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Thomas-Fermi Model

TF Kinetic Functional

In 1927, Thomas and Fermi realized that the ground state energy of the Homo-
geneous Electron Gas (HEG) is a function of electron density alone. Imagine
an infinite suspense of HEG, if we study a small chunk of it, say a box with side
l, then we can solve the familiar particle in a periodic box problem and get
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In the grand scheme of things, we need to add up the energies of all such boxes
of volume dV = l3 to get the total energy of HEG. Thus let’s say there are dN
electrons in this region, then the Fermi level
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The total energy of the particles inside is then
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Notice ρ = dN
dV is the density of electrons inside the box. Call CF = 3h2
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the total energy (which is just kinetic energy) of HEG

T (ρ) =

∫
dE = CF

∫
ρdV (4)

While this is correct for HEG, it is not obvious if this relation will hold for
inhomogeneous electron gas. Therefore Thomas and Fermi had to throw in little
magic called Local Density Approximation(LDA), which says the properties of
an inhomogeneous electron gas is locally identical to those of HEG. Thus they
introduced the famous Thomas-Fermi kinetic energy functional
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and said it’s a good first approximation for everything.
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TF Model of Atom

Recall the energy of a bunch of electrons in terms of electron density
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where T is kinetic energy, v(~r) is external potential and ρXC(~r1, ~r2) is the
exchange-correlation hole density. Thomas and Fermi apply LDA to the above
model and further ignore exchange-correlation effect to obtain
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which can be minimized with the constraint∫
ρ(~r)d~r = N (8)

to obtain the approximate ground state electron density of an atom. While this
is an OK model for calculating atomic ground state energies, its accuracy is
quite low compared to other methods at the time. More importantly, no molec-
ular bonding is predicted whatsoever. As a consequence, it was dismissed as a
cute toy model that employed too many approximations to have any physical
significance. The theory was forgotten, and the dream of reducing electronic
energy to pure functional of the simple and physical electron density seemed
lost... At least for almost 4 decades.

In 1964, Hohenberg and Kohn resurrected this dream.


