Density Functions

Distinguishable Non-interacting Point Particles

In the simplest case, consider N distinguishable non-interacting point particles and suppose the probability of finding them in the configuration $\left\{\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{N}\right\}$ is given by $P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{N}\right)$, where $\overrightarrow{x_{i}}$ is the complete set of coordinates that describe the state of particle i that may include spatial, spin or momentum information or what not. The probability density of finding particle 1 in the region \vec{x} is then

$$
\begin{equation*}
p_{1}^{(1)}(\vec{x})=\int P\left(\vec{x}, \vec{x}_{2}, \cdots, \vec{x}_{N}\right) d \vec{x}_{2} d \vec{x}_{3} \cdots d \vec{x}_{N} \tag{1}
\end{equation*}
$$

Following the above example we can then define single particle probability density functions $p_{1}^{(i)}(\vec{x})$ for each particle i. In general $p_{1}^{(i)} \neq p_{1}^{(j)}$ for $i \neq j$, but we do have ${ }^{1}$

$$
\begin{equation*}
\int p_{1}^{(i)}(\vec{x}) d \vec{x}=1 \forall i \tag{2}
\end{equation*}
$$

For a pair of particles

$$
\begin{equation*}
p_{2}^{(1,2)}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\int P\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \cdots, \vec{x}_{N}\right) d \vec{x}_{3} \cdots d \vec{x}_{N} \tag{3}
\end{equation*}
$$

Notice $p_{2}^{(i, j)}$ is only defined for $i \neq j$. We then have the comforting reduction

$$
\begin{equation*}
\int p_{2}^{(i, j)}\left(\vec{x}_{1}, \vec{x}_{2}\right) d \vec{x}_{2}=p_{1}^{(i)}\left(\vec{x}_{1}\right) \tag{4}
\end{equation*}
$$

Further, since the particles are non-interacting, we have

$$
\begin{equation*}
P\left(\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{N}\right)=p_{1}^{(1)}\left(\vec{x}_{1}\right) p_{1}^{(2)}\left(\vec{x}_{2}\right) \cdots p_{1}^{(N)}\left(\vec{x}_{N}\right) \tag{5}
\end{equation*}
$$

and $p_{2}^{(i, j)}$ reduces to

$$
\begin{equation*}
p_{2}^{(i, j)}\left(\vec{x}_{1}, \vec{x}_{2}\right)=p_{1}^{i}\left(\vec{x}_{1}\right) p_{1}^{j}\left(\vec{x}_{2}\right) \tag{6}
\end{equation*}
$$

The nice reduction formula (4) and (6) define our intuitive understanding of particles. Indeed they describe the probabilistic properties of a table of ghost billiard balls (they just go through each other) and are easy to visualize. (4) says the probability of having ball i at \vec{x}_{1} is equal to the sum of probabilities of having ball i at \vec{x}_{1} and ball j at \vec{x}_{2} over all possible \vec{x}_{2}. (6) says the probability of having ball i at \vec{x}_{1} and ball j at \vec{x}_{2} is equal to the product of probabilities of having ball i at \vec{x}_{1} with ball j being anywhere and the probability having ball j at \vec{x}_{2} with ball i being anywhere. Notice (4) doesn't require non-interaction, whereas (6) does.

For a smooth transition into indistinguishable particles, let's study distinguishable particles while pretending they're indistinguishable. This is a subtle but very important exercise. It's tempting to think if we take the previously distinguishable ghost billiard balls, paint them all black and carry out

[^0]the aforementioned calculations then we can get the properties of indistinguishable particles. This line of reasoning is wrong. Distinguishable particles and indistinguishable particles have fundamentally different statistics.

