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Density Functions

Distinguishable Non-interacting Point Particles

In the simplest case, consider N distinguishable non-interacting point particles
and suppose the probability of finding them in the configuration {~x1, ~x2, · · · , ~xN}
is given by P (~x1, ~x2, · · · , ~xN ), where ~xi is the complete set of coordinates that
describe the state of particle i that may include spatial, spin or momentum
information or what not. The probability density of finding particle 1 in the
region ~x is then

p
(1)
1 (~x) =

∫
P (~x, ~x2, · · · , ~xN )d~x2d~x3 · · · d~xN (1)

Following the above example we can then define single particle probability den-

sity functions p
(i)
1 (~x) for each particle i. In general p

(i)
1 6= p

(j)
1 for i 6= j, but we

do have1 ∫
p
(i)
1 (~x)d~x = 1 ∀i (2)

For a pair of particles

p
(1,2)
2 (~x1, ~x2) =

∫
P (~x1, ~x2, ~x3, · · · , ~xN )d~x3 · · · d~xN (3)

Notice p
(i,j)
2 is only defined for i 6= j. We then have the comforting reduction∫

p
(i,j)
2 (~x1, ~x2)d~x2 = p

(i)
1 (~x1) (4)

Further, since the particles are non-interacting, we have

P (~x1, ~x2, · · · , ~xN ) = p
(1)
1 (~x1)p

(2)
1 (~x2) · · · p(N)

1 (~xN ) (5)

and p
(i,j)
2 reduces to

p
(i,j)
2 (~x1, ~x2) = pi1(~x1)pj1(~x2) (6)

The nice reduction formula (4) and (6) define our intuitive understanding of
particles. Indeed they describe the probabilistic properties of a table of ghost
billiard balls (they just go through each other) and are easy to visualize. (4)
says the probability of having ball i at ~x1 is equal to the sum of probabilities of
having ball i at ~x1 and ball j at ~x2 over all possible ~x2. (6) says the probability
of having ball i at ~x1 and ball j at ~x2 is equal to the product of probabilities of
having ball i at ~x1 with ball j being anywhere and the probability having ball
j at ~x2 with ball i being anywhere. Notice (4) doesn’t require non-interaction,
whereas (6) does.

For a smooth transition into indistinguishable particles, let’s study distin-
guishable particles while pretending they’re indistinguishable. This is a sub-
tle but very important exercise. It’s tempting to think if we take the previ-
ously distinguishable ghost billiard balls, paint them all black and carry out

1Only if ~xi is a complete set of coordinates for each i
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the aforementioned calculations then we can get the properties of indistinguish-
able particles. This line of reasoning is wrong. Distinguishable particles and
indistinguishable particles have fundamentally different statistics.

Let’s still consider N distinguishable particles, but now ask what the prob-
ability density of finding a ball with ANY label around ~x. This particle density

ρ1(~x) =

N∑
i=1

p
(i)
1 (~x) (7)

and pair density

ρ2(~x1, ~x2) =
∑
i 6=j

p
(i,j)
2 (~x1, ~x2) (8)

Does ρ2(~x1, ~x2) still reduce to ρ1(~x1) when ~x2 is integrated out?∫
ρ2(~x1, ~x2)d~x2 =

∑
i6=j

∫
p
(i,j)
2 (~x1, ~x2)d~x2

=
∑
i 6=j

p
(i)
1 (~x1) = (N − 1)

∑
i

p
(i)
1 (~x1) = (N − 1)ρ1(~x1) (9)

Unfortunately, no, but can it be split into a product of particle densities?

ρ2(~x1, ~x2) =
∑
i 6=j

p
(i)
1 (~x1)p

(j)
1 (~x2)

=
∑
i

p
(i)
1 (~x1)

∑
j 6=i

p
(j)
1 (~x2)

=
∑
i

p
(i)
1 (~x1)

∑
j

p
(j)
1 (~x2)− p(i)1 (~x2)


= ρ1(~x1)ρ1(~x2)−

∑
i

p
(i)
1 (~x1)p

(i)
1 (~x2) (10)

Notice if ~x1 6= ~x2, p
(i)
1 (~x1)p

(i)
1 (~x2) = 0 since particle i can’t be at two places at

once, also
∫
p
(i)
1 (~x1)p

(i)
1 (~x2)d~x2 = 1, thus p

(i)
1 (~x1)p

(i)
1 (~x2) = δ(~x1 − ~x2) and

ρ2(~x1, ~x2) = ρ1(~x1)(ρ1(~x2)− δ(~x1 − ~x2)) (11)

The non-intuitive reduction formula (9) and (11) are what makes dealing with
densities without label confusing. However, we can actually interpret (11) quite
nicely by introducing the hole density

h(~x1, ~x2) ≡ ρ2(~x1, ~x2)

ρ1(~x1)
− ρ1(~x2) = −δ(~x1 − ~x2) (12)

This way

ρ2(~x1, ~x2) = ρ1(~x1)(ρ1(~x2) + h(~x1, ~x2)) (13)

That is, when a particle is set at ~x1. To calculate its pair density with another
particle at ~x2, we need to modulate the probability density by a hole density
h(~x1, ~x2). Of course, in this case we know exactly where this hole came from.
When we remove a particle from our pool of N particles, the density of particles
it can form a pair with ρ1(~x2) + h(~x1, ~x2) must normalize to N − 1.


