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Dirac Hamiltonian on 2D Square Lattice

Consider 1 atom 1 orbital per cell with spin.

H = −t
∑
m,n


i
2
c†m+1,n,ασ

x
βcm,n,β + i

2
c†m,n+1,ασ

y
αβcm,n,β

+ i
2
c†m+1,n,ασ

z
βcm,n,β + i

2
c†m,n+1,ασ

z
αβcm,n,β

+(2−M)
∑
m,n

c†m,nσ
z
α,βcm,n,β

 (1)

Introduce Fourier transforms
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and the Hamiltonian becomes
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Expand around ~q = ~0
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When M = 0, at ~q = ~0 there’s a Dirac cone. The model has many discrte

symmetries, inversion P = σz, charge conjugation C = σx, C2 = eiπ
σz

2 ,
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2 . Looking at special points (Γ,M , etc.)
H(0, 0) = −Mσz
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They all commute with P = σz. Further, there are transitions in the spin
structure at M = 0, 2, 4 happening at Γ, (X, Y ),M points respectively. For
each transition, the spin-up and spin-down bands touch and reseparates ex-
changing the spin of ground state.


