equivalence: Given any synchronization point other than the exiting
point at p6, and after symbolic execution starting from the given point itself, KEQ can reach
another synchronization point in a finite number of steps. For example, starting from pl
in both programs each program reaches either p2 or p5 after one loop iteration. Moreover,
assuming the equality constraints for pl, KEQ can prove that after symbolic execution, either
the equality constraints for p2 hold true (when assuming the path condition for reaching p2)

or the equality constraints for p5 hold true (when assuming the path condition for reaching
p5).

5.3 BLACK BOX SYNCHRONIZATION POINT GENERATOR FOR REGISTER
ALLOCATION

In order to construct the set of synchronization points and their equality constraints as

needed by KEQ, we design a generator that operates on the input and output programs
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without any assistance from the compiler itself. In the following we present the synchroniza-
tion point generator in more detail and discuss the equality constraint inference algorithm

that is the basis of the generator.

5.3.1 Synchronization Point Placement

Here we discuss the various program points that are selected as synchronization points
from the generator. Note that we break the problem of program equivalence into smaller
problems of function equivalence for corresponding functions in the input and the output.
By doing so, we require synchronization point sets for function pairs and we invoke KEQ for
each function pair independently. We generate synchronization points for a given function
pair assuming that calls to corresponding functions with equal arguments have equivalent
effects to the caller function states.

As shown in Chapter 3, the synchronization points ought to form a cut for each program
for the equivalence proof to be valid. A cut C' in a program P is a set of program points
in P, such that, there exists a constant bound, Bp¢ specific to P and C, so that in any
execution of P, the number of consecutive instructions between two successive cut points
is at most B(P,C). One simple way to create a cut is to include the program points at
every function entry, function exit, and at least one instruction in every cycle in the control
flow graph of every function. We can then place synchronization points at corresponding
pairs of cut points, i.e., every pair of function entries, pair of exits, and at least one pair of
instructions in every cycle in the control flow graph.

For register allocation, we in fact generate more than the minimum points needed for a
cut: we generate a synchronization point per start of corresponding basic blocks, plus pairs
of return or other exiting instructions. A 1-1 basic block correspondence is trivial to infer
since Register Allocation does not modify the control flow graph. The equality constraints
for these synchronization points are inferred by the algorithm presented in Subsection 5.3.5.
These constraints require that live virtual registers in the input are equal to the corresponding
physical registers or spill frames in the output. The equality constraints for return or exit
points can be generated based on the calling convention, with no need for inference.

Finally, we generate synchronization points before and after corresponding function calls,
effectively treating function calls as exiting points. The equality constraints for these can also
be generated based on the calling convention. Specifically for the points after a function call,
we need to add equality constraints for the corresponding live registers and /or spill locations.
We do that by using the inferred live pairs at the entries of successors of the blocks containing

the call and propagating the liveness information backwards until we reach the instructions
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after the call in each function.

It is important to note that we only need to trust that the generated synchronization
points cover all the entry and exiting program points in the two functions and that the
constraints of those points correctly reflect equivalent entry and exiting states. Other than
that, we do not need to trust the placement and the constraints of the rest of the generated
synchronization points. KEQ will not be able to successfully prove equivalence in presence

of bogus synchronization points other than the trusted ones.

5.3.2  Spill Locations in Virtual x86

Before discussing the inference algorithm, we briefly discuss how the algorithm recognizes
spill locations and spill /unspill instructions in the output of the Register Allocation phase.
As we saw in Subsection 5.2.1, Virtual x86 uses frame identifiers to refer to the various
stack slots accessed by the function. These are removed in the Prologue/Epilogue Insertion
phase of the LLVM compiler backend, which follows the Register Allocation phase. Spill
locations in the output are then such frame identifiers. Since frames in the input program
are used for stack-allocated variables (implementing the LLVM alloca instruction), they
are not reused in the output code. This enables us to use a simple technique to pinpoint the
frames that correspond to spill locations: they are the extra frames generated after Register
Allocation and not existing in the input function. In the example of Figure 5.1, the frames
that correspond to spill locations are frm(1), frm(2), and frm(3), while frm(0) appears in
both the input and output and correspond to the stack slot holding the local array object.

Given the knowledge of the frames corresponding to spill locations, we identify spill and
unspill instructions as memory stores and loads that access frames designated for spill loca-
tions. Again in the example of Figure 5.1, instructions in lines 5, 6, 14, 15, and 32 are spills,

while instructions in lines 11, 21, 23, 30, and 37 are unspills.

5.3.3 Inference Algorithm Intuition

The desirable inference result for the synchronization point generator is, for each pair of
corresponding basic blocks, a set of pairs (R,, L), where R, is a live virtual register in the
input and L is either a physical register or stack frame in the output. To infer these pairs, we
make the observation that the input and output programs for register allocation maintain
the same opcode sequence, modulo various COPY, PHI, and spill /unspill instructions that
are inserted or removed by the allocator. (Rematerialization violates this assumption and

requires a minor extension to the algorithm, as explained in Section 5.3.7.) Moreover, these
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same-opcode instructions have the same immediate (constant) operands and can only differ
in their register /frame operands. Finally, the extra instructions are only copying their input
to their output. Therefore, by ignoring the copying instructions (which do not necessarily
have counterparts in the other program), we can use the correspondence of the rest of the
instructions to infer pairs of live registers and/or frames.

The inference algorithm traverses the input and output functions matching such same-
opcode instructions and collecting information about register and/or frame pairs by com-
paring their operands. These pairs must hold the same value for equivalence but they are
not necessarily live at the entry of the block. Therefore, the algorithm propagates these
pairs backwards to the entry of the block, updating their counterpart registers or frames
as they flow through copying instructions and dropping pairs that are overwritten (killed)
by non-copying instructions. The algorithm treats copying instructions in a special way:
when a copying instruction kills a register/frame by defining it, the algorithm replaces this
register/frame with the right-hand side of the copy and continues propagating the pair back-
wards to the entry of the block. The pair that finally reaches the entry of the block (if any
pair reaches at all) is the live pair that is inferred by the algorithm. This way the algorithm
takes into account the effect of copying instructions for the liveness analysis, but otherwise

ignores them for the inference of corresponding register and/or frame pairs.

