Reduction of Order

Reduction of order is really a misnomer. It refers to the process of eliminating the $n-1^{\text {th }}$ order term in an $n^{\text {th }}$ order ODE by a clever transformation. By definition, this process does not change the order of the ODE, it merely makes it look cleaner.

Normal Form

Given an $n^{\text {th }}$ order differential equation of the form

$$
\begin{equation*}
p_{0} y^{(n)}+p_{1} y^{(n-1)}+\cdots+p_{n} y=0 \tag{1}
\end{equation*}
$$

We can remove its $(n-1)^{\text {th }}$ order term by choosing

$$
\left\{\begin{array}{l}
y=\omega \tilde{y} \tag{2}\\
\omega^{\prime}=-\frac{p_{1}}{n p_{0}} \omega
\end{array}\right.
$$

To see this, plug $y=\omega \tilde{y}$ into (1)

$$
\begin{equation*}
p_{0} \omega \tilde{y}^{(n)}+\left(n p_{0} \omega^{\prime}+p_{1} \omega\right) \tilde{y}^{(n-1)}+\cdots+p_{n} \omega \tilde{y}=0 \tag{3}
\end{equation*}
$$

the $n-1^{\text {th }}$ order term $n p_{0} \omega^{\prime}+p_{1} \omega$ is, because of the choice of ω, naturally 0 . This is especially useful for a second-order equation since it reduces to a 1D Schrödinger-like equation and may be solved via physical intuition. Example Given a general second-order equation

$$
\begin{equation*}
p_{0} y^{\prime \prime}+p_{1} y^{\prime}+p_{2} y=0 \tag{4}
\end{equation*}
$$

by choosing, we can write an equation in \tilde{y} that's equivalent to (4)

$$
\left\{\begin{array}{l}
y=\omega \tilde{y} \tag{5}\\
\omega^{\prime}=-\frac{p_{1}}{2 p_{0}} \omega
\end{array}\right.
$$

$$
\begin{align*}
p_{0} \omega \tilde{y}^{\prime \prime}+\left(2 p_{0} \omega^{\prime}+p_{1} \omega\right) \tilde{y}^{\prime}+\left(p_{0} \omega^{\prime \prime}+p_{1} \omega^{\prime}+p_{2} \omega\right) \tilde{y}=0 & \Rightarrow \\
p_{0} \omega \tilde{y}^{\prime \prime}+\left(-p_{0}\left(\frac{p_{1}}{2 p_{0}}\right)^{\prime} \omega-\frac{1}{2} p_{1} \omega^{\prime}+p_{2} \omega\right) \tilde{y}=0 & \Rightarrow \\
p_{0} \tilde{y}^{\prime \prime}+\left(p_{2}-p_{0}\left(\frac{p_{1}}{2 p_{0}}\right)^{\prime}-\frac{p_{1}^{2}}{4 p_{0}}\right) \tilde{y} & =0 \tag{6}
\end{align*}
$$

If we further have $p_{0}^{\prime}=0$, then

$$
\begin{equation*}
p_{0} \tilde{y}^{\prime \prime}+\left(p_{2}-\frac{1}{2} p_{1}^{\prime}-\frac{1}{4} \frac{p_{1}^{2}}{p_{0}}\right) \tilde{y}=0 \tag{7}
\end{equation*}
$$

Sturm-Liouville Form

If we want to write (4) in Sturm-Liouville form

$$
\begin{equation*}
\frac{1}{w}\left(w q_{0} y^{\prime}\right)^{\prime}+q_{2} y=\frac{1}{w} \frac{d}{d x} w q_{0} \frac{d}{d x} y+q_{2} y=0 \tag{8}
\end{equation*}
$$

we must choose $q_{0}=p_{0}, q_{2}=p_{2}$ and the weight function w such that

$$
\begin{equation*}
\frac{w^{\prime}}{w} p_{0}+p_{0}^{\prime}=p_{1} \Rightarrow w=\frac{1}{p_{0}} e^{\int_{a}^{x}\left(\frac{p_{1}(\xi)}{p_{0}(\xi)}\right) d \xi} \tag{9}
\end{equation*}
$$

To see this, expand (8)

$$
\begin{array}{r}
q_{0} y^{\prime \prime}+\frac{1}{w}\left(w^{\prime} q_{0}+w q_{0}^{\prime}\right) y^{\prime}+q_{2} y=0 \Rightarrow \\
q_{0} y^{\prime \prime}+\left(\frac{w^{\prime}}{w} q_{0}+q_{0}^{\prime}\right) y^{\prime}+q_{2} y=0 \Rightarrow \\
p_{0} y^{\prime \prime}+p_{1} y^{\prime}+p_{2} y=0 \tag{10}
\end{array}
$$

This is an important result, because the Sturm-Liouville operator

$$
\begin{equation*}
\hat{L}=\frac{1}{w} \frac{d}{d x} w p_{0} \frac{d}{d x}+p_{2} \tag{11}
\end{equation*}
$$

happen to be formally self-adjoint given the weight $w=\frac{1}{p_{0}} \exp \left(\int_{a}^{x} \frac{p_{1}}{p_{0}}\right)$. That is, we can eye-ball the weight that will make a Sturm-Liouville operator formally self-adjoint by putting it into the form (11).

