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Nearly Free Electron

In the tight bonding model, the electron eigenstates are initially assumed
to be localized around the atoms, then a hopping term is introduced to
allow them to delocalize. In the nearly free electron model, we take the
opposite approach. That is, the electron eigenstates are initially assumed to
be completely delocalized (plane waves for free electrons), then a periodic
potential is turned on to localize them. Periodicity is key.

Periodic Function and Reciprocal Lattice

Consider a lattice R = {~R} and a periodic function with the periodicity of

the lattice f(~x+ ~R) = f(~x). Observing this periodicity in Fourier space

f(~x+ ~R) =
∑
~G

f ~Ge
i ~G·(~x+~R) = ei

~G·~Rf(~x) (1)

we conclude that ei
~G·~R must equal 1 for this periodicity to hold, which means

the Fourier spectrum of any lattice-periodic function is necessarily discretize
and can only have values at reciprocal lattice points ~G, constraint by

ei
~G·~R = 1 (2)

The collection of all such ~G form the reciprocal lattice G = {~G|ei ~G·~R = 1}

Schrödinger’s Equation in Periodic Potential

Recall the Schrödinger’s equation

[− ~2

2m
∇2 + V (~r)]ψ(~r) = Eψ(~r) (3)

When V (~r + ~R) = V (~r), this equation begs to be expanded in Fourier space

(against the plane wave basis {
∣∣∣~k〉} = {ei~k·~r}) for two reasons. Firstly, V (~r)

is lattice-periodic and therefore has discrete expansion coefficients. Secondly,
plane waves are eigenfunctions of ∇2. Carrying out the expansion ψ(~r) =∑
~k

ψ~ke
i~k·~r and V (~r) =

∑
~G

V ~Ge
i ~G·~r, where ~k is any momentum vector (for now),
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and ~G is any reciprocal lattice vector. Equation (3) becomes

∑
~G

V ~Ge
i ~G·~r
∑
~k

ψ~ke
i~k·~r =

∑
~k

(E − ~2|~k|2

2m
)ψ~ke

i~k·~r ⇒

∑
~G

∑
~k

V ~Gψ~ke
i(~k+ ~G)·~r =

∑
~k

(E − ~2|~k|2

2m
)ψ~ke

i~k·~r

Shift the summation index on the left ~k → ~k + ~G

∑
~G

∑
~k

V ~Gψ~k− ~Ge
i~k·~r = (E − ~2|~k|2

2m
)
∑
~k

ψ~ke
i~k·~r ⇒

∑
~k

ei
~k·~r

∑
~G

V ~Gψ~k− ~G − (E − ~2|~k|2

2m
)ψ~k

 = 0⇒

∑
~G

V ~Gψ~k− ~G − (E − ~2|~k|2

2m
)ψ~k = 0, ∀~k (4)

Remember, the boxed equation is equivalent to the Schodinger’s equation,

which means as long as it is satisfied, ψ(~r) =
∑
~k

ψ~ke
i~k·~r will be an eigenfunc-

tion of the Hamiltonian operator. Notice that this equation only couples ~k
separated by ~G. Thus, for a given ~ko, if we choose the set of coefficients
K = {ψ~k|~k = ~ko + ~G; ~G ∈ G} to satisfy (4), then we have the freedom to

set all other coefficients to 0 (ψ~k = 0, ∀~k ∈ KC) and still have ψ(~r) be an
eigenfunction of the Hamiltonian. Formally

ψ( ~ko)
(~r) = ei

~ko·~r
∑
~G

ψ ~ko+ ~Ge
i ~G·~r (5)

Notice, I have put () around ~ko to signal that ψ( ~ko)
is a spatial wave function

determined from a choice of ~ko rather than a coefficient in frequency space.
Further notice, ψ( ~ko+ ~G′) ∀ ~G′ ∈ G are equivalent representation of the same

thing (the sum can be shifted). Borrowing the ideas of remainder theorem
and equivalent classes from number theory, we can define THE representation
for the class of eigenfunctions equivalent to ψ( ~ko)

(~r) as

ψ(~q)(~r) = ei~q·~ru~q(~r) (6)
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where

u~q(~r) =
∑
~G

ψ~q+ ~Ge
i ~G·~r (7)

and

~ko = Q~G+ ~q (8)

with Q ∈ N and ~q < ~G ∀~G ∈ G. Notice u~q(~r) =
∑
~G

ψ~q+ ~Ge
i ~G·~r is lattice-

periodic. In essence, (6) is the simplest form of an eigenvector in periodic
potential. u~q(~r) is often referred to as the Bloch function and ~q is known as
the crystal momentum.

Periodic Boundary Condition

Incidentally, the form (6) also naturally arises from a partition of plane waves
in a periodic box. Consider a 1D box of length L with period boundary
conditions. Any wave function can be expanded as

ψ(x) =
∑
k

ψke
ikx (9)

where k =
2π

L
M (10)

If we consider a partition of the box into N smaller boxes of equal size a such
that L = Na

ψ(x) =
∑
M

ψke
i 2π
Na

Mx (11)

by the remainder theorem, ∃q, r ∈ N such that

M = qN + r (12)

then

ψ(x) =
∑
r

∑
q

ψq,re
i 2π
Na

(qN+r)x

=
∑
r

ei(
2π
L
r)x
∑
q

ψq,re
i( 2π
a
q)x (13)
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If we define

ψr(x) = ei(
2π
L
r)xur(x) (14)

following the form of (6). Then we see that indeed ur(x) =
∑
q

ψq,re
i( 2π
a
q)x has

period a. In essence, with a simple partition

ψ(x) =
∑
k

ψke
i( 2π
L
M)x =

∑
r

ei(
2π
L
r)x
∑
q

ψq,re
i( 2π
a
q)x (15)

In conclusion, partitioned plane waves are the eigenfunctions of a periodic
potential.


