Dirac Hamiltonian on 2D Square Lattice

Consider 1 atom 1 orbital per cell with spin.
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Introduce Fourier transforms
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and the Hamiltonian becomes
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Expand around ¢ =0
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When M =0, at § = 0 there’s a Dirac cone. The model has many discrte

symmetries, inversion P = 07, charge conjugation C' = ¢%, Cy = €7z,

z

Cy = e2 7. Looking at special points (I',M, etc.)

H(0,0) = — Mo~
H(5,0) = (2 - M)o* 5
H(0,%) = (2~ M)o*
H(Z,%) = (4~ M)o*

They all commute with P = o%. Further, there are transitions in the spin
structure at M = 0,2,4 happening at I', (X,Y"), M points respectively. For
each transition, the spin-up and spin-down bands touch and reseparates ex-
changing the spin of ground state.