Let's still consider N distinguishable particles, but now ask what the probability density of finding a ball with ANY label around \vec{x}. This particle density

$$
\begin{equation*}
\rho_{1}(\vec{x})=\sum_{i=1}^{N} p_{1}^{(i)}(\vec{x}) \tag{7}
\end{equation*}
$$

and pair density

$$
\begin{equation*}
\rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\sum_{i \neq j} p_{2}^{(i, j)}\left(\vec{x}_{1}, \vec{x}_{2}\right) \tag{8}
\end{equation*}
$$

Does $\rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right)$ still reduce to $\rho_{1}\left(\vec{x}_{1}\right)$ when \vec{x}_{2} is integrated out?

$$
\begin{array}{r}
\int \rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right) d \vec{x}_{2}=\sum_{i \neq j} \int p_{2}^{(i, j)}\left(\vec{x}_{1}, \vec{x}_{2}\right) d \vec{x}_{2} \\
=\sum_{i \neq j} p_{1}^{(i)}\left(\vec{x}_{1}\right)=(N-1) \sum_{i} p_{1}^{(i)}\left(\vec{x}_{1}\right)=(N-1) \rho_{1}\left(\vec{x}_{1}\right) \tag{9}
\end{array}
$$

Unfortunately, no, but can it be split into a product of particle densities?

$$
\begin{array}{r}
\rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\sum_{i \neq j} p_{1}^{(i)}\left(\vec{x}_{1}\right) p_{1}^{(j)}\left(\vec{x}_{2}\right) \\
=\sum_{i} p_{1}^{(i)}\left(\vec{x}_{1}\right) \sum_{j \neq i} p_{1}^{(j)}\left(\vec{x}_{2}\right) \\
=\sum_{i} p_{1}^{(i)}\left(\vec{x}_{1}\right)\left(\sum_{j} p_{1}^{(j)}\left(\vec{x}_{2}\right)-p_{1}^{(i)}\left(\vec{x}_{2}\right)\right) \\
=\rho_{1}\left(\vec{x}_{1}\right) \rho_{1}\left(\vec{x}_{2}\right)-\sum_{i} p_{1}^{(i)}\left(\vec{x}_{1}\right) p_{1}^{(i)}\left(\vec{x}_{2}\right) \tag{10}
\end{array}
$$

Notice if $\vec{x}_{1} \neq \vec{x}_{2}, p_{1}^{(i)}\left(\vec{x}_{1}\right) p_{1}^{(i)}\left(\vec{x}_{2}\right)=0$ since particle i can't be at two places at once, also $\int p_{1}^{(i)}\left(\vec{x}_{1}\right) p_{1}^{(i)}\left(\vec{x}_{2}\right) d \vec{x}_{2}=1$, thus $p_{1}^{(i)}\left(\vec{x}_{1}\right) p_{1}^{(i)}\left(\vec{x}_{2}\right)=\delta\left(\vec{x}_{1}-\vec{x}_{2}\right)$ and

$$
\begin{equation*}
\rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\rho_{1}\left(\vec{x}_{1}\right)\left(\rho_{1}\left(\vec{x}_{2}\right)-\delta\left(\vec{x}_{1}-\vec{x}_{2}\right)\right) \tag{11}
\end{equation*}
$$

The non-intuitive reduction formula (9) and (11) are what makes dealing with densities without label confusing. However, we can actually interpret (11) quite nicely by introducing the hole density

$$
\begin{equation*}
h\left(\vec{x}_{1}, \vec{x}_{2}\right) \equiv \frac{\rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right)}{\rho_{1}\left(\vec{x}_{1}\right)}-\rho_{1}\left(\vec{x}_{2}\right)=-\delta\left(\vec{x}_{1}-\vec{x}_{2}\right) \tag{12}
\end{equation*}
$$

This way

$$
\begin{equation*}
\rho_{2}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\rho_{1}\left(\vec{x}_{1}\right)\left(\rho_{1}\left(\vec{x}_{2}\right)+h\left(\vec{x}_{1}, \vec{x}_{2}\right)\right) \tag{13}
\end{equation*}
$$

That is, when a particle is set at \vec{x}_{1}. To calculate its pair density with another particle at \vec{x}_{2}, we need to modulate the probability density by a hole density $h\left(\vec{x}_{1}, \vec{x}_{2}\right)$. Of course, in this case we know exactly where this hole came from. When we remove a particle from our pool of N particles, the density of particles it can form a pair with $\rho_{1}\left(\vec{x}_{2}\right)+h\left(\vec{x}_{1}, \vec{x}_{2}\right)$ must normalize to $N-1$.

[^0]: ${ }^{1}$ Only if $\overrightarrow{x_{i}}$ is a complete set of coordinates for each i

