Dirac Hamiltonian on 2D Square Lattice

Consider 1 atom 1 orbital per cell with spin.

$$
H=-t \sum_{m, n}\left(\begin{array}{c}
\frac{i}{2} c_{m+1, n, \alpha}^{\dagger} \sigma_{\beta}^{x} c_{m, n, \beta}+\frac{i}{2} c_{m, n+1, \alpha}^{\dagger} \sigma_{\alpha \beta}^{y} c_{m, n, \beta} \tag{1}\\
+\frac{i}{2} c_{m+1, n, \alpha}^{\dagger} \sigma_{\beta}^{z} c_{m, n, \beta}+\frac{i}{2} c_{m, n+1, \alpha}^{\dagger} \sigma_{\alpha \beta}^{z} c_{m, n, \beta} \\
+(2-M) \sum_{m, n} c_{m, n}^{\dagger} \sigma_{\alpha, \beta}^{z} c_{m, n, \beta}
\end{array}\right)
$$

Introduce Fourier transforms

$$
\begin{equation*}
c_{m, n, \alpha}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{q} e^{-\vec{q} \cdot(m, n) a} c_{q, \alpha}^{\dagger} \tag{2}
\end{equation*}
$$

and the Hamiltonian becomes

$$
\begin{equation*}
H_{\alpha \beta}(\vec{q})=t \sin \left(q_{x} a\right) \sigma_{\alpha \beta}^{x}+t \sin \left(q_{y} a\right) \sigma_{\alpha \beta}^{y}+\left[(2-M)-t \cos \left(q_{x} a\right)-t \cos \left(q_{y} a\right)\right] \sigma^{z} \tag{3}
\end{equation*}
$$

Expand around $\vec{q}=\overrightarrow{0}$

$$
\begin{align*}
H_{\alpha \beta}(\vec{q}) & =q_{x} a \sigma^{x}+q_{y} a \sigma^{y}+\left(2-M-\left(1-\frac{q_{x}^{2} a^{2}}{2}\right)-\left(1-\frac{q_{y}^{2} a^{2}}{2}\right) \sigma^{z}\right) \\
& =q_{x} a \sigma^{x}+q_{y} a \sigma^{y}+\left(-M+\frac{q_{x}^{2}+q_{y}^{2}}{a} 2\right) \sigma^{z} \tag{4}
\end{align*}
$$

When $M=0$, at $\vec{q}=\overrightarrow{0}$ there's a Dirac cone. The model has many discrte symmetries, inversion $P=\sigma^{z}$, charge conjugation $C=\sigma^{x}, C_{2}=e^{i \pi \frac{\sigma^{z}}{2}}$, $C_{4}=e^{\frac{i \pi}{2} \frac{\sigma^{2}}{2}}$. Looking at special points (Γ, M, etc.)

$$
\left\{\begin{array}{l}
H(0,0)=-M \sigma^{z} \tag{5}\\
H\left(\frac{\pi}{2}, 0\right)=(2-M) \sigma^{z} \\
H\left(0, \frac{\pi}{2}\right)=(2-M) \sigma^{z} \\
H\left(\frac{\pi}{a}, \frac{\pi}{a}\right)=(4-M) \sigma^{z}
\end{array}\right.
$$

They all commute with $P=\sigma^{z}$. Further, there are transitions in the spin structure at $M=0,2,4$ happening at $\Gamma,(X, Y), M$ points respectively. For each transition, the spin-up and spin-down bands touch and reseparates exchanging the spin of ground state.