5.3.4 Inference Algorithm Assumptions

Based on the discussion above, here we list the assumptions made by our inference algo-

rithm:

e There is a 1-1 correspondence of nodes (basic blocks) and edges in the CFGs of the

input and output functions.

e Within corresponding basic blocks, there is the same sequence of instructions except
specific copying instructions. Each pair of matching instructions has the same opcode
and matching immediate and /or symbol operands and may only differ on register/stack

frame operands.

e Unmatched copying instructions are allowed within otherwise matching instruction
sequences. These instructions copy a register or frame operand to another register or

frame operand. PHI instructions are also considered copying instruction.

These assumptions are satisfied by the LLVM Register Allocation phase, and are general

enough for register allocators found in most modern optimizing compilers. Specifically, let
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us comment on how spilling and SSA elimination, two transformations that are intrinsic

parts of Register Allocation satisfy the above assumptions.

Spilling Register spilling only inserts copying instructions in the form of spills and unspills,
i.e. stores and loads to designated stack slots. The inference algorithm is equipped to deal

with register spilling as discussed above.

SSA Elimination After register allocation the code cannot be in SSA form since the
physical register file is finite. So SSA elimination needs to happen during or before register
allocation. The inference algorithm is equipped to deal with SSA elimination since it only
removes and adds copying instructions (PHI and COPY instructions respectively), which are

skipped by the algorithm during matching.

5.3.5 Inference Algorithm in Detail

Algorithms 5.1 to 5.3 present in pseudocode form the inference algorithm used to generate
the equality constraints for the various synchronization points discussed in Subsection 5.3.1.
The algorithm accepts the control flow graphs (CFGs) for the input and output functions
and computes live-in pairs: pairs of registers and/or frames in the two programs that are
live at the entry of corresponding basic blocks, and should hold equal values for equivalence.
Note that we have designed the algorithm so that the assertions shown in the pseudocode
should not fail for legal inputs, and the assertions are shown here for explanatory purposes

by conveying key invariants of the algorithm.

Algorithm 5.1: Inference algorithm for Register Allocation.

1 Function main(Fp.c, Fpost):
2 LiveInPairs < map(Q);
3 MatchedInstrs < set(Q);

// Infer live-ins
for (BBpre, BBpost) in blocks(Fpre, Fpost) do
L infer(BBy.start, BBpye, BBpost.start, BBpost, LiveInPairs, MatchedInstrs);

// Propagate live-ins backwards in CFG
propagate(Fj e, Fpost, LiveInPairs);

9 return LivelnPairs;

The entry point to the algorithm is function main, as shown in Algorithm 5.1. The

algorithm operates in two phases. First, it infers corresponding register-register and/or
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register-frame pairs by matching instructions with the same opcode and it propagates these
pairs through copying instructions to the entry of their basic block (alg. 5.1, lines 5 to 6).
These propagated pairs are the initial live-in pairs that feed the second phase, where live-
in pairs are propagated backwards through predecessor blocks in the control flow graphs
(alg. 5.1, line 8). Finally the algorithm returns a mapping, LivelInPairs (line 9), from each

basic block to a set of live-in pairs.

Algorithm 5.2: Inference phase.
1 Procedure infer (Ip.e, BBpre, Ipost, BBpost, LivelnPairs, MatchedInstrs):

// Find next pair of non-copying

// instructions

Iyre < nextNonCopyingInstr([yre, BBpre);
Iost < nextNonCopyingInstr(lpost, BBpost);

// Check for block end

if blockEnd([pre, BBpe) then
assert blockEnd(Ipost, BBpost);

L return;

L0V R V)

© o N O

10 // Record match
11 assert match(lpre, Ipost);
12 insert(MatchedInstrs, (Ipre, Ipost));

13 // Infer live-in pairs by

14 // following matching uses backwards

15 for (Upre, Upost) in zip(uses(Ipre), uses(Ipost)) do

16 Lpre < £indLiveinO0rKill(Upre, Ipre, BBpre);

17 Lpost < £indLivein0rKill(Upost, Ipost; BBpost);

18 if Ly € BBy and L5t € BBjost then

19 // Uses not live,

20 // assert killing definitions have been matched
21 assert (Lpye, Lpost) € MatchedInstrs;

22 continue;

23 // Live-in pair found

24 assert Ly, ¢ BBpre;

25 assert Lpost & BBpost;

26 insert(LiveInPairs[(BBpre, BBpost)]s (Lpre; Lpost));
27 // Continue inference for next pair

28 // of matching instructions

29 infer(Ipre, BBpre, Ipost; BBpost, LiveInPairs, MatchedInstrs);
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Inference Phase The inference phase is shown in Algorithm 5.2 for a pair of corresponding
basic blocks. This phase scans the two basic blocks to find pairs of matching instructions,
i.e. instructions with the same opcode and immediate arguments that are not COPY, PHI, or
spill/unspill instructions (referred to as copying instructions). To do so, it skips any such
copying instructions in the two blocks until it finds the next non-copying instruction pair
(alg 5.2, lines 4 to 5). After a match is found in line 11, it is recorded in line 12. Note that
the algorithm asserts that successive pairs of non-copying instructions should match. This is
the case for every transformation related with Register Allocation, except Rematerialization.

For more details on how we handle rematerialized instructions, see Subsection 5.3.7.

Algorithm 5.3: Backwards propagation of a use to find a live-in at the block entry.
Returns either a live-in or a killing definition.

