## Self-Adjoint Operator

A self-adjoint operator $\hat{L}$ on domain $\mathscr{D}$ is formally self-adjoint ( $\hat{L}=\hat{L}^{\dagger}$ ) and has self-adjoint boundary condition such that it satisfies the Lagrange's Identity for $O D E$ and $\left.Q(x)\right|_{\text {boundary }}=0$

$$
\begin{equation*}
w\left(u^{*} \hat{L} v-\left(\hat{L}^{\dagger} u\right)^{*} v\right)=\frac{d}{d x} Q(x) \tag{1}
\end{equation*}
$$

where $Q\left(u(x), u^{\prime}(x), u^{\prime \prime}(x), \cdots, v(x), v^{\prime}(x), v^{\prime \prime}(x), \cdots\right)$ is a bilinear function of $u(x), u^{\prime}(x), \cdots, v(x), v^{\prime}(x), \cdots, w(x)$ is a weight function. The boxed Lagrange's Identity for $O D E$ is worth committing to memory.

## Formally Self-Adjoint

Given the form of $\hat{L}$ and $w(x)$, the formal adjoint $\hat{L}^{\dagger}$ is defined to be the operator that completes Lagrange's Identity with $\hat{L}$ for any functions $u(x)$ and $v(x)$. Notice it's not an operator since no domain was specified. The operator $\hat{L}$ is said to be formally self-adjoint if it is equal to its adjoint $\hat{L}=\hat{L}^{\dagger}$ irrespective of their domains $\mathscr{D}, \mathscr{D}^{\dagger}$

$$
\begin{equation*}
w\left(u \hat{L} v-\hat{L}^{\dagger} u, v\right)=\frac{d}{d x} Q(u, v) \tag{2}
\end{equation*}
$$

To find the formal adjoint of $\hat{L}$, one should start with $w u \hat{L} v$ and move all the differentials across $u^{*}$ by using the commutation relation

$$
\begin{equation*}
\left[\frac{d}{d x}, f(x)\right]=f^{\prime}(x) \Rightarrow f \frac{d}{d x}=\frac{d}{d x} f-f^{\prime} \tag{3}
\end{equation*}
$$

Example To find the formal adjoint of $\hat{L}=i \frac{d}{d x}$
Start with $w u^{*} \hat{L} v$ and move the $\frac{d}{d x}$ across $u^{*}$

$$
\begin{array}{r}
w u^{*} \hat{L} v=w u^{*} i v^{\prime}=w \frac{d}{d x} u^{*} v i-w u^{* \prime} v i \Rightarrow \\
w u \hat{L} v+w u^{* \prime} v i=w \frac{d}{d x} u^{*} v i \tag{4}
\end{array}
$$

move $\frac{d}{d x}$ across $w$ on the RHS to get $Q$

$$
\begin{array}{r}
w u \hat{L} v+w u^{* \prime} v i=\frac{d}{d x} w u^{*} v i-w^{\prime} u^{*} v i \Rightarrow \\
w u \hat{L} v-\left(-w u^{* \prime} v i-w^{\prime} u^{*} v i\right)=\frac{d}{d x} w u^{*} v i=\frac{d}{d x} Q \tag{5}
\end{array}
$$

Identify $\hat{L}^{\dagger}$

$$
\begin{array}{r}
w\left(\hat{L}^{\dagger} u\right)^{*} v=-w u^{* \prime} v i-w^{\prime} u^{*} v i \Rightarrow \\
\left(\hat{L}^{\dagger} u\right)^{*}=-i u^{* \prime}-i \frac{w^{\prime}}{w} u^{*}=\left(i \frac{d}{d x}+i \frac{w^{\prime}}{w}\right)^{*} \Rightarrow \\
\hat{L}^{\dagger}=i \frac{d}{d x}+i \frac{w^{\prime}}{w} \tag{6}
\end{array}
$$

Therefore $\hat{L}$ is formally adjoint when $\frac{w^{\prime}}{w}=0$.

## Self-Adjoint Boundary Condition

For operator $\hat{L}$ on $\mathscr{D}$ to have adjoint boundary condition, the adjoint domain $\mathscr{D}^{\dagger}$ makes $\left.Q\right|_{a} ^{b}$ vanish. $\hat{L}$ on $\mathscr{D}$ is said to have self-adjoint boundary condition if $\mathscr{D}=\mathscr{D}^{\dagger}$

Example To find adjoint boundary condition for $\hat{L}=\frac{d^{2}}{d x^{2}}$ on $\mathscr{D}=\{v(x) \in$ $\left.L^{2}[0,1] \mid v(0)=0, v^{\prime}(0)=1\right\}$, we first find its formal adjoint

$$
\begin{array}{r}
u^{*} v^{\prime \prime}=\frac{d}{d x}\left(u^{*} v^{\prime}\right)-u^{* \prime} v^{\prime}=\frac{d}{d x}\left(u^{*} v^{\prime}-u^{* \prime} v\right)+u^{* \prime \prime} v \Rightarrow \\
u^{*} v^{\prime \prime}-u^{* \prime \prime} v=\frac{d}{d x}\left(u^{*} v^{\prime}-u^{* \prime} v\right) \tag{7}
\end{array}
$$

We identify

$$
\left\{\begin{array}{l}
\hat{L}^{\dagger}=\frac{d^{2}}{d x^{2}}  \tag{8}\\
Q=u^{*} v^{\prime}-u^{*} v
\end{array}\right.
$$

We thus need

$$
\begin{array}{r}
\left.Q\right|_{0} ^{1}=0 \Rightarrow\left(u^{*}(1) v^{\prime}(1)-u^{* \prime}(1) v(1)\right)-\left(u^{*}(0) v^{\prime}(0)-u^{* \prime}(0) v(0)\right)=0 \Rightarrow \\
u^{*}(1) v^{\prime}(1)-u^{* \prime}(1) v(1)-u^{*}(0)=0 \tag{9}
\end{array}
$$

Therefore

$$
\begin{equation*}
\mathscr{D}^{\dagger}=\left\{u(x) \mid u(1)=u^{\prime}(1)=0, u(0)=0\right\} \tag{10}
\end{equation*}
$$

$\mathscr{D}^{\dagger} \neq \mathscr{D}$, therefore $\hat{L}$ on $\mathscr{D}$ does not have self-adjoint boundary condition.

