
Boltzmann Distribution

The well-known Botlzmann distribution is a direct consequence of the P.E.A.P.P.. It can be straight-forwardly
deriveed by considering a small system in thermal contact with a reservoir of constant temperature. We will
motivate this physically.

Canonical Ensemble

We are often interested in the thermal properties of a small system in equilibirum with a large system, say
the heat capacity of a pebble on a large table surrounded by a roomful of air. To be more specific, consider
a ginormous isolated system in thermal equilibrium. Suppose we are only interested a very small subsystem.
P.E.A.P.P. cannot be applied to the subsystem directly, but can be applied to the entire system. Call the
number of accessible states of the subsystem Γs, and that of the reset of the system ΓR, where R stands
for reservoir. The total number of accessible states of the combined isolated system is simply a product
Γ = ΓsΓR by counting. If we only allow energy exchange between the subsystem and the reservoir, then
the set of states the subsystem can access is known as the canonical ensemble. The number of accessible
states is controlled by the energy of the subsystem E, but it is no longer constant as in the microcanonical
ensemble. Assuming the total energy of the combined isolated system is Eo, then
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The approximation in (1) is that the reservoir is so large that any multiplicative factor looks like 1, i.e. only
order-of-magnitude changes matter. The last equality is given by Taylor expansion, where we assume Γ is
analytic at E0. One may say that Γs(E) = 1 if the subsystem has no internal degrees of freedom. However,
this is not quite true, because the actually vaue of Γs(E) depends on the level of coarse-graining of energy
E ∼ E ± δE. By P.E.A.P.P., the ratio of probabilities of subsystem having energies E1, E2 is
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Now we use the reservoir property again to evaluate the derivative
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. Recall S(E) ≡ kB ln Γ(E) and
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Therefore (2) reduces to
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By normalization of probability distribution
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where i enumerate all accessible quantum states of the subsystem.

Most textbooks presents (2) in terms of entropy as
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While this is a cleaner derivation, it can mislead one to think the expression is not exact because the middle
step looks like a Taylor expansion of S(E) to first order in E. This expression is actually exact because
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Grand Canonical Ensemble

Suppose we allow both energy and particle transfer between the subsystem and the reservoir. Then the set
of states the subsystem can access is known as the grand canonical ensemble
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Again, by normalization of probability distribution
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We understand (8) is exact because both ∂S
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T are constant.

2


