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Tight Bonding

A single atom traps its electrons in the nuclei’s Coulomb well, such that the
stationary states of the electrons are localized around the atom. One way
atoms can bind to form a molecule is to combine their Coulomb wells to allow
de-localized stationary states that have lower energies than the sum of the
atomic states. This type of bonding is known as Tight Bonding. In this
section, we will explore the formation of such bonds for 2 atoms and then
expand it to N atoms.

Covalent Bond

Consider a diatomic molecule. The Hamiltonian for the two electrons with
positions ~x1 and ~x2 in this two-atom system is
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where ~X1 and ~X2, Z1 and Z2 are the positions and charges of the ions,
which (under the Born-Oppenheimer approximation) are constants. The
hamiltonian can be split into single particle hamiltonians with an interactions
term

H = h1(~x1) + h2(~x2) + V (~x1, ~x2) (2)

Suppose the two atoms have eigenstates |1〉, |2〉 with eigenvalues E1, E2 which
are orthogonal1. Call A = 〈1 |V | 2〉, then in the |1〉 , |2〉 basis
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The above form tempts the definitions of Ē = E1+E2
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1In reality 〈1 | 2〉 6= 0, but it’s not a horrible approximation and shows the right physics
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Nice physical interpretation emerges when we consider identical atoms, in
which case ε = 0 (

Ē − A Ē + A
{−1, 1} {1, 1}

)
(6)

The two eigenstates are called the bongding and anti-bonding orbitals. This
explains why hydrogens bind (both electrons occupy the bonding orbital,
making the total energy of the molecule lower than the sum of the energies
of the atoms), but heliums do not (bonding and anti-bonding orbitals are
both occupied by two electrons).

Now that we have the Hamiltonian diagonalized in the atomic basis
|1〉 , |2〉 (eigenvectors ψ± = 1√

2
(|1〉 ± |2〉), eigenvalues ε± = Ē ± A )we can

calculate exactly how a single electron state evolves with time. Suppose an
electron is initially localized on atom 1
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and we let it evolve in time
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The probability of it still being localized on atom 1

P1 = | 〈1 |ψ(t)〉 |2 = cos2(
A

~
t) (9)

On average 〈P1〉 = 1
2
, that is the electron is equally likely to be localized

around either atom.

1D Lattice

Consider a 1D lattice of identical atoms with atomic orbitals |1〉, |2〉, · · · , |N〉.
To see the physics without tedious math, make 3 not-so-terrible assumptions

1. atomic orbitals are orthonormal: 〈i | j〉 = δij

2. only neighbors interact: 〈i |H | j〉 = 0, ∀|i− j| > 1

3. the lattice is period: 〈1 |H |N〉 = 〈N |H | 1〉 6= 0
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The Hamiltonian in the atomic basis then looks like

H =


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 (10)

The more compact notation is Hi,j = Eoδi,j + A(δi+1,j + δi−1,j). Of course
the actual matrix is N × N , and diagonalizing such a matrix would be ex-
tremely difficult. Further, in the limit of an infinite lattice, diagonalization
is not possible. Therefore, we need a better way to find the eigenvalues and
eigenvectors of the Hamiltonian operator.

To do so, we shall express all states in the atomic basis set and use
Schrödinger’s equation to find the expansion coefficients. That is, suppose
an arbitrary state |ψ〉 =

∑
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ci(t) |i〉, we have
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If |ψ〉 is an eigenstate

Eocj + A(cj−1 + cj+1) = Ecj (12)

???? Magically cj = eikaj solves the above difference equation, and we have
the eigenvalues

E = Eo + 2A cos(ka) (13)

as well as the eigenvectors

|ψ〉 =
1√
N

N∑
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eikaj |j〉 (14)

which are plane waves that are equally likely to be localized around ANY
atom in the lattice. In essence, the electron behaves as if it were free! To
quantify this ”free” behavior, consider the dispersion relation given by equa-
tion (13) for slow-moving electrons k → 0

E = Eo + 2A cos(ka) ≈ Eo + 2A− Ak2a2 (15)
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that is, the electron has ”some rest energy” Eo + 2A and ”kinetic energy”
−Ak2a2. Normally A < 0, thus consider

K.E. =
~2k2

2m∗
= |A|k2a2 ⇒

m∗ =
~2

2|A|a2
(16)

In other words, electrons in a tight bonding chain behaves like a free electron
with conjugated mass. As |A| becomes smaller, m∗ becomes bigger. Recall
A = 〈i |V | i± 1〉 describes how ”coupled” neighbouring atoms are, so the
smaller |A| is, the bigger the resistance there is for electrons to move around