1 Function findLiveinOrKill(Use, I, BB):
2 Iprey < previousInstr(l, BB);

3 if blockStart(lyrey, BB) then
4 // Block entry reached,
5 // use is live-in
6 return Use;
7 if not Use in defs(/,,¢y) then
8 // Def not found,
// continue search backwards
10 return findLiveinOrKill(Use, Ip ey, BB);
11 if isCopying(Iprey) then
12 // Copying def found,
13 // search backwards with new use
14 return findLiveinOrKill(uses(Iprev), Iprev, BB);

15 // Non-copying def found,
16 // use is killed,

17 // return killing def

18 return Ip,¢,;

When an instruction match is found, the algorithm attempts to find live-ins at the begin-
ning of the blocks by matching the input operands (uses) of the two matched instructions
(alg 5.2, line 15), and searching back to check that they are not killed by a previous defini-
tion within the current block. This is done by invoking the findLiveinOrKill function for
each of the two matched uses (alg 5.2, lines 16 and 17). These calls return either a pair of
live-ins corresponding to the matched uses, in which case the pair is recorded in the mapping

(alg 5.2, line 26), or a pair of instructions with killing definition for the matched uses, in
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which case the search for live-in pairs continues with the next pair of matched uses (alg 5.2,
lines 18 to 22).

The findLiveinOrKill function, shown in Algorithm 5.3, recursively checks the previous
instruction for a definition that matches the given use (alg 5.3, lines 2 and 7). If a definition
is not found in the previous instruction the search continues backwards (alg 5.3, line 10). If
the search ever reaches the start of the block, the the current use is a live-in and is returned
(alg 5.3, lines 3 to 6). On the other hand, if a definition is found in the previous instruction,
then the algorithm checks if the definition instruction is copying or not (alg. 5.3, line 11).
In the former case, the search continues with a new use, the right-hand side of the copying
instruction (alg. 5.3, line 14). In the latter case, the search stops since the non-copying
definition has killed the current use, and the killing definition is returned (alg. 5.3, line 18).

Note that the actual algorithm requires a modification to correctly handle live-ins that
have been discovered through a PHI copying instruction, as they are only live when the block
is reached from a specific, as opposed to any, predecessor. See, for example, the live-in %vr4
in line 11 of Figure 5.1(a): This live-in is only truly live at the entry of block .BB1 when
the block is reached from predecessor block .BBO and not when it is reached from its other
predecessor block .BB3. We omit this complication in this presentation for clarity, although
our prototype synchronization point generator correctly handles this case by recording the
required predecessor block for such live-in pairs. Later, in synchronization point generation,
we generate one synchronization point per predecessor if any of the inferred live-ins has
additional predecessor information attached. That is the case for synchronization points pl
and p2 in Figure 5.2, both of which correspond to same program point (entry of basic block
.BB1) but describe different program states where execution has reached .BB1 from different
predecessors. In the example of register %vr4 above, this is only a live-in for synchronization

point pl and not for point p2.

Backwards Propagation Phase The backwards propagation phase is shown in Algo-
rithm 5.4. It is a standard Live Variables backwards dataflow problem, but working simul-
taneously on two matching functions: In every propagation step, live-ins in the entry of each
basic block are propagated to the entries of predecessor blocks (alg. 5.4, line 13) as long as
the predecessor in question does not contain a definition for the live-in (alg. 5.4, lines 7, 8,
and 9 to 11), effectively killing the live-in. Note that the algorithm requires both live-ins in
a pair to be either propagated or both killed in the same way (alg. 5.4, line 12). Also note
that backwards propagation goes through copying instructions by using findLiveinOrKill
while propagating the live-ins to the entries of predecessor blocks. Backwards propagation

steps are applied until no change is recorded in the latest step (alg. 5.4, lines 2, 14, and 16
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Algorithm 5.4: Backwards propagation phase.

1 Procedure propagate (Fy e, Fpost, LivelnPairs):

2 LivelInsUpdated < false;

3 // Do one step of propagation

4 for (BBpre, BBpost) in blocks(Fpre, Fpost) do

5 for (BB,,., BB,,) in preds(BBpe, BBpost) do

6 for (Lpre, Lpost) in LiveInPairs[(BBpre, BBpost)] do

7 Ly + £indLiveinOrKill(Lyye, BB,,..last, BB,,.);

8 L5t < £indLivein0rKill(Lyost, BB)ys-last, BB, );
9 if ;. € BB,,. and L, € BB, then

10 // Both live-ins killed in predecessor blocks
11 L continue;

12 assert L), ¢ BB,,. and L, ¢ BB,,y;

13 insert(LiveInPairs[(BB,., BByst)]; (Lipres Lpost));
14 LivelnsUpdated < true;
15 // I1f changes were made, do another step of propagation
16 if LivelnsUpdated then
17 L propagate(Fyy e, Fpost, LiveInPuairs);

to 17), thus allowing live-ins to propagate many blocks backwards as long as they remain
not killed.

5.3.6 Example Application

As an example, let us see how the inference algorithm will arrive to the equality constraints
for synchronization point p3 in Figure 5.2. The first non-copying matching instructions in
the .BB2 basic blocks are the addl instructions in line 22. From these, we get the pair
of uses (%vr0, eax). While propagating the pair backwards, we find the copying unspill
instruction in line 21 that defines eax, thus we replace it with the right-hand side of the
unspill, namely [frm(3)]. This happens in line 14 of Algorithm 5.3. Finally we arrive at
the live-in pair (%vr0, [frm(3)]).

