Density Functions

Distinguishable Non-interacting Point Particles

In the simplest case, consider N distinguishable non-interacting point particles
and suppose the probability of finding them in the configuration {Zy, Zs,--- , Zn'}
is given by P(¥1,Za, - ,Zn), where z; is the complete set of coordinates that
describe the state of particle ¢ that may include spatial, spin or momentum
information or what not. The probability density of finding particle 1 in the
region & is then
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Following the above example we can then define single particle probability den-

sity functions pgi)(f) for each particle ¢. In general pgi) # pgj) for ¢ # j, but we
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Notice pg’j ) is only defined for ¢ # j. We then have the comforting reduction
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Further, since the particles are non-interacting, we have
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and pg’j ) reduces to
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The nice reduction formula (4) and (6) define our intuitive understanding of
particles. Indeed they describe the probabilistic properties of a table of ghost
billiard balls (they just go through each other) and are easy to visualize. (4)
says the probability of having ball 7 at &1 is equal to the sum of probabilities of
having ball ¢ at #; and ball j at Z5 over all possible Z5. (6) says the probability
of having ball ¢ at 7 and ball j at &5 is equal to the product of probabilities of
having ball 7 at ©; with ball j being anywhere and the probability having ball
J at @9 with ball i being anywhere. Notice (4) doesn’t require non-interaction,
whereas (6) does.

For a smooth transition into indistinguishable particles, let’s study distin-
guishable particles while pretending they’re indistinguishable. This is a sub-
tle but very important exercise. It’s tempting to think if we take the previ-
ously distinguishable ghost billiard balls, paint them all black and carry out

1Only if #; is a complete set of coordinates for each i



the aforementioned calculations then we can get the properties of indistinguish-
able particles. This line of reasoning is wrong. Distinguishable particles and
indistinguishable particles have fundamentally different statistics.

Let’s still consider IV distinguishable particles, but now ask what the prob-
ability density of finding a ball with ANY label around #. This particle density
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and pair density
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Does pa (%1, Z2) still reduce to p1(#1) when Z5 is integrated out?
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Unfortunately, no, but can it be split into a product of particle densities?
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Notice if #y # @o, p (fl) (Z)( 2) = 0 since particle 7 can’t be at two places at

once, also fpl) xl)pg (Z5)dZy = 1, thus p(l) (xl)pg )(:E'Q) = 6(&; — Z3) and

| p2(&1,72) = p1 (1) (p1(2) — 6(F1 — )| (11)

The non-intuitive reduction formula (9) and (11) are what makes dealing with
densities without label confusing. However, we can actually interpret (11) quite
nicely by introducing the hole density

h(y,72) = ,02;15(1%15)2) — p1(T2) = —6(71 — 7) (12)

This way
p2(T1, T2) = p1(Z1)(p1(F2) + h(Z1, T2)) (13)

That is, when a particle is set at #;. To calculate its pair density with another
particle at ¥, we need to modulate the probability density by a hole density
h(Z1,%2). Of course, in this case we know exactly where this hole came from.
When we remove a particle from our pool of N particles, the density of particles
it can form a pair with p;(Z2) + h(#1, Z2) must normalize to N — 1.



