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Semiconductors

Law of Mass Action

Near the band edges, electrons behave as if they were free but with a con-
jugated mass. The conduction band is empty at zero temperature, thus at
finite temperature we essentially have electrons with mass m∗c filling an empty
3D box. The density of states will be proportional to square root of energy
measured from band bottom and occupancy is determined by Fermi-Dirac
distribution. Therefore the concentration of conduction electrons is given by

nc =

∫ ∞
Ec

f(E)D(E)dE

=

∫ ∞
Ec

1

eβ(E−µ) + 1
· Ac
√
E − EcdE (1)

Similar reasoning leads to concentration of valance holes

pv =

∫ Ev

−∞
(1− f(E))D(E)dE

=

∫ ∞
Ec

(1− 1

eβ(E−µ) + 1
) · Av

√
Ed − EdE (2)

where the proportionality factors for densities of states at the band edges

Ac/v =
1

2π2

(
2m∗c/v
~2

)3/2

(3)

can be derived by solving the particle-in-a-box problem at the band edges
(since the dispersion relations are just parabolas with different curvatures).
Notice (1) and (2) are always true given the usual assumptions in quantum
and statistical mechanics. I have not mentioned anything about the source
of electrons/holes or where the chemical potential µ lies.

Empirically, semiconductors are poor conductors at low but finite tem-
peratures. This means Ev � µ � Ec, because otherwise appreciable fill-
ing/emptying of conduction/valance band will result in conduction. In this
limit, Fermi-Dirac statistics reduce to Boltzmann statistics

nc =

∫ ∞
Ec

e−β(E−µ) · Ac
√
E − EcdE

=

√
π

2β3/2
Ace

−β(Ec−µ) = Nce
−β(Ec−µ) (4)

pv =

√
π

2β3/2
Ave

−β(µ−Ev) = Nve
−β(µ−Ev) (5)
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and the product

ncpv = NcNve
−β(Ec−Ev) (6)

is independent of the chemical potential, aka the environment the semicon-
ductor is in! That is, regardless of whether the material is doped or not, or
if there’s any external potential the law of mass action (6) holds.

The nice forms of (4-6) make semiconductors very teachable without
lengthy excursions into quantum and stat mech. The collection of constants
Nc/v =

√
π

2β3/2Ac/v can be interpreted as the number of available quantum

states at the conduction/valance band edges respectively. Thus it feels natu-
ral to write down the concentration of conduction electron and valance holes
as a product of the number of available states with average occupancy{

nc = Nce
−β(Ec−µ)

pv = Nve
−β(µ−Ev) (7)

Intrinsic

When the semiconductor is intrinsic (no doping), there must be the same
number of holes as electrons, therefore

ni = pi =
√
NcNve−β(Ec−Ev) (8)

also, by equating the RHS of (7), we obtain the chemical potential

µ =
1

2
(Ec + Ev) +

1

2
kBT ln

Nv

Nc

(9)

At zero temperature, chemical potential lies at the middle of the band gap.

lim
T→0

µ =
1

2
(Ed + Ec) (10)

Extrinsic

When the semiconductor is doped, all that changes is the chemical potential

µ =
1

2
(Ec + Ed) +

1

2
kBT ln

Nd

Nc

(11)

where Nd is the concentration of donor atoms (each with one electron to
contribute). With Na as acceptor concentration

µ =
1

2
(Ea + Ev) +

1

2
kBT ln

Nv

Na

(12)