Next matching instructions are the movsxq ones in line 24. From these, we get the pair
of uses (%vr0, ecx). With a similar backward propagation of this pair through the unspill
in line 23, we arrive at the same live-in pair (%vr0, [frm(3)]) as before. Note that the
other pair of operands, (%vr9, rdx), are definitions and so we do not need to propagate
them since we only need to determine the live-ins at the synchronization points, and the

definitions only act as kills for later uses in determining the live-ins.
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The final matching instructions with non-immediate opcodes are the movl ones in line
25. From these, we get three pairs of uses: (frm(0), frm(0)), (4vr9, rdx), and (%vr8,
eax). The first pair propagates backwards to a live-in with no previous definitions in both
programs. The second pair reaches a non-copying definition in line 24 for both programs:
the movsxq instructions are definitions for the uses of %vr9 and rdx that kill both of these
uses. Thus, the algorithm does not generate a live-in pair from this pair of uses. Similarly,
the final pair of uses also reaches a non-copying definition in line 22 for both programs: the
addl instructions are definitions that kill those uses.

In order to arrive to the third live-in pair for p3, (%vr2, [frm(1)]), the algorithm needs
to propagate that pair from block .BB4 during the backwards propagation phase. The pair
is inferred as a live-in pair for block .BB4 in the inference phase and then gets successfully
propagated through predecessor blocks .BB1, .BB3, and finally .BB2, since there are no defi-

nitions for %vr2 or [frm(1)] in these blocks of the input and output functions, respectively.

5.3.7 Inference and Register Allocation Optimizations

Various optimizations happen as part of the Register Allocation phase in order to increase
the quality of the output code, that is to minimize copies and spilling and to maximize the
usage of the available register file. Here we discuss the effect of these transformation to the
output code and how they affect the effectiveness of our inference algorithm. does not affect

the assumptions made by the inference algorithm.

Register Coalescing [80] This transformation aims to minimize unnecessary copies in-
troduced in the code after leaving SSA form. The transformation prioritizes assigning the
same physical register to virtual registers that are the uses and definition of a PHI instruc-
tion, so that to eliminate the copying instructions that would be generated by removing
the PHI instruction when leaving SSA form. This transformation does not introduce any
non-matching, non-copying instructions, thus it does not affect the assumptions made by

the inference algorithm.

Live Range Splitting [81] This transformation introduces copying instructions in order
to reduce the number of different values that are live in any given point, thus reducing
register pressure. The introduced copying instructions break long live ranges of the copied
values, so that fewer values are live at the same time in various points of the code. Again
this transformation only introduces copying instructions and as such it does not invalidate

the assumptions of the inference algorithm.
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Algorithm 5.5: Modification in Algorithm 5.2 for handling rematerializations

1 // Skip remats

2 while not blockEnd(I,ost, BBpost and not match(lpye, [post) do
3 assert isRemat([post);

4 Iost < nextNonCopyingInstr(lpost, BBpost);

Rematerialization [82] This is a variant of live range splitting, where a copy of an
instruction that computes a value is inserted just before a use of that value, instead of
reusing the register in which the value was saved earlier. This way the live range of the
original register is shortened. This transformation has the potential to add non-copying,
non-matching instructions to the output function. The inference algorithm takes its effects
into account by skipping non-matching instructions in the output as long as it can recognize
them as rematerializations. We do this by adding the code shown in Algorithm 1 between
lines 5 and 7 of Algorithm 5.2. In our implementation of the inference algorithm, we have
implemented the isRemat heuristic according to the possible rematerializable instructions
of the X86 backend of the LLVM compiler. These are mov and lea variants that copy a
constant value or compute a constant address (e.g. based on a global symbol plus constant

offset) to a register.

5.3.8 Synchronization Point Generation

The synchronization point generator for our prototype TV system for Register Allocation
combines all the aforementioned parts into a mostly black-box tool that operates on the
input and output Virtual x86 functions and generates a proposed set of synchronization
points that can be given to KEQ for equivalence checking. The generator first parses the two
functions and constructs their CFGs along with the mapping between their corresponding
basic blocks. It also computes which output function memory operations are spills and
unspills as described in Subsection 5.3.2 by comparing the stack frame of the input and
output functions. It finally constructs def/use information for all instructions in the two
programs. To do this for call instructions, the calling convention is used to figure out which
registers and /or frames are used for argument passing. At this point, the generator requires
the number of the arguments on each callsite to be provided as a compiler hint.

All this information is then used by the inference algorithm presented in Subsection 5.3.5
to obtain a set of live-in register and/or frame pairs for each pair of corresponding basic
blocks. The generator uses the live-ins to construct synchronization points at corresponding

basic block entries with correct equality constraints. Another piece of information needed
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for the synchronization point generation is the sizes of various virtual registers appearing in
the input program, the sizes of physical x86 registers are apparent from their names. This
is needed to correctly constraint symbolic variables assigned to the values of various live-in
registers to their appropriate range. The virtual register size information is inferred by the
generator by a separate pass based on the opcodes of the instructions in which they appear
as operands. Finally, the generator constructs synchronization points before and after every

function call and before every return instruction as discussed in Subsection 5.3.1.

5.4 EVALUATION OF THE TV SYSTEM FOR LLVM’S REGISTER ALLOCATION

We evaluate the Translation Validation prototype in three ways. First, we apply the
prototype to some case study programs with interesting features, such as recursion, loop
nesting, and potential non-termination. Second, we apply the prototype to a substantial
subset of the source code of the GCC SPEC 2006 benchmark [26] to showcase its usefulness
in a complex, real-world use case. Last, we reintroduce two register allocator bugs originally
found in LLVM 3.5 and LLVM 7.0 and we verify that our prototype not only rejected
translations affected by those bugs, but also produced enough information for a compiler

developer to diagnose the locations and potential causes of both failures.

