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Density Functions

Distinguishable Interacting Point particles

Consider N distinguishable interacting point particles and suppose the probabil-
ity of finding them in the configuration {~x1, ~x2, · · · , ~xN} is given by P (~x1, ~x2, · · · , ~xN ),
where ~xi is the complete set of coordinates that describe the state of particle
i that may include spatial, spin or momentum information or what not. The
probability of finding particle 1 in the region ~x around d~x is then

p
(1)
1 (~x) =

∫
P (~x, ~x2, · · · , ~xN )d~x2d~x3 · · · d~xN (1)

We can similarly define single particle probability density functions p
(i)
1 (~x) for

each particle i. In general p
(i)
1 6= p

(j)
1 for i 6= j, but we do have1∫
p
(i)
1 (~x)d~x = 1 ∀i (2)

thus

N∑
i=1

∫
p
(i)
1 (~x)d~x = N (3)

For a pair of particles

p
(1,2)
2 (~x1, ~x2) =

∫
P (~x1, ~x2, ~x3, · · · , ~xN )d~x3 · · · d~xN (4)

Notice p
(i,j)
2 is only defined for i 6= j, thus∑

i 6=j

∫
p
(i,j)
2 (~x1, ~x2)d~x1d~x2 = N(N − 1) (5)

So far we have considered the general case of distinguishable interacting particles
and haven’t been able to get very far. Let’s apply these ideas to electrons which
are indistinguishable particles.

Indistinguishable Interacting Point particles

For indistinguishable particles, the single particle probability density function
(1) is the same for every particle. Equation (2) thus becomes∫

Np1(~x)d~x = N (6)

In fact, physically it doesn’t make sense to talk about the probability density of
a specific particle at all, therefore we must define a general particle probability
density function

ρ1(~x) = Np1(~x) (7)

1Only if ~xi is a complete set of coordinates for each i
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Similarly (5) becomes∫
N(N − 1)p2(~x1, ~x2)d~x1d~x2 = N(N − 1) (8)

and we define the pair probability density function

ρ2(~x1, ~x2) = N(N − 1)p2(~x1, ~x2) (9)

The pair density function is VERY non-intuitive. It is difficult to assign a
sensible physical meaning to this quantity. First of all, its normalization N(N−
1) is the number of non-distinct pairs, which is not physical for indistinguishable
particles. Secondly, the pair density doesn’t reduce to particle density when the
second coordinate is integrated out. Learning to work around this inconvenience
is the main focus of the study of indistinguishable particles.

By definition, these density functions have the following properties

1. Normalization ∫
ρ1(~x)d~x =N (10)∫

ρ2(~x1, ~x2)d~x1d~x2 =N(N − 1) (11)

2. Reduction ∫
ρ2( ~x1, ~x2)d~x2 = (N − 1)ρ1(~x1) (12)

Electron Density

Definition

We believe that electrons are indistinguishable point particles whose state is
completely given by position and spin ~xi = {~ri, σi}. Further we think the
probability density of an N -electron system is given by the magnitude of some
anti-symmetric wave function

P (~x1, ~x2, · · · , ~xN ) = Ψ∗(~x1, ~x2, · · · , ~xN )Ψ(~x1, ~x2, · · · , ~xN ) (13)

where

Ψ(~x2, ~x1, · · · , ~xN ) = −Ψ(~x1, ~x2, · · · , ~xN ) etc. (14)

Therefore we define the electron density function as

ρ(~r) =

∫
ρ1(~r, σ1)dσ1

=N

∫
Ψ∗({~r, σ1}, ~x2, · · · , ~xN )Ψ({~r, σ1}, ~x2, · · · , ~xN )dσ1d~x2 · · · d~xN (15)

The spatial part is integrated out because it can’t be probed by X-ray diffraction.
On the other hand, the pair density should include spin, thus we define

ρ2(~x1, ~x2) =N(N − 1)p2(~x1, ~x2)

=N(N − 1)

∫
Ψ∗(~x1, ~x2, · · · , ~xN )Ψ(~x1, ~x2, · · · , ~xN )~x3 · · · d~xN (16)

as the electron pair density function.
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Properties

In addition to the normalization and reduction properties of the density func-
tions, electron density enjoys the added property due to the anti-symmetry of
its wave function.

P (~x1, ~x1, ~x3, · · · , ~xN ) = lim
~x2→~x1

Ψ∗(~x1, ~x2, ~x3, · · · , ~xN )Ψ(~x1, ~x2, ~x3, · · · , ~xN )

= lim
~x2→~x1

Ψ∗(~x1, ~x2, ~x3, · · · , ~xN )Ψ(~x2, ~x1, ~x3, · · · , ~xN )

=− lim
~x2→~x1

Ψ∗(~x1, ~x2, ~x3, · · · , ~xN )Ψ(~x1, ~x2, ~x3, · · · , ~xN )

=− P (~x1, ~x1, ~x3, · · · , ~xN )⇒
P (~x1, ~x1, ~x3, · · · , ~xN ) =− P (~x1, ~x1, ~x3, · · · , ~xN ) = 0 (17)

Therefore

ρ2(~x, ~x) = −ρ2(~x, ~x) = 0 (18)

That is, the Pauli exclusion principle is a generic property of anti-symmetry of
Ψ and the definition P = Ψ∗Ψ.

Exchange-Correlation Hole Density

If electrons were non-interacting

p2(~x1, ~x2) = p1(~x1)p1(~x2) (19)

thus (16) reduces to

ρ2(~x1, ~x2) = Np1(~x1)(N − 1)p1(~x2) =
N − 1

N
ρ1( ~x1)ρ1(~x2)

ρ2(~x1, ~x2) = ρ1( ~x1)ρ1(~x2)(1− 1

N
) (20)

We hope that when interaction is turned on, ρ2 is still in the form (20)

ρ2(~x1, ~x2) = ρ1( ~x1)ρ1(~x2)(1 + f(~x1, ~x2)) (21)

This way we can rewrite

ρ2(~x1, ~x2) = ρ1( ~x1)(ρ1(~x2) + ρ1(~x2)f(~x1, ~x2))

= ρ1( ~x1)(ρ1(~x2) + hXC(~x1, ~x2)) (22)

and interpret as, the interaction between ~x1 and ~x2 is proportional to the elec-
tron density at ~x1 times the modulated density of electron at ~x2. ρ1(~x2) is
modulated due to the presence of electrons at ~x1. The modulation term hXC is
known as the exchange-correlation hole density. Its normalization∫

hXC(~x1, ~x2)d~x1d~x2 =

∫
ρ2(~x1, ~x2)

ρ1(~x1)
− ρ1(~x2)d~x1d~x2

=
(N − 1)ρ1(~x1)

ρ1( ~x1)
−N = −1 (23)

The exchange-correlation hole density is our key to understanding the weirdness
of ρ2(~x1, ~x2), we see that its non-intuitive reduction to ρ1 is what made hXC

nice.


