Matrix Product State

Sep 152015

1D 3-spin chain

Consider a 1D 3-spin linear chain. A generic wave function of this system can be expressed in the S_{z} basis (product space of the S_{z} basis on each site). This wave function can be represented with a state vector \vec{c}, which is merely a vector of expansion coefficients of the state in the given basis

$$
\begin{equation*}
|\Psi\rangle=\sum_{i=1}^{2^{3}} c_{\sigma_{1} \sigma_{2} \sigma_{3}}\left|\sigma_{1}\right\rangle_{1} \otimes\left|\sigma_{2}\right\rangle_{2} \otimes\left|\sigma_{3}\right\rangle_{3} \tag{1}
\end{equation*}
$$

$\sigma_{1}, \sigma_{2}, \sigma_{3}=\uparrow, \downarrow$ are often referred to as the physical degrees of freedom. Notice once $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are specified, $\left\langle\sigma_{1} \sigma_{2} \sigma_{3} \mid \Psi\right\rangle$ is merely a number.

Consider the following pathological state

$$
\sqrt{\sum_{i=1}^{8} i^{2} \cdot|\psi\rangle:} \begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \tag{2}\\
|\uparrow \uparrow \uparrow\rangle & |\uparrow \uparrow \downarrow\rangle & |\uparrow \downarrow \uparrow\rangle & |\uparrow \downarrow \downarrow\rangle & |\downarrow \uparrow \uparrow\rangle & |\downarrow \uparrow \downarrow\rangle & |\downarrow \downarrow \uparrow\rangle & |\downarrow \downarrow \downarrow\rangle
\end{array},
$$

which has matrix product state (mps) representation

$$
\left.\begin{array}{l}
\sqrt{\sum_{i=1}^{8} i^{2}} \cdot|\psi\rangle: \\
 \tag{3}\\
\begin{array}{l}
(-0.376-0.926)|\uparrow\rangle_{1} \\
(-0.9260 .376)|\downarrow\rangle_{1}
\end{array} \quad\left(\begin{array}{cc}
-0.5645 & -0.328 \\
0.0646 & -0.7547 \\
-0.8217 & 0.1947 \\
-0.044 & -0.534
\end{array}\right)|\uparrow\rangle_{2}
\end{array} \quad\left(\begin{array}{c}
9.1525 \\
-0.48 \\
10.9471 \\
0.40206
\end{array}\right)|\uparrow\rangle_{3}\right)|\downarrow\rangle_{3}, ~\left(\begin{array}{c}
1
\end{array}\right)
$$

To generate this mps, start from site 1. First separate $|\uparrow\rangle_{1}$ from $|\downarrow\rangle_{1}$

$$
c_{\sigma_{1}\left(\sigma_{2} \sigma_{3}\right)}: \begin{array}{ccccc}
|\uparrow \uparrow \uparrow\rangle & |\uparrow \uparrow \downarrow\rangle & |\uparrow \downarrow \uparrow\rangle & |\uparrow \downarrow \downarrow\rangle \tag{4}\\
& 5 & 2 & 3 & 4 \\
& 1 \downarrow \uparrow \uparrow\rangle & 7 \downarrow \uparrow \downarrow\rangle & |\downarrow \downarrow \uparrow\rangle & 8 \\
& |\downarrow \downarrow \downarrow\rangle
\end{array} .
$$

This process can be thought of cutting the system of 3 spins into 2 subsystems, making site 1 subsystem A and sites 2,3 subsystem B. The row space
is the Hilbert space for subsystem A and the column space is subsystem B.

$$
c_{\sigma_{1}\left(\sigma_{2} \sigma_{3}\right)}: \begin{array}{ccccc}
& |\uparrow\rangle_{A} & 1 & 2 & 3 \tag{5}\\
& |\downarrow \uparrow\rangle_{B} & |\uparrow \downarrow\rangle_{B} & |\downarrow \uparrow\rangle_{B} & |\downarrow \downarrow\rangle_{B} \\
|\downarrow\rangle_{A} & 5 & 6 & 7 & 8
\end{array} .
$$

We can now use our favorite method (QR or SVD) to find a nice (orthonormal) basis for subsystem A. The resultant decomposition

$$
\left.\left.c_{\sigma_{1}\left(\sigma_{2} \sigma_{3}\right)}=\begin{array}{c}
|\uparrow\rangle_{1} \tag{6}\\
|\downarrow\rangle_{1}
\end{array} \begin{array}{c}
Q \\
\left(\begin{array}{cc}
q_{1,1} & q_{1,2} \\
q_{2,1} & q_{2,2}
\end{array}\right)
\end{array} \begin{array}{ccc}
\\
|\uparrow \uparrow\rangle_{23} & |\uparrow \downarrow\rangle_{23} & |\downarrow \uparrow\rangle_{23}
\end{array} \right\rvert\, \begin{array}{cccc}
r_{1,1} & r_{1,2} & r_{1,3} & r_{1,4} \\
r_{2,1} & r_{2,2} & r_{2,3} & r_{2,4}
\end{array}\right)
$$

The remaining matrix can be cut again to separate site 2 from 3

Notice how the reshaped matrix naturally has an \uparrow block and a \downarrow block for site 2. This will generalize to any site even if the chain were longer. However, the dimension of the contraction index b (the number of b_{1}, b_{2} etc.) often called bond dimension is in general way bigger than 2 for longer chains. Decompose again and we obtain the mps in (3).

Exercise: fill in the numbers $q_{m, n}$ and $r_{m, n}$