5.4.1 Methodology

All the target programs we tested were written in C. For each program, we compiled the
source code into LLVM IR using clang-5.0.2 at optimization level -O0, then translated
to Virtual x86 using the default Instruction Selection (ISel) pass of LLVM 5.0.2. (Recall
that this pass has previously been tested using the KEQ Translation Validation system for
a number of programs (see Section 4.3.) This Virtual x86 forms the input code for our
validation experiments. We then applied the default (fast) Register Allocation pass, to

obtain the output code for our experiments.

5.4.2 Case Studies

We begin with several small case studies to evaluate the capabilities of the translation
validation prototype. The TV prototype successfully proved that the register allocation
pass was correct for all these programs, i.e., that the Virtual X86 before register allocation
is semantically equivalent to that produced after register allocation. The specific programs

we used for these case studies are as follows.
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unsigned collatz(unsigned n) {

unsigned ¢ = 1;

while (n '= 1) {
c =c¢c + 1;
if (n % 2 '= 0) =n *x 3 + 1;
else n =n / 2;

¥

return c;

3

Figure 5.3: The Collatz conjecture testing function.

Fibonacci This program computes the n* Fibonacci number: It is implemented recur-
sively as a straightforward application of the mathematical definition (this is highly ineffi-
cient, but serves to demonstrate applicability to a recursive computation). Checking equiva-
lence at function granularity allows our system to generate synchronization points that will
cover all possible execution trace cycles due to recursion, and therefore avoid infinite loops
of symbolic execution in the equivalence checking algorithm. Indeed, we handle function
calls as exiting points (see Subsection 5.3.1) instead of symbolically executing function calls;
those points serve to break cycles that would be created if we instead symbolically executed

the recursive function calls.

Ackermann This program computes the value of the Ackermann function for given non-

negative integers m and n, as follows:

Ack(0,n) =n+1 (5.1)
Ack(m > 0,0) = Ack(m —1,n) (5.2)
Ack(m > 0,n > 0) = Ack(m — 1, Ack(m,n — 1)) (5.3)

This program is also implemented as a recursive function and is handled similarly to the

Fibonacci program.

Collatz Conjecture Test This program (Figure 5.3) tests the Collatz conjecture [83, 84|
for a given positive integer. It is unknown whether this loop terminates for arbitrary n
because it is an open mathematical problem to prove whether or not the sequence of values
of n terminates at 1. This example shows experimentally that KEQ can handle potentially
non-terminating programs. Non-termination is orthogonal to program equivalence, and our
tool proves that, given the same input, the input and output programs either both terminate

and return the same result or both run forever. Moreover, for every input, the proof implies
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Figure 5.4: Distribution of validation time and LOC of LLVM IR of verified functions

that the input and output programs produce two (finite or infinite) sequences of identical

states at the corresponding pairs of synchronization points.

BubbleSort It sorts an array of integers in place using the bubblesort algorithm. The
array is stored in memory and passed to the function through a pointer. The proof demon-
strates that the sequence of memory states at the corresponding pairs of synchronization

points are identical for the input and output programs.

5.4.3 Application on the GCC SPEC 2006 Benchmark

In order to evaluate the Translation Validation prototype for a complex and important
application, we applied it to a subset of the source code of the SPEC 2006 GCC benchmark.
We compiled the GCC source code to LLVM IR, through instruction selection and register
allocation, as described above, then tested our TV prototype on the resulting Virtual X86
output. For each verification run, we allocated 2 Intel Xeon CPU E7-8837 processors at
2.67GHz and 10GB of memory, with a timeout of 120 minutes.

Out of the 5572 functions in the benchmark, our evaluation considered 4732 functions
that are covered by the fragment of Virtual x86 language semantics that we support (see
Section 4.2.3). The remaining functions are unsupported because they involve floating-point
operations, vectors, or dynamic allocas. Out of the 4732 supported functions, our prototype
was able to formally verify the translation of 4574 functions (96.67%). Some statistics of the

verified functions are shown in Figure 5.4.
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The main reasons of failure for the remaining functions are as follows:

Limitations in the Inference Algorithm There were 42 (0.89%) functions that failed
due to inadequacies in the synchronization point generator. One of the common issues is
the inference of virtual register sizes. As mentioned in Subsection 5.3.5, our algorithm for
this inference is based on instruction opcodes that unfortunately could not cannot infer an
operand size for some operands of pseudo copy instructions just by looking at the opcode.
A better register size inference algorithm is in our immediate future plans. Note that this
limitation is completely unrelated to the main ideas in this paper, in particular, the dataflow

based verification condition inference technique presented in Section 5.3.

Timeouts and Out-of-Memory 116 (2.5%) functions failed due to timeouts or out-of-
memory. The primary cause, which accounts for 96 failures, is that the builtin K parser often
does not scale well since it includes a very general ambiguity resolving mechanism. This is
exacerbated by our inference algorithm’s approach of generating a synchronization point for
each basic block. To alleviate this issue, we can switch to a more compact representation of
the synchronization point specification to reduce the work of the K parser. Other than the
parser issue, there were 13 functions that timed out or ran out of memory during symbolic
execution and 7 timed out in invocations of the SMT solver, Z3, due to the complexity of

the constraint formulas.

5.4.4 Evaluation with Real-World LLVM Bugs

We tested KEQ on two bugs found in the fast register allocator in LLVM-7.0 and -3.5,
with the former one actually present in the version of LLVM we are using for the GCC
experiment (5.0.2).

The first bug [85], reported and fixed in LLVM-7.0 (but present in earlier versions),
happens when an instruction defines (at least) two registers, with a virtual register definition
appearing before a physical register definition in the operand list. In such a case, the buggy
version of the allocator could potentially use the same physical register for both definitions.
An example is shown in Figure 5.5. The instruction mulxq multiplies rdx with the third
operand, and stores the high and low half of the result to the first and second operands,
respectively. When the first two operands are the same, they will both contain the high half
of the result. So in this case, it’s incorrect to assign rax to %vril. KEQ detected the problem
during symbolic execution of the two versions of code, because the equality constraint for

rax fails to match between the two versions at the point just before the retq instruction.
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.BBO: .BBO:

movabsq %vrO,1 movabsq rax,1
movabsq rdx,1 movabsq rdx,1

movq [frm(1)],rax
mulxq %vrl,rax,%vro0 mulxq rax,rax,rax
retq rax retq rax

Before Register Allocation — After bogus Register Allocation
(returns 1) (returns 0)

Figure 5.5: LLVM Bug 41790 [85]

Besides detecting the bug, this information would help guide a compiler developer debugging
the problem by pinpointing the program interval in which the faulty allocation occurs.

The second bug [86], reported and fixed in LLVM-3.5, causes incorrect computation of
live ranges of physical registers in the input code when the physical registers appear as
implicit definitions. Various x86 instructions have implicit operands that do not appear in
the instruction’s syntax but are well-defined in its semantics. For example, the unsigned
division instruction, div, accepts only one explicit operand, the register containing the
divisor, and uses edx as both an implicit use operand, containing the dividend, and an
implicit definition that will hold the result of the division. When the bug is present, the
allocator incorrectly assumes that physical registers that have been implicitly defined are
available when in fact their implicit definition is live. Our inference algorithm detects the
bug during the inference phase of the verification condition generator (see Algorithm 5.2)
when it attempts to verify that two matching uses reach matching definitions while being
propagated backwards within their basic blocks (line 21). Indeed, the definition found for
the input program is the implicit definition, while the definition found for the output of the
buggy register allocator is an incorrect definition (after the implicit one) that was introduced
because the allocator assumed that the register was free to use. Again, this information not
only detects the bug but is also sufficient to tell the developer which operands were involved,

and that the missed definition in the input program is an implicit definition.
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CHAPTER 6: LESSONS LEARNED AND FUTURE WORK

In this Chapter, we briefly discuss important lessons we learned from this work and propose
future work towards the goal of a modular transformation-agnostic TV system for the full
LLVM compiler. The following sections discuss three extensions to the existing prototype
that aim to either increase its coverage of the compilation path or enhance the reusability

of its components across different transformations.

6.1 LESSONS ABOUT DESIGNING A TRANSLATION VALIDATION SYSTEM FOR
MODERN COMPILERS

Let us discuss some useful insights we gained by engaging with the problem of Translation

Validation for modern compilers.

Hints and Heuristics We have used both approaches for verification condition gener-
ation: The Instruction Selection generator is based on compiler-generated hints while the
Register Allocation generator employs a novel heuristic. In our experience, the hint-based
generation is more reliable and easier to implement than designing and testing heuristics.
Although it is appealing to have a (heuristic-based) design that requires zero information
from the compiler, we believe that accuracy loss and increased development effort make
the trade-off not favorable. The heuristic-based design becomes more attractive for systems
designed to handle a large set of transformations in one tool, since collecting hints from all
transformations involved and combining them to obtain useful information becomes more
complex with the increasing number of transformations. However, our modular design allows
for separate handling of transformations without significant increase in development effort
thus minimizing the need for heuristics. On the other hand, generation of synchronization
points based on compiler-generated hints removes any guesswork out of the design and is
more straight-forward to implement. We need of course to stress the fact that compiler-
based hints generation should keep all formal methods related work (e.g. synchronization
point placement, collection of constraints, etc.) within the verification condition generator
and assign only compiler-related work to the hint generator (e.g. information about variable
correspondence, branch and other control flow modifications, etc.). This is so compiler en-
gineers, who would maintain the hint generator as part of the compiler code base, are not

required to have any formal methods expertise to do so.
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Complex Optimizations with Simple Visible Effects Many classic compiler opti-
mizations use intricate algorithms and have complex implementation but their effect on the
output is rather simple. Instruction Selection and Register Allocation are two such exam-
ples as are peephole optimizations, dead code elimination optimizations, various loop related
optimizations and more. The complexity in algorithm and implementation arises from the
fact that these optimizations may require complex static analyses to discover optimization
opportunities, use hard-coded semantics about the input (and output) language(s), and/or
employ various heuristics. However, Translation Validation approaches are oblivious to this
internal complexity and are only interested in the effect on the output code. For example, an
advanced pointer analysis may be required for a dead code elimination transformation, but a
translation validation system may be interested only in whether a branch in the control flow
graph was removed as a result and in that case what was the specific alias pair that enabled
the code elimination. The details of the pointer analysis used by the compiler need not to
be communicated to the translation validation system. On the other hand, the information
that the control flow graphs differ in a certain way as well as the alias pair responsible are
important for the verification condition generator to pick sufficient synchronization points
with sufficient side conditions. This information can be hinted by the compiler (in which
case, the system trusts the compiler’s pointer analysis implementation) or it can be inferred
by an external pointer analysis . Similarly, complex (and typically hard-coded) seman-
tics information is needed by Instruction Selection to efficiently translate patterns of input
language instructions, but a translation validation system is only interested in the corre-
spondence between input/output variables and other names. Again the correctness of the
translation is to be determined through validation using trusted formal semantics, but the
naming correspondence is necessary to inform generation of sufficient verification conditions.

This observation reinforces our thesis for a modular Translation Validation system: First,
by minimizing the work needed to address a new optimization, it is now practical to handle
optimizations individually thus taking advantage of their simplicity in terms of visible ef-
fects. This simplicity is lost when one attempts to handle a large set of optimizations in one
setting. Second, we take advantage of said simplicity by having accurate verification condi-
tion generators based on hint generators that can be realistically implemented by compiler
engineers. Third, we delegate a large factor of compiler complexity, the hard-coded formal
semantics for involved languages, to separate, reusable artifacts.

On a similar note, we need to emphasize that the granularity of the translation valida-
tion system needs to be sufficient to capture all the information that was available to the
compiler at the time it performed the transformation. More specifically, a translation val-

idation system that operates on function-level granularity, i.e. it proves code equivalence
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in a function-by-function basis, is likely to have an increased rate of proof failures when
it targets an inter-procedural transformation, i.e. a transformation that leverages calling
context information to discover transformation opportunities in a given function. For ex-
ample, an inter-procedural constant propagation transformation may discover opportunities
for constant propagation within a function’s body by taking into account how the data-flow
from the various call sites restricts the possible values of that function’s parameters. In this
case, a translation validation system that operates on function-level granularity will not be
able to prove equivalence because it does not have access to the function’s call sites and
hence it cannot arrive to the same restrictions under which the transformation is correct.
We either need to expand the system’s granularity so that the necessary context is part of
the code checked for equivalence (that is the function’s call sites in this example), or we need
the compiler to communicate said restrictions, thus making the underlying static analysis of
the compiler part of the trusted code base of our translation validation system. The former
approach has the drawback of expanding the amount of code that the system needs to sym-
bolically execute and potentially reducing its scalability. The latter approach increases the
trusted code base of the system, but it has similar benefits with the hint-based approach
discussed above: increased accuracy and easier implementation. One can even use an exter-
nal to the compiler static analysis (that may come with its own correctness guarantees) to

avoid trusting the compiler for analysis results.

Support from Compilers The work presented here aims to the end goal of having a
Translation Validation system that can be plugged in an existing modern compiler and
automatically provide formal correctness guarantees to the compiler’s users. This goal cannot
be achieved without cooperation with the compiler community. We have identified two major
areas where compiler support can make a difference.

First, as has been discussed before, compiler engineers should be expected to work in
tandem with the formal methods experts to provide needed information of transformation
passes. Ideally the two teams should agree on an interface for compiler-generated hints. Such
hints should not require any formal methods expertise but are crucial for the verification
condition generator because they both decrease the false alarm rate (due to more accurate
verification conditions than ones generated by a heuristic) and increase the performance (no
need to run potentially expensive heuristic-based inference algorithms).

Second, intermediate representation languages developed for internal compiler use should
nevertheless come with a well-documented, preferably formal, semantics definition. This is
necessary for any serious effort on compilation verification since it removes any subjectivity of

what a program written in such a language means. Without such formal definitions, compiler
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verification can adopt only imperfect approaches of either interpreting ambiguity in the
semantics in an arbitrary way or being forced to accommodate end-to-end compilation where
input/output language semantics are known. The former approach is clearly undesirable,
even more so because there may be no single correct interpretation of ambiguous semantics
that fits all compiler transformations; see [48| for an example of these in LLVM IR. The
latter approach is also far from ideal since there may be significant sacrifice in accuracy
when attempting end-to-end efforts sch as this. Moreover, all known to us systems that
validate end-to-end compilation employ a custom common intermediate representation and

custom-made translators to that representation.

6.2 TRANSLATION VALIDATION FOR THE WHOLE LLVM TO X86-64
COMPILATION PATH

Extending the TV system to accommodate the whole LLVM to x86-64 compilation path
of the LLVM compiler amounts to validating the various transformation passes that precede
the Instruction Selection phase or follow the Register Allocation phase. Since we are going
to reuse cut-bisimulation and KEQ as the equivalence notion and equivalence checker for the
rest of the passes, the only part of the system that needs to be extended is the verification
condition generators.

There are two trade-offs that need to be evaluated for the design of said generators. First,
there is a trade-off between the amount and complexity of compiler-generated hints and
inference heuristics. We want to minimize the amount of hints that are required from the
compiler but we also do not want to increase the number of false reports due to inadequate
heuristics that cannot generate verification conditions strong enough to prove equivalence.
Second, there is a trade-off between grouping many optimizations and designing a strong
generator that provides adequate verification conditions to prove equivalence. Our mod-
ular design that clearly separates the language semantics and the proof system from the
generators allows for easier experimentation to reach an optimal design.

Finally, since the output language of the backend is the x86-64 ISA, there is need for a K
definition of x86-64 to appropriately parameterize KEQ for the equivalence proof of the last
passes that involve x86-64, rather than the internal x86-64 Machine IR. For this purpose,
we could look towards a recently published such definition that is the most complete x86-64
formal definition to date [87].
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6.3 TOWARDS TRANSFORMATION-AGNOSTIC INFERENCE OF
SYNCHRONIZATION POINTS

Currently the verification condition generator is the only component of the proposed de-
sign that is transformation-specific. However there is existing work on generating proof obli-
gations for equivalence checking in a transformation-agnostic but language-aware manner.
Necula et al. [15] describe a such a proof obligation inference algorithm based on symbolic
summaries of the effects of basic blocks of the input and output programs. Churchill et
al. [33] in their recent work on data-driven equivalence checking develop a semantics-aware
algorithm that employs data from execution traces to infer proof obligations. A future direc-
tion of this dissertation would be the evaluation of the applicability of these algorithms for
the proof generators of the our proposed design for translation validation systems. Also, we
could explore the feasibility of extending such algorithms to be parametric to the semantics
definitions of the input and output languages in a fashion similar to KEQ, thus working
towards language-independent verification condition generators that can be used for passes
such as Instruction Selection.

Expanding on the idea of transformation-agnostic verification condition generation, we
want to explore a machine learning approach on synchronization point inference. There is
existing work on machine-learning assisted decompilation [88, 89, 90] and binary analysis [91,
92], but it involves supervised learning techniques, where the model in question is learned
using a training set of input/output pairs. For example in [88], a corpus of C source code
snippets and their corresponding binaries are used to train the proposed decompilation
model. In the case of our interest, where we want to learn state mappings between the input
and output programs (e.g., register and stack frame location mappings in the input and
output of the register allocator), acquiring such a training corpus is not trivial. Therefore, we
could look into reinforcement learning [93] instead, where the model is learned via trying to
maximize a reward function, while searching the space of possible state mappings. Concrete
execution traces could be used to arrive to a reward function, which assigns a score to a
given state mapping based on how many mapped locations actually hold equal values in a

set of concrete execution traces.

6.4 USING TRANSLATION VALIDATION TO DISCOVER COMPILER BUGS

In this dissertation, we propose a design for a sound but incomplete system for translation
validation. This means that our system is not allowed to validate incorrect translations

but it could flag a correct translation as invalid. This design is aimed towards compiler
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users that want correctness guarantees for their compiled applications rather than towards
compiler engineers looking for debugging tools for the compiler itself. The main reason for
the latter is the fact that false reports that do not originate to an actual miscompilation are
indistinguishable from the useful (for compiler debugging purposes) reports that do originate
in non-equivalent input and output thus indicating a miscompilation.

An apparent future direction of the work is aiding the user of the proof system in their
understanding of why a proof failed. This includes generating clear error messages when the
system fails to validate a translation as well as the generation of a counterexample input for
the input and output programs that triggers the difference in behavior. Specifically the latter
provides a straightforward way for the user to evaluate the report. The counterexample would
either make a miscompilation apparent or it could point towards a possible internal error
of the proof system itself (e.g., an error in the language semantic definition). Generation of
counterexamples requires exploration through symbolic execution similar to white- or black-
box fuzzers such as Klee [94] and Sage [95]. In our case, the symbolic exploration should
target synchronization points responsible for the proof failure, that is points for which KEQ
could not prove that if used as starting points, another synchronization point could be
reached. These are the points that are most likely to lead to a successful counterexample
generation, although that is not guaranteed. Finally, rather than using an existing fuzzer
that works for a specific language, a language-parametric fuzzer could be implemented as a

K framework tool, similarly to KEQ.
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CHAPTER 7: CONCLUSION

Compilation verification refers to techniques that provide a formal correctness guarantee
for the compilation process. It is a necessary step for any system that provides formal
guarantees so that those guarantees can be transferred to the compiled binary. More broadly,
it assists software development by uncovering compilation bugs and it may contribute to
debugging the compiler itself.

Compilation verification for existing compilers such LLVM is challenging due to the size
and complexity of the compiler: a typical compilation involves many intermediate languages
and transformations. Moreover, a compilation verification system cannot be developed by
the same compiler engineers but rather by formal methods experts. Finally, the compilation
verification system needs to be less complex than the compiler itself to make sense for it to
be trusted.

In this work, we show that it is possible to develop a (mostly) language-independent,
transformation-agnostic compilation verification system with support for different input /out-
put languages for an optimizing, production-quality compiler.

Our design is based on Translation Validation, a process that verifies isolated instances of
compilation by examining the input and output programs and trating the compiler mostly
as a black box. Unlike traditional translation validation systems for compilers that are
custom-tailored for a specific (set of) transformation(s) and language(s), our design includes
a proof system that can be reused across the various transformations and languages of the
compilation path. The transformation-specific logic is strictly limited in a set of custom
verification condition generators, one per (set of) transformation(s) at hand.

First, we present a novel algorithmic approach for proving cross-language program equiva-
lence. Our algorithm relies on cut-bisimulation, a general formalization of weak bisimulation
realtions, that are better suited to equivalence proofs when the two programs may have
unrelatable intermediate states. Our equivalence checking algorithm enables the reuse of
a significant part of any Translation Validation system and allows developers to focus on
the important aspects of the problem, which are the semantic definitions of the input and
output languages and the generation of the proof obligations. Cut-bisimulation allows for
generation of proof obligations that take the intuitive (from a compiler’s perspective) form of
synchronization points between the input and output programs. We have used this algorithm
to develop KEQ, the first language-independent tool for program equivalence. KEQ accepts a
set of synchronization points as well as formal semantics for the input and output languages

(that are allowed to be different). It attempts to prove that the given synchronization points
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are a cut-bisimulation relation, thus showing equivalence.

To showcase the modularity of our design, we use KEQ as the proof system of two differ-
ent translation validation prototypes for the Instruction Selection and Register Allocation
transformation of the LLVM compiler.

Instruction Selection is a major translation phase within LLVM that transforms LLVM
IR into Machine IR, specifically x86-64 Machine IR for the context of this work. As such,
this transformation has never been handled by translation validation systems in the litera-
ture in a straightforward way. Instead, the predominant method of dealing with different
input/output languages in the literature is converting both programs into a third common
representation. For Instruction Selection, we implement a verification condition generator
that uses compiler-generated hints for the correspondence between temporaries in the input
and output. The code added to the compiler for hint generation is minimal (roughly 500
LOC compared to the 140,000 LOC size Instruction Selection) and more importantly, it
requires no formal method expertise and thus can be realistically be maintained by compiler
engineers.

Register Allocation is an important back end pass that replaces the multiple temporary
variables in the input program with a finite set of physical registers in the output. While the
transformation’s effect in the program code is simple, the algorithms employed by the pass
are complicated, to the point that CompCert, a verified compiler, had to use an internal
translation validation subsystem for register allocation because verifying the implementation
was deemed not worth the effort. For Register Allocation, we implement a verification
condition generator that employs a novel inference algorithm that infers the correspondence
between temporaries in the input and physical registers and/or stack slots in the output.

Both prototypes use KEQ as the equivalence proof system that accepts a set of synchro-
nization points generated by the respective verification condition generator. We test our
prototypes by applying them to the translation of the SPEC 2006 GCC benchmark where
we successfully prove the compilation of 91.52% and 96.67% functions with supported fea-
tures respectively. Both prototypes use the same formal semantics definitions for LLVM IR

and x86-64 Machine IR that are their own separate artifacts.
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